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July 4, 2012: Higgs boson discovered! 
Nov 18, 2016 Matthew Schwartz 

What did we learn? 
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The Standard Model 

H

1980-2012 2012 -- ?? 
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What is the Higgs field? 
•  The Higgs field h(x) pervades all space 
•  The Higgs field h(x) has charge under the weak force 

•  If <h> = 0 space is not empty – it has weak charge too 
•  The Higgs field h(x) has a potential  

V (h) = ⇤+m2h2 + �h4

•  Lowest energy state has <h> = v 
•  This Higgs field value surrounds us all  

What do we know about this potential? 
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V (h) = ⇤+m2h2 + �h4Classical potential: 

•  3 free parameters (Λ, m, λ) 
•  Must be measured from data
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Higgs potential 

1933: Rate for beta decay (GF=<v>-2) 
        gives vacuum expectation value 

1998: acceleration of universe gives 
vacuum energy density V(v)= (10-3 eV)4 

2012: Higgs boson mass V’’(v)=(126 GeV)2 

gives curvature at minimum 
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V (h) = ⇤+m2h2 + �h4Classical potential: 

•  3 free parameters (Λ, m, λ) 
•  Must be measured from data ✓
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Why are the values of Λ, m, λ in nature interesting? 

1. Fine tuning 

2. Vacuum stability 
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1. Fine tuning 
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V (h) = ⇤+m2h2 + �h4Classical potential: 

•  3 free parameters (Λ, m, λ) 
•  Must be measured from data ✓

•  Only 3 free parameters 
•  Quantum Field Theory 

      determines  V(h) for arbitrarily large h 
•  Called the quantum-corrected or Effective Potential 

Nov 18, 2016 Matthew Schwartz 

0 1 2 3 4
-2

0

2

4

6



Our vacuum is absolutely stable 
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Fine tuning 

10-124  
0 

MPl
4 = 1 
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Our vacuum will eventually decay … 
… but how long will it take? 

Stability 

V(H) 

H 

Lifetime > 15 billion years  
   = metastable 

Lifetime < 15 billion years  
    = unstable 
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Standard Model Effective Potential 
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0 

Veff(H) 

h 

v = 247 GeV hmin = 1033 GeV  

ΛI = 1011 GeV  

hmax = 1010 GeV  

Are these scales physical? 

Is the stability Planck sensitive? 



Gauge dependence 
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Instability scale ΛI  
     =  value of h where V(h) = 0 
•  Indicates sensitivity to new physics 

•  hmin  also gauge dependent 
•  hmax also gauge dependent 
•  … 

0

Veff(h) 

h 

v = 247 GeV 

Landau gauge (ξ=0) 

True minimum 
         Vmin 

Vmin > 0 à Absolute stability 
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How do we calculate a decay rate? 
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Figure 4: Left: Generic potential with a false and true vacuum. Right: The inverted
potential. The stationary path x̄(⌧) is the solution to the equations of motion of a ball
rolling down the inverted potential with boundary conditions x(0) = xi and x(T ) = xf .

However, if we evaluate the limit for the unphysical g, and then analytically continue to the
case of interest, we obtain an imaginary part. This then is the precise meaning of Eq. (3.4):

�

2
= Im

0

@ lim
T !1
g<0

1

T lnZg

1

A

g=1

(3.6)

The notation is meant to indicate contortions of taking the limit with negative g, then
analytically continuing to positive g and then taking the imaginary part.

Why does the limit not commute with the analytic continuation? There is no reason to
expect it should. According to Eq. (3.2), function Zg is schematically given by e�E

a

(g)T +
e�E

c

(g)T . As T ! 1, this picks out min(Ea, Ec), which changes non-analytically as g varies
from positive to negative. Ideally, one would like a proof that any deformation of V (x) to
Vg(x) leads to the same imaginary part after analytic continuation back and forth, and this
is generally assumed to be true. Let us set aside this subtlety in Eq. (3.4) and move on to
calculating the path integral using the saddle-point approximation.

The path integral can be approximated by summing over stationary points of the Eu-
clidean action. For each stationary point, that is, for each solution x̄(t) to the Euclidean
equations of motion, the saddle-point approximation of the path integral around x̄ evaluates
to

Ix̄ ⌘ N
p

det[�@2
t + V 00(x̄)]

e�
1
~SE

(x̄)(1 +O(~)) (3.7)

where we have put the ~ back in for clarity, and N is some constant related to the normal-
ization of the path integral. We also recall that the stationary paths x̄(⌧) are solutions to
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Z ⌘ ha|e�HT |ai =
Z x(T )=a

x(0)=a

Dxe

�SE [x]

where the right-hand side is the path integral using the Euclidean action SE[x]. By inserting
a complete set of energy eigenstates, the matrix element can be written as

Z =
X

E

e�ET �E(xi)�
?
E(xf ) (3.2)

Then we see that the lowest energy can be deduced from

E0 = � lim
T !1

1

T lnZ (3.3)

Roughly speaking, we expect that when there is a decay, E0 will have an imaginary part
corresponding to the decay rate, and so2:

�

2
= Im lim

T !1
1

T lnZ (3.4)

There are many ways to connect the imaginary part of an energy to a decay rate, but the
connection is not automatic. For example, in Section 2.2 we found the decay rate to be
the imaginary part of a eigenstate of the Hamiotonian with (unphysical) Gamow-Siegert
radiative boundary conditions. For normalizable modes of a Hermitian Hamiltonian, all
the energies including E0 are real. For physical potentials, which are bounded from below,
the energies and Euclidean action are bounded from below as well. Correspondingly Z is
manifestly real. Hence Eq. (3.4) must be defined in a much more careful manner.

Consider the asymmetric double-well potential in Fig. 4. Clearly if in Eq. (3.1) one takes
xi = xf = c, where c is the location of the true minimum of the potential, the result will
be approximately e�E

c

T , where Ec is the true ground state energy. One might hope to find
a complex energy associated with a metastable state at x = a by setting xi = xf = a in
Eq. (3.1). However, the points xi and xf only contribute through the wavefunction factors
�E(xi) and �?

E(xf ) in Eq. (3.2), which do not contribute to E0. Thus the ground state energy
will result from Eq. (3.3) with any xi and xf . In particular, we do not need the wavefunction
factors in Eq. (3.2) to be large in any sense. As long as they are non-zero; the T ! 1 limit
as written will still always extract the ground state.

In order to get an imaginary part, then, we must do something more tortuous. We must
first deform the potential V (x) to Vg(x), where g is a parameter which links the physical
problem (say g = 1) to a di↵erent problem, in which a is the true ground state (say g < 0,
see Fig. 5). If we then take the limit in Eq. (3.3) of Zg for general g, we see:

� lim
T !1

1

T lnZg =

⇢

Ea(g) g < 0
Ec(g) g = 1

(3.5)

where Ea and Ec are the ground states of the wells near the points a and c respectively. If
we simply evaluate the limit for the g of interest (g = 1), we get the wrong answer (Ec).

2Note that there will be a sign ambiguity in the evaluation of Eq. (3.4), as we will see later in this section.
The calculation should always be done so that � > 0, which corresponds to the physical decay rate.
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Isolate ground state energy 
from late times 

Decay rate is the imaginary 
part of the energy 

Clearly this is not exactly what is meant 
•  Z is real 
•  True ground state at Ec = V(c) has nothing to do with the false vacuum  

How do we get an imaginary part? 

Z =
X

E

e�ET | E(a)|2



Outline 
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1.  The Coleman-Callan potential-deformation method 

•  What is E the energy of? 
•  How does something manifestly real becomes complex? 

2.  Solve the Schrodinger equation 
•  What exactly do we mean by a tunneling rate? 
•  The two relevant time scales 
•  The Gamow-Siegert prescription 

 
3.  A direct approach 

•  Calculate the probability of going through the barrier 

E = E0 -  ½ i Γ 

4. Using effective potentials to calculate decay rates 
•  Resolving the gauge dependence issue 
•  Understanding Planck sensitivity 
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1. THE POTENTIAL 
DEFORMATION METHOD 
 
Colelman & Callan (1977) 
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Coleman and Callan 
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Figure 4: Left: Generic potential with a false and true vacuum. Right: The inverted
potential. The stationary path x̄(⌧) is the solution to the equations of motion of a ball
rolling down the inverted potential with boundary conditions x(0) = xi and x(T ) = xf .

However, if we evaluate the limit for the unphysical g, and then analytically continue to the
case of interest, we obtain an imaginary part. This then is the precise meaning of Eq. (3.4):
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The notation is meant to indicate contortions of taking the limit with negative g, then
analytically continuing to positive g and then taking the imaginary part.

Why does the limit not commute with the analytic continuation? There is no reason to
expect it should. According to Eq. (3.2), function Zg is schematically given by e�E
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(g)T +
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(g)T . As T ! 1, this picks out min(Ea, Ec), which changes non-analytically as g varies
from positive to negative. Ideally, one would like a proof that any deformation of V (x) to
Vg(x) leads to the same imaginary part after analytic continuation back and forth, and this
is generally assumed to be true. Let us set aside this subtlety in Eq. (3.4) and move on to
calculating the path integral using the saddle-point approximation.

The path integral can be approximated by summing over stationary points of the Eu-
clidean action. For each stationary point, that is, for each solution x̄(t) to the Euclidean
equations of motion, the saddle-point approximation of the path integral around x̄ evaluates
to

Ix̄ ⌘ N
p

det[�@2
t + V 00(x̄)]

e�
1
~SE

(x̄)(1 +O(~)) (3.7)

where we have put the ~ back in for clarity, and N is some constant related to the normal-
ization of the path integral. We also recall that the stationary paths x̄(⌧) are solutions to
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the imaginary part of a eigenstate of the Hamiotonian with (unphysical) Gamow-Siegert
radiative boundary conditions. For normalizable modes of a Hermitian Hamiltonian, all
the energies including E0 are real. For physical potentials, which are bounded from below,
the energies and Euclidean action are bounded from below as well. Correspondingly Z is
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be approximately e�E
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T , where Ec is the true ground state energy. One might hope to find
a complex energy associated with a metastable state at x = a by setting xi = xf = a in
Eq. (3.1). However, the points xi and xf only contribute through the wavefunction factors
�E(xi) and �?

E(xf ) in Eq. (3.2), which do not contribute to E0. Thus the ground state energy
will result from Eq. (3.3) with any xi and xf . In particular, we do not need the wavefunction
factors in Eq. (3.2) to be large in any sense. As long as they are non-zero; the T ! 1 limit
as written will still always extract the ground state.

In order to get an imaginary part, then, we must do something more tortuous. We must
first deform the potential V (x) to Vg(x), where g is a parameter which links the physical
problem (say g = 1) to a di↵erent problem, in which a is the true ground state (say g < 0,
see Fig. 5). If we then take the limit in Eq. (3.3) of Zg for general g, we see:

� lim
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T lnZg =

⇢

Ea(g) g < 0
Ec(g) g = 1

(3.5)

where Ea and Ec are the ground states of the wells near the points a and c respectively. If
we simply evaluate the limit for the g of interest (g = 1), we get the wrong answer (Ec).

2Note that there will be a sign ambiguity in the evaluation of Eq. (3.4), as we will see later in this section.
The calculation should always be done so that � > 0, which corresponds to the physical decay rate.
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Isolate ground state energy 
from late times 

Decay rate is the imaginary 
part of the energy 

Clearly this is not exactly what is meant 
•  Z is real 
•  True ground state at Ec = V(c) has nothing to do with the false vacuum  

How do we get an imaginary part? 
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e�ET | E(a)|2



Saddle points 
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Z ⌘ ha|e�HT |ai =
Z x(T )=a

x(0)=a

Dxe

�SE [x]

Dominated by saddle points 
    = solutions to the Euclidean equations of motion 

S =

Z
dt
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x(0) = x(T ) = awith boundary conditions 
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Saddle points 

Bounce is a saddle point of action: 
      local maximum along one direction 
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where the right-hand side is the path integral using the Euclidean action SE[x]. By inserting
a complete set of energy eigenstates, the matrix element can be written as

Z =
X
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?
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Then we see that the lowest energy can be deduced from
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Roughly speaking, we expect that when there is a decay, E0 will have an imaginary part
corresponding to the decay rate, and so2:
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There are many ways to connect the imaginary part of an energy to a decay rate, but the
connection is not automatic. For example, in Section 2.2 we found the decay rate to be
the imaginary part of a eigenstate of the Hamiotonian with (unphysical) Gamow-Siegert
radiative boundary conditions. For normalizable modes of a Hermitian Hamiltonian, all
the energies including E0 are real. For physical potentials, which are bounded from below,
the energies and Euclidean action are bounded from below as well. Correspondingly Z is
manifestly real. Hence Eq. (3.4) must be defined in a much more careful manner.

Consider the asymmetric double-well potential in Fig. 4. Clearly if in Eq. (3.1) one takes
xi = xf = c, where c is the location of the true minimum of the potential, the result will
be approximately e�E

c

T , where Ec is the true ground state energy. One might hope to find
a complex energy associated with a metastable state at x = a by setting xi = xf = a in
Eq. (3.1). However, the points xi and xf only contribute through the wavefunction factors
�E(xi) and �?

E(xf ) in Eq. (3.2), which do not contribute to E0. Thus the ground state energy
will result from Eq. (3.3) with any xi and xf . In particular, we do not need the wavefunction
factors in Eq. (3.2) to be large in any sense. As long as they are non-zero; the T ! 1 limit
as written will still always extract the ground state.

In order to get an imaginary part, then, we must do something more tortuous. We must
first deform the potential V (x) to Vg(x), where g is a parameter which links the physical
problem (say g = 1) to a di↵erent problem, in which a is the true ground state (say g < 0,
see Fig. 5). If we then take the limit in Eq. (3.3) of Zg for general g, we see:

� lim
T !1

1

T lnZg =

⇢

Ea(g) g < 0
Ec(g) g = 1

(3.5)

where Ea and Ec are the ground states of the wells near the points a and c respectively. If
we simply evaluate the limit for the g of interest (g = 1), we get the wrong answer (Ec).

2Note that there will be a sign ambiguity in the evaluation of Eq. (3.4), as we will see later in this section.
The calculation should always be done so that � > 0, which corresponds to the physical decay rate.
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Figure 8: The saddle points {�1, 0, 1} and associated steepest descent contours for S(x) =
�x2

2
+ x4

4
. Left: the real line (dotted) can be written as a sum of all three contours R =

C�1 + C0 + C1. Actually, there is an ambiguity for this action (it is on a Stokes line); the
complex conjugate contours are equally valid. Right: a plot of Re (S[x]) in the complex
plane where we can clearly see the lines of steepest descent through each saddle point.

in Eq. (3.16) (say J1) is exponentially larger than the rest. So if we are going to perform
an expansion which is accurate up to exponentially small corrections, we cannot keep the
subdominant term. At the level of Eq. (3.16), we write this as:

Z = J1 + J2 (3.18)

to indicate that while the equation is exact at this level, the boxed term is exponentially
dominant so, when approximating, the second term is meaningless. Unfortunately, it may
be J2 that has the imaginary part.

The imaginary contribution is perhaps easiest to appreciate through an example. Suppose
we have the following function S:

S(x) = �x2

2
+

x4

4
(3.19)

and we want to integrate as in Eq. (3.12) along the real line. This function has saddle points
at x = �1, 0, 1, with approximations:

I�1 =
p
⇡~ exp

✓

1

4~

◆

I0 =
p�2⇡~ I1 =

p
⇡~ exp

✓

1

4~

◆

(3.20)

Around x = 0, the quadratic action S(x) = �x2

2
has increasing real part along the

imaginary axis. Around x = 1, S(x) = �1
4
+ (x � 1)2 which has increasing real part along

the real axis. Thus going from x = 1, the steepest descent contour moves along the real axis,
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Figure 12: The function Sh,g(x) = h x
12

� g x2

2
+ x4

4
can be deformed di↵erent ways from the

physical case (h, g) = (1, 1) (top). For (h, g) = (�5, 1), the FV is stabilized, and the real axis
lines up with the FV contour (green). The correct factor of 1

2
results. For (h, g) = (1,�1), the

bounce is stabilized (red). The imaginary part computed this way is the naive one,missing
the factor of 2. For (h, g) = (5, 1), the shot is stabilized (blue).
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Figure 1: On the left, an example of a physical potential with an unstable region FV,
a destination region R, and a barrier. We label the local minimum inside the FV region
by a and the turning point by b (defined by V (b) = V (a)). On the right, the probability
PFV(T ) (see Eq. (2.3)) for this system (beginning in a Gaussian wavepacket centered at a)
computed by numerically solving Schrödinger’s equation. We see that the probability to
find the particle in the false vacuum decays exponentially for intermediate times between
the short timescale of sloshing inside the false vacuum and the long timescale on which the
wavefunction begins to flow back into the false vacuum.

given approximately by the WKB formula:

T (E) ⌘  E(b)

 E(a)
⌘ e�W ⇡ exp



�
Z b

a

dx
p

2m(V (x)� E)

�

(2.1)

Here, a and b are the turning points where V (a) = V (b) = E. It is of course quite logical
that the decay rate should be proportional to how much of the wavefunction gets through
the barrier, � ⇠ |T (E)|2. However, if the particle is in an energy eigenstate, there is no
time-dependence, so it cannot decay. To go from T (E) to �, a step often skipped, requires
considerably more thought.

A simple picture often used to convert T (E) to a decay rate depicts a particle with
momentum p =

p
2mE, and velocity v = p

m
in the well hitting the barrier with a rate

v
2a
, and each time tunneling through with probability given by the transmission coe�cient,

|T (E)|2 (see e.g. [24]). With this logic, the decay rate is

� ⇠ p

2am

�

�

�

�

 E(b)

 E(a)

�

�

�

�

2

⇡ p

2am
e�2W (2.2)

Indeed, if one solves the Schrödinger equation numerically, one can see the wavefunction
oscillate back and forth in the well; the largest flux leaks out during the times when the
wavefunction is closest to the barrier. Fig. 1 shows this exponential decay with time and the
small oscillations. Snapshots of the wavefunction oscillating in the well are shown in Fig. 2.
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Figure 2: The numerical evolution of a particle initially localized in the false vacuum. At
each time step, the potential is shown (black), along with the probability | (x, t)|2 (red),
and we also show the probability magnified by 50⇥ (purple) so that we can see the small
amount leaking through the barrier). By looking at the evolution of the wavefunction we see
the sloshing behavior near the false vacuum, associated with the initial gaussian state not
being an exact resonance. In the first two rows the central value of the wavefunction can be
seen moving back and forth within the false vacuum well. When it hits the right wall around
times 3-4, the most wavefunction amplitude escapes through the barrier. In the third row we
have jumped ahead to see the nonlinear behavior when there is enough wavefunction density
in the outside region that it is no longer simply flowing out.

2.1 Precise definition of the decay rate

To make the above formula more precise, we need an exact definition of the decay rate to
which we can then look for approximations. A reasonable, physical, definition of the decay
rate of a system comes from PFV(t), the probability of finding a state  initially confined to
a false vacuum region (FV) in that same region after a time T :

PFV(T ) ⌘
Z

FV

dx | (x, T )|2 (2.3)

We expect that for a decaying system the probability should fall exponentially:

PFV(T ) ⇠ e��T (2.4)

And so we might define:

� = � 1

PFV

d

dT
PFV (2.5)

7

i@

t

 (x, t) =


� 1

2m
@

2
x

+ V (x)

�
 (x, t)
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that the decay rate should be proportional to how much of the wavefunction gets through
the barrier, � ⇠ |T (E)|2. However, if the particle is in an energy eigenstate, there is no
time-dependence, so it cannot decay. To go from T (E) to �, a step often skipped, requires
considerably more thought.

A simple picture often used to convert T (E) to a decay rate depicts a particle with
momentum p =
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m
in the well hitting the barrier with a rate
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Indeed, if one solves the Schrödinger equation numerically, one can see the wavefunction
oscillate back and forth in the well; the largest flux leaks out during the times when the
wavefunction is closest to the barrier. Fig. 1 shows this exponential decay with time and the
small oscillations. Snapshots of the wavefunction oscillating in the well are shown in Fig. 2.
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2.1 Precise definition of the decay rate

To make the above formula more precise, we need an exact definition of the decay rate to
which we can then look for approximations. A reasonable, physical, definition of the decay
rate of a system comes from PFV(t), the probability of finding a state  initially confined to
a false vacuum region (FV) in that same region after a time T :

PFV(T ) ⌘
Z

FV

dx | (x, T )|2 (2.3)

We expect that for a decaying system the probability should fall exponentially:

PFV(T ) ⇠ e��T (2.4)
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PFV(T ) (see Eq. (2.3)) for this system (beginning in a Gaussian wavepacket centered at a)
computed by numerically solving Schrödinger’s equation. We see that the probability to
find the particle in the false vacuum decays exponentially for intermediate times between
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2m(V (x)� E)
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Here, a and b are the turning points where V (a) = V (b) = E. It is of course quite logical
that the decay rate should be proportional to how much of the wavefunction gets through
the barrier, � ⇠ |T (E)|2. However, if the particle is in an energy eigenstate, there is no
time-dependence, so it cannot decay. To go from T (E) to �, a step often skipped, requires
considerably more thought.

A simple picture often used to convert T (E) to a decay rate depicts a particle with
momentum p =

p
2mE, and velocity v = p

m
in the well hitting the barrier with a rate

v
2a
, and each time tunneling through with probability given by the transmission coe�cient,

|T (E)|2 (see e.g. [24]). With this logic, the decay rate is
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Indeed, if one solves the Schrödinger equation numerically, one can see the wavefunction
oscillate back and forth in the well; the largest flux leaks out during the times when the
wavefunction is closest to the barrier. Fig. 1 shows this exponential decay with time and the
small oscillations. Snapshots of the wavefunction oscillating in the well are shown in Fig. 2.
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Figure 3: Example of a potential that has a well region labeled FV, a barrier region B, and
is constant in the region R which extends to indefinitely to the right.

Then we could define the decay rate as the fraction of probability flowing through the
outward-pointing boundary @R, in the same time limits as above:

�R ⌘ � lim
T/TNL!0

T/Tslosh!1

1

PFV (T )

Z

@R

dxiJi(x, T ) (2.9)

Because of the conservation equation (@iJi = �@t | |2), this is exactly equivalent to Eq. (2.7).
Next, we need to be able to compute � in Eq. (2.7), either using the WKB approximation

or with some other method.

2.2 Real and complex energy eigenstates

The type of potentials under consideration, such as the one in Fig. 1 comprise a well region
labeled FV, where the particle is initially, a barrier region B, between points a and b (to be
specified precisely later), and an approximately free destination region R. For now, let us
assume that the potential is constant in R and extends infinitely to the right, as V (x) in
Fig. 3.

A concrete example illustrating the points of this section is given in Appendix A. More
details and alternative derivations can be found in [3, 25–29].

Since the system extends infinitely to the right, there will be energy eigenstates �E(x) for
any E. Most of these are approximately free (plane waves) confined to region R, with little
support in the FV region. Some, however, do have large support in the FV region. These
are the resonances. To be specific, we can define the resonant energies E as those whose
probability in the FV region has a local maximum: @EPFV[�E] = 0 (now the probability PFV

defined in Eq. (2.3) is viewed as depending on �E instead of on T , since energy eigenstates
have time-independent probabilities). In general, there will be a finite number of such
resonance energies E1 < E2 < · · · < En < Vmax. Up to exponential corrections, these are
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assume that the potential is constant in R and extends infinitely to the right, as V (x) in
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Since the system extends infinitely to the right, there will be energy eigenstates �E(x) for
any E. Most of these are approximately free (plane waves) confined to region R, with little
support in the FV region. Some, however, do have large support in the FV region. These
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have time-independent probabilities). In general, there will be a finite number of such
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lines up with the FV contour (green). The correct factor of 1

2
results. For (h, g) = (1,�1), the

bounce is stabilized (red). The imaginary part computed this way is the naive one,missing
the factor of 2. For (h, g) = (5, 1), the shot is stabilized (blue).
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For g = 1, integrating along the real axis is divergent (as indicated by the lack of arcs at
x = ±1). For g = �1, the FV contour (green line) falls along the real axis. Rotating g
back from �1 to 1, the FV contour remains convergent, but depends on whether one rotates
g clockwise or counterclockwise in the complex plane.
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together play the role of the bounce. For g = 1 the steepest descent contour passing through
the bounce saddle points can proceed to either +i1 or �i1. This degeneracy is broken
by giving g a small imaginary part. (AJA: Fix the previous sentence.) The contours for
g = 1± i✏ and g = �1± i✏ are shown in Fig. 9. The NLO saddle-point contributions to Zg
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, the real axis is a valid integration

contour for any g. However, as we change g, the steepest descent contours to which the real
axis is equivalent change. Through analytic continuation, we move the integration contour
at g = 1 from the real axis to the contour passing through the FV saddle.

integration contour along the x axis coicides with the bounce saddle point contour. When we
rotate back to g = 1, this contour lines up with the imaginary axis. Thus, integrating along
the contour will give the complete imaginary part of the bounce saddle-point integration,
without the factor of 1

2
. Of course, this had to happen: by stablizing the bounce, we matched

the integration contour with the bounce contour. When we rotate back, it remains lined up
and therefore the full integral is kept.

Next, consider keeping g = 1 but rotating h from 1 to something negative and large
enough to remove the other minimum, such as h = �5. For example, we can rotate as
h = �2 + 3ei✓ with 0  ✓  ⇡. For h = �5, the saddle point on the real axis is the FV
saddle, and the other two have moved into the complex plane. When we rotate back to
h = 1, this FV saddle moves along the real axis and then up half of the bounce saddle. Thus
for the h deformation, we do get the extra factor of 1

2
, as expected.

Finally, consider rotating h from 1 to 5. This stablizes the shot. Rotating back to h = 1,
we see that the shot contour lines up with the bounce contour, but in the opposite direction
of the case when we continued to stabalize the FV. Thus we do get a factor of 1

2
in this

case, but the imaginary part has the opposite sign from the FV-stabalized case. The sign
flip makes perfect sense: flux enters the TV as a function of time, so the probability grows
with time. This corresponds to incoming Gamow boundary conditions (as in Section 2.2 or
Appendix A) and one expects � < 0.

3.3 Summary of potential deformation method

In this section, we discussed how to compute a decay rate from the Euclidean path integral,
filling in many details and examining some peculiarities and limits not mentioned in [1, 11]
or elsewhere in the literature to our knowledge. In this method, one starts with a Euclidean
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can be deformed di↵erent ways from the

physical case (h, g) = (1, 1) (top). For (h, g) = (�5, 1), the FV is stabilized, and the real axis
lines up with the FV contour (green). The correct factor of 1

2
results. For (h, g) = (1,�1), the

bounce is stabilized (red). The imaginary part computed this way is the naive one,missing
the factor of 2. For (h, g) = (5, 1), the shot is stabilized (blue).
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•  Asymptotic series 
•  Coefficients grow factorially  
•  Summing the series does not reproduce the original function 

Performing the saddle point approximation does not commute with 
analytic continuation 

g = exp (i✏) g = exp
�

i⇡
4

�

g = exp
�

i⇡
3

�

g = � exp (�i✏)

Figure 11: For the action function Sg[x] =
x2

2
� g x4

4
+ x6

60
, the real axis is a valid integration

contour for any g. However, as we change g, the steepest descent contours to which the real
axis is equivalent change. Through analytic continuation, we move the integration contour
at g = 1 from the real axis to the contour passing through the FV saddle.

integration contour along the x axis coincides with the bounce saddle point contour. When we
rotate back to g = 1, this contour lines up with the imaginary axis. Thus, integrating along
the contour will give the complete imaginary part of the bounce saddle-point integration,
without the factor of 1

2
. Of course, this had to happen: by stablizing the bounce, we matched

the integration contour with the bounce contour. When we rotate back, it remains lined up
and therefore the full integral is kept.

Next, consider keeping g = 1 but rotating h from 1 to something negative and large
enough to remove the other minimum, such as h = �5. For example, we can rotate as
h = �2 + 3ei✓ with 0  ✓  ⇡. For h = �5, the saddle point on the real axis is the FV
saddle, and the other two have moved into the complex plane. When we rotate back to
h = 1, this FV saddle moves along the real axis and then up half of the bounce saddle. Thus
for the h deformation, we do get the extra factor of 1

2
, as expected.

Finally, consider rotating h from 1 to 5. This stabilizes the shot. Rotating back to h = 1,
we see that the shot contour lines up with the bounce contour, but in the opposite direction
of the case when we continued to stabilize the FV. Thus we do get a factor of 1

2
in this

case, but the imaginary part has the opposite sign from the FV-stabilized case. The sign
flip makes perfect sense: flux enters the TV as a function of time, so the probability grows
with time. This corresponds to incoming Gamow boundary conditions (as in Section 2.2 or
Appendix A) and one expects � < 0.

3.3 Summary of potential deformation method

In this section, we discussed how to compute a decay rate from the Euclidean path integral,
filling in many details and examining some peculiarities and limits not mentioned in [1, 11]
or elsewhere in the literature to our knowledge. In this method, one starts with a Euclidean

29

move contour from real line to thimble 
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•  Probability grows with time 
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Can we just integrate along the FV contour?  
Yes, at least for this toy integral 

No 
•  Not clear what “fixing to a contour” means for a path integral 
•  Saddle point approximation loses the imaginary part 

•  Expanding around the saddle gives a real integral  
•  Imaginary part comes from region far away 

•  Saddle point approximation does work for the discontinuity 
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Summary of potential deformation method  
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1.  Deform the potential so FV is true ground state 
2.  Take T à ∞  

•  Picks out EFV(g) 
•  Fixes integration contour to be the steepest descent contour passing through 

the static FV saddle point 
3.  Deform back  

 T << TNL  (no return flux) 

T >> Tslosh  (only metastable FV decay) 

OR 
•  Compute Z by integrating along the steepest descent contour passing through 

the static FV saddle point 
OR 

•  Compute Γ by integrating along the steepest descent contour passing through 
the bounce, taking the imaginary part, and multiply by 1/2 

•  Mathematically consistent procedure to get imaginary part  out of an analytic real function Z 
•  Has the right ingredients associated with the necessary limits 

Does this procedure give 
the decay rate? 



3. DIRECT METHOD 
Andreassen, Farhi, Frost, MDS (2016) 
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t=0

| |2
V

t=1 t=2 t=3

50 | |2

t=4 t=5 t=6 t=7

t=20 t=21 t=22 t=23

Figure 2: The numerical evolution of a particle initially localized in the false vacuum. At
each time step, the potential is shown (black), along with the probability | (x, t)|2 (red),
and we also show the probability magnified by 50⇥ (purple) so that we can see the small
amount leaking through the barrier). By looking at the evolution of the wavefunction we see
the sloshing behavior near the false vacuum, associated with the initial gaussian state not
being an exact resonance. In the first two rows the central value of the wavefunction can be
seen moving back and forth within the false vacuum well. When it hits the right wall around
times 3-4, the most wavefunction amplitude escapes through the barrier. In the third row we
have jumped ahead to see the nonlinear behavior when there is enough wavefunction density
in the outside region that it is no longer simply flowing out.

2.1 Precise definition of the decay rate

To make the above formula more precise, we need an exact definition of the decay rate to
which we can then look for approximations. A reasonable, physical, definition of the decay
rate of a system comes from PFV(t), the probability of finding a state  initially confined to
a false vacuum region (FV) in that same region after a time T :

PFV(T ) ⌘
Z

FV

dx | (x, T )|2 (2.3)

We expect that for a decaying system the probability should fall exponentially:

PFV(T ) ⇠ e��T (2.4)

And so we might define:

� = � 1

PFV

d

dT
PFV (2.5)

7

� = � lim
T

T
slosh

!1
lim
T

T
NL

!0

1

PFV

d

dT
PFV

Back to our definition 

 T << TNL  (no return flux) 

T >> Tslosh  (only metastable FV decay) 

�R ⌘ lim
T/T

NL

!0
T/T

slosh

!1

1

PFV

dPR

dT

V(x) 

a 
R x 

b 

D(a, x
f

, T ) ⌘
Z

x(T )=xf

x(0)=a

Dx e

iS[x]

PR(T ) =

Z

R
dxf |D(a, xf , T )|2

 (x, t = 0) = �(x� a)•  Start with: 
•  We will compute 

probability of finding ψ
 in region R at time T 

Propagator from a to xf in time T 



Step 1: Split up propagator 
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Split path integral into before b and after b: 

D(a, xf , T ) =

Z
dt D̄(a, b, t)D(b, xf , T � t)

D(a, x
f

, T ) ⌘
Z

x(T )=xf

x(0)=a

Dx e

iS[x]

D(a, x
f

, T ) =

Z
x(T )=xf

x(0)=a

Dx e

iS[x]

Z
dt �(t� t

b

[x])

First time path x(t) hits b tb[x] ⌘
t T 0 

a 

b 

xf 

x 

D̄(a, b, t)
D(b, xf , T � t)

=

Z
dt

Z

x(0)=a

Dx e

iS[x]
�(t� t

b

[x])

Z
x(T )=xf

x(t)=b

Dx e

iS[x]
x(t) = b

hits b only once, at t •  Regular propagator from b to xf 
•  Paths can go back past b 



PR(T ) =

Z
dxfdt1dt2D̄(a, b, t1)D̄

⇤(a, b, t2)D(b, xf , T � t1)D(b, xf , T � t2)

Step 2: Apply T << TNL 

Nov 18, 2016 Matthew Schwartz 

•  Hits b only once, at t 
•  Regular propagator from b to xf 
•  Paths can go back past b 

D(a, xf , T ) =

Z
dt D̄(a, b, t)D(b, xf , T � t)

PR(T ) =

Z

R
dxf |D(a, xf , T )|2

hb, t2|xf , T ihxf , T |b, t1i
Z

R
dxf |xf i hxf | = 1Propagation from b out of R is negligible: 

 T << TNL  (no return flux) 

PR(T ) =

Z
dt1dt2D̄(a, b, t1)D̄

⇤(a, b, t2) hb, t2|b, t1i

PR(T ) =

Z T

0
dtD(a, b, t)D̄⇤(a, b, t) + c.c.



�R = lim
T!1

D(a, b, T )D̄⇤(a, b, T )
R
FV dx |D(a, x, T )|2

+ c.c.

Step 3: Simplify 
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�R ⌘ lim
T/T

NL

!0
T/T

slosh

!1

1

PFV

dPR

dT

PR(T ) =

Z T

0
dtD(a, b, t)D̄⇤(a, b, t) + c.c.

V(x) 

a 
R x 

b 

�
R

= 2Im lim
T!1

0

@
R
x(T )=a

x(�T )=a

Dx e

�SE[x]
�(⌧

b

[x])
R
x(T )=a

x(�T )=a

Dx e

�SE[x]

1

A

T !iT

Go to Euclidean time and take 

•  Non-perturbative definition of the decay rate 
•  Does not require analytic continuing potential 
•  Does not require saddle-point approximation 

T >> Tslosh 



Expansion 
Nov 18, 2016 Matthew Schwartz 

�
R

= 2Im lim
T!1

0

@
R
x(T )=a

x(�T )=a

Dx e

�SE[x]
�(⌧

b

[x])
R
x(T )=a

x(�T )=a

Dx e

�SE[x]

1

A

T !iT

b a 

� � �� �� ��

-�

�

�

�

�

τ

�[
τ]

potential 

shot 

bounce 

static FV 

(h, g) = (1, 1 + i✏)

(h, g) = (5, 1)(h, g) = (1,�1)(h, g) = (�5, 1)

Sg(x) = h
x

12
� g

x2

2
+

x4

4

Figure 12: The function Sh,g(x) = h x
12

� g x2

2
+ x4

4
can be deformed di↵erent ways from the

physical case (h, g) = (1, 1) (top). For (h, g) = (�5, 1), the FV is stabilized, and the real axis
lines up with the FV contour (green). The correct factor of 1

2
results. For (h, g) = (1,�1), the

bounce is stabilized (red). The imaginary part computed this way is the naive one,missing
the factor of 2. For (h, g) = (5, 1), the shot is stabilized (blue).

30

paths 

action 

-� -� � � �

���

���

���

���

���

b 

a 

Before showing how Eq. (4.16) can be evaluated, let us contrast it with the potential-
deformation method discussed in Section 3. To make precise connection to Eq. (3.4), let us
first change from T to T /2 (since the time is going to infinity, the factor of 2 has no e↵ect). To
match the other formula, we need to re-introduce the time-translation degeneracy. Because
the action is time-translation-invariant in the T ! 1 limit, let us define a time-translated
version:

�⌧ = lim
T!1

�

�

�

�

�

2Im

✓

R Dx e�S
E

[x]�(⌧b[x]� ⌧)
R Dx e�S

E

[x]

◆

T >0
T =iT

�

�

�

�

�

(4.17)

We expect this to be independent of ⌧ , so �⌧ = �. Then let us average over ⌧ :

� =
1

T
Z T /2

�T /2

d⌧�⌧ (4.18)

From which we arrive at:

T � = lim
T!1

�

�

�

�

�

�

2Im

 

R

paths hit b
Dx e�S

E

[x]

R Dx e�S
E

[x]

!

T >0
T =iT

�

�

�

�

�

�

(4.19)

The �-function in the numerator has been removed by the
R

d⌧ , except that it leaves the
requirement that the path must hit b at some time, so that ⌧b is defined. Thus, the path
integral in the numerator will exclude the constant false-vacuum solution which dominates
the denominator. In this way, the need to analytically continue the potential is sidestepped
completely.

4.1 Saddle point approximations

As discussed in Section 4,
R Dx e�S

E , computed to all orders, is real. And as we saw in
Section 3.2, when we approximate the path integral with a sum over saddle points, some
of the saddle points might be imaginary. The imaginary parts will cancel if all the saddle
points are kept associated with the integration contour, but if some can be dropped, the
result may be complex. In the traditional method, analytic continuation of the potential
is used to justify dropping some saddle points giving a well defined imaginary part. In the
direct method, the imaginary part comes out with less gymnastics. The path integral is real
for real T but simply becomes imaginary for imaginary T .

In this section we will show that when performing the saddle point approximation for
real T , the true vacuum solution (the shot) dominates, but when evaluated for imaginary T ,
the instanton solution dominates. Thus we are justified in using only the instanton because
we are looking at imaginary T . In particular, there is no tension with the instanton’s saddle
point expansion (which matters for imaginary T ) being imaginary when the original path
integral is real (for real T ).

As in the potential deformation method, the path integrals in Eq. (4.16) are approximated
by a sum of saddle points:

exp(�Sshot’) + exp(�Sbounce)

exp(�Sshot) + exp(�Sbounce) + exp(�SFV)
(4.20)
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⇡
Consider first the denominator. It contains contributions from exactly the same paths as in
the potential-deformation method, shown in Fig. 6: the static FV solution, the bounce, and
the shot. Because of the forms of these solutions, it is clear that the T dependence, for large
T , must have a linear dependence for the long stationary times, and a constant piece for the
brief times when the particle is rolling fast:

Sshot = ETVT + S0
S (4.21)

SFV = EFVT (4.22)

Sbounce = EFVT + S0
B (4.23)

Also we note that S0
S > S0

B since the shot must go faster than the bounce and hence has
more energy.

Recall that in the potential-deformation method, the shot dominated for the actual path
integral with the physical potential, but when we deformed to g < 0, then the false vacuum
dominated. With the direct method, rather than deforming the potential, we performing the
standard T ! iT Wick rotation. For real T , the shot dominates. But we are not interested
in which dominates for real T , rather which dominates for T ! iT . Then,

Sshot = iETVT + S0
S (4.24)

SFV = iEFVT (4.25)

Sbounce = iEFVT + S0
B (4.26)

Since S0
B < S0

S, due to the e�S factors in the saddle point approximation, the bounce
exponentially dominates over the shot. However, both of these are dominated by the FV
solution which has no exponential suppression at all. Thus for the denominator, if we drop
exponentially suppressed pieces, only the FV contribution remains.

The numerator of Eq. (4.20) is similar to the denominator, but has been modified by
the �(⌧b). In particular, the FV solution, which never hits the point b, is removed entirely
by the �-function. The shot is also removed, since it hits b before ⌧ = 0 (it hits the TV
region at ⌧ = 0), but there is a solution qualitatively similar to the shot that we call the
modified shot.5 In any case, the argument for the numerator is then exactly the same as for
the denominator; for real T the modified shot dominates, but when we rotate T ! iT , the
constant part of the action now controls the size of e�S and so the bounce dominates. Since
the false vacuum is not present in the numerator at all, the result is given by the bounce
alone.

In summary, performing the saddle point approximation to Eq. (4.16) for imaginary T
carefully, we find the bounce dominates the numerator and the FV dominates the denom-
inator. For real T , this would not be the correct set of saddle points to use (the correct

5There will nevertheless still be a lower-action solution hitting b at ⌧ = 0 (we know this because the
bounce still has a negative eigenvalue [1, 37]). The minimum action solution probably looks like the bounce
up to ⌧ = 0 spliced to a rescaled shot for ⌧ > 0. The shot part has to be rescaled to return to the FV
at ⌧ = T . The extra kick needed to splice these solutions at ⌧ = 0 is allowed because the �-function can
introduce discontinuities. We call the actual minimum action solution the modified shot.
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shot must go faster than bounce, 
à  it has more kinetic energy 

=2.5 =1.2 

e�S
FV � e�S

bounce � e�S
shot

Bounce dominates numerator 

FV dominates denominator 

S0
S > S0

B > 0



Factor of 1/2 
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(h, g) = (1, 1 + i✏)

(h, g) = (5, 1)(h, g) = (1,�1)(h, g) = (�5, 1)
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x

12
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Figure 12: The function Sh,g(x) = h x
12

� g x2

2
+ x4

4
can be deformed di↵erent ways from the

physical case (h, g) = (1, 1) (top). For (h, g) = (�5, 1), the FV is stabilized, and the real axis
lines up with the FV contour (green). The correct factor of 1

2
results. For (h, g) = (1,�1), the

bounce is stabilized (red). The imaginary part computed this way is the naive one,missing
the factor of 2. For (h, g) = (5, 1), the shot is stabilized (blue).
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shot  

bounce static false 
vacuum 

Γ= Im (FV contour) = ½ Im (bounce contour) 

�
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= 2Im lim
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T !iT

forces all paths to hit b at time t=0 

Expand around bounce: x(⌧) = x̄(⌧) +
X

⇠nyn(⌧)

•  Half the fluctuations don’t hit b, half do 
•  Gaussian integral is symmetric.  
•  Can remove θ-function restriction and multiply by ½ 

Hits b at its maximum 

1. If the path x0,⇣1,... hits b at some time, then �(⌧b[x]) simply removes the ⌧0 integral and
fixes ⌧0 to some value ⌧⇤(⇣i)

2. If the path x0,⇣1,... never hits b, then the �-function is always 0, and this point in ⇣-space
does not contribute at all.

So we get:

�NLO =
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(4.32)

where the dn⇣ indicates infinitely many integrals and there is an implicit constraint that
x0,⇣1,...(t) must hit b at some point.

Now we come to a very appealing feature of this method: the factor of 1
2
. Since the

path x̄ just barely hits b at its maximum, the constraint that x = x̄ + �x must hit b forces
�x(0) � 0. Since �x =

P

i ⇣ixi, we can enforce this positivity constraint with a step function
⇥[⇣ixi(0)]. Now, since we are working at Gaussian order only and this is a constraint on a
simple linear combination of the ⇣, we can use symmetry under ⇣ ! �⇣ to drop the step
function and divide by 2. This factor of 2, which arises in the Euclidean approach from
a subtle analytic continuation argument (cf. Section 3.2.2), arises naturally in the direct
method from the requirement that the �-function fire. More physically, it is the requirement
that the path enter the destination region DV, which excludes exactly half the variations
around x̄.

Finally we must discuss the Jacobian J(⌧0, ⇣) arising when one goes from the orthonormal
basis of fluctuations in Eq. (4.29) to the collective coordinate parametrization in Eq. (4.30).
J is non-singular after fixing ⌧0, and it has some expansion in ⇣. At NLO, we only need to
keep the constant, ⇣-independent piece. So we can replace

J(⌧⇤(⇣), ⇣) ! J(⌧⇤(0), 0) = J(0, 0) (4.33)

This Jacobian at leading order is well-known [1,3,6,43] and discussed further in Appendix B6

:
J(0, 0) =

p

SE(x̄)/m (4.34)

Putting together the Jacobian factor and the factor of 1
2
, we get

�NLO =
e�S

E
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e�S
E

[x
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det0 1
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S 00
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det 1
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S 00
E[xFV ]

◆�1/2
�

�

�

�

�

(4.35)

where det0 indicates the determinant omitting the 0-eigenvalue and the boundary conditions
of the determinants’ domains are x(±1) = 0. The ⇡ comes because the denominator path
integral has one more Gaussian integral than the numerator.

6In the existing literature (e.g. [3]), authors often calculate J(⌧
0

= 0), which is all that we need for our
derivation. However, for their derivations using the potential-deformation method, they need the stronger
derivation of J(⌧

0

) for general ⌧
0

. For this reason in appendix B, we prove that J is a constant function of
⌧
0

, even though in our case we could simply ignore the ⌧ dependence.
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Must hit b 

linear in ξn 

While the dimensions of Eq.(4.35) are the correct dimensions of rate, they have become
obscured by the combination of the

p

SE/m and the determinants. To make the units
clearer, let us pull out m/2 from the determinant, using det0 A

detA
⇠ 1

A
:
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Expanding S 00 then gives
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This agrees exactly with the formula surmised from the potential-deformation method [3,6].

4.3 Direct tunneling in d > 1

In more than 1 dimension, the main change is that we must extend the turning point b to a
surface ⌃ of possible turning points, since paths can enter the destination region from any
direction. The critical Eq. (4.4) becomes in multiple dimensions:

DF (a, 0; xf , t) =

Z

⌃

db

Z t

0

dt0DF (a, 0; b, t0)DF (b, 0; xf , t� t0) (4.38)

for ⌃ any codimension-1 surface which all paths go through. The only subtlety is that, to
avoid overcounting of paths that enter and leave, the functional tb[x] in DF only returns
the first time x(t) hits b if that is the first time the path crosses ⌃ at all (and returns 1
otherwise).

From there the steps go through the same as the one-dimensional case. Eqs. (4.6) through
(4.8) will contain two integrals

R

⌃
db

R

⌃
db0. Eq.(4.10) will thus include an integral
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which stays through the end. Thus we see:
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where
R

⌃
db�(tb[x]) = �(t⌃[x]), where t⌃ is the operator which returns the first time ~x(t)

crosses ⌃. Thus:

�R =

�

�

�

�

2Im
R Dx e�S

E

[x]�(⌧⌃[x])
R Dx e�S

E

[x]

�

�

�

�

(4.40)

where now ⌃ is the entire surface which bounds R, just like b was the turning point at the
boundary of R. Both path integrals go from x(�1) = a to x(1) = a.
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⇥[⇠nyn(0)]

Agrees with formula from potential deformation method 



Summary of tunneling rates 
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� = � lim
T

T
slosh

!1
lim
T

T
NL

!0

1

PFV

d

dT
PFVPrecise definition of decay rate involves two limits 

T << TNL  (no return flux) 

T >> Tslosh  (remove transients 

Three methods to compute Γ
FV R

x

V(x)

a b

PFV

P0e
��T

T

Tslosh

TNL

P

1

0.9

Figure 1: On the left, an example of a physical potential with an unstable region FV,
a destination region R, and a barrier. We label the local minimum inside the FV region
by a and the turning point by b (defined by V (b) = V (a)). On the right, the probability
PFV(T ) (see Eq. (2.3)) for this system (beginning in a Gaussian wavepacket centered at a)
computed by numerically solving Schrödinger’s equation. We see that the probability to
find the particle in the false vacuum decays exponentially for intermediate times between
the short timescale of sloshing inside the false vacuum and the long timescale on which the
wavefunction begins to flow back into the false vacuum.

given approximately by the WKB formula:

T (E) ⌘  E(b)

 E(a)
⌘ e�W ⇡ exp



�
Z b

a

dx
p

2m(V (x)� E)

�

(2.1)

Here, a and b are the turning points where V (a) = V (b) = E. It is of course quite logical
that the decay rate should be proportional to how much of the wavefunction gets through
the barrier, � ⇠ |T (E)|2. However, if the particle is in an energy eigenstate, there is no
time-dependence, so it cannot decay. To go from T (E) to �, a step often skipped, requires
considerably more thought.

A simple picture often used to convert T (E) to a decay rate depicts a particle with
momentum p =

p
2mE, and velocity v = p

m
in the well hitting the barrier with a rate

v
2a
, and each time tunneling through with probability given by the transmission coe�cient,

|T (E)|2 (see e.g. [24]). With this logic, the decay rate is

� ⇠ p

2am

�

�

�

�

 E(b)

 E(a)

�

�

�

�

2

⇡ p

2am
e�2W (2.2)

Indeed, if one solves the Schrödinger equation numerically, one can see the wavefunction
oscillate back and forth in the well; the largest flux leaks out during the times when the
wavefunction is closest to the barrier. Fig. 1 shows this exponential decay with time and the
small oscillations. Snapshots of the wavefunction oscillating in the well are shown in Fig. 2.
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•  Solve Schrodingers equation 
•  Impractical for QFT 

•  Deform potential to stabilize false vacuum 
•  Take T à ∞ limit 
•  Deform back and compute imaginary part 
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Figure 12: The function Sh,g(x) = h x
12

� g x2

2
+ x4

4
can be deformed di↵erent ways from the

physical case (h, g) = (1, 1) (top). For (h, g) = (�5, 1), the FV is stabilized, and the real axis
lines up with the FV contour (green). The correct factor of 1

2
results. For (h, g) = (1,�1), the

bounce is stabilized (red). The imaginary part computed this way is the naive one,missing
the factor of 2. For (h, g) = (5, 1), the shot is stabilized (blue).
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shot  

bounce static false 
vacuum 

•  Direct approach using Minkowski space causal propagators 
•  Does not rely on saddle-point approximation 
•  Does not rely on deforming potential 
•  QFT derivation is simple – no bold leap of faith 
•  Non-perturbative formula �
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Is the result the decay rate? 
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Classical potential: 

-  Renormalizable 
-  Three parameters (Λ, m and λ), measured from data 

How can the quantum-corrected potential be computed? 

How do we compute Veff? 

0 1 2 3 4
-2

0

2

4

6

V (h) = ⇤+m2h2 + �h4
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Z
DHei� ⌘

Z
DH D · · · DAeiS

Effective Action 

� =

Z

d4x
n

� Z[H]H⇤H � Ve↵(H) + · · ·
o

Classical action 

Integrate out everything but H 

•  Generally non-local (has nasty things like                     in it) 

•  Nearly impossible to compute 

•  Can’t include loops of H itself this way 

ln
1 +⇤/m2

t

H2

OK if H ⇡ hHi

Method 1: 

How do we compute Veff? 

ei� =

Z
DH · · · DAeiSIf we integrate over everything, 

     effective action is just a number  

Problems: 
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eW [J] ⌘
Z

DH · · · DAei
R
d4x{L+JH}1. Compute W[J]  

2. Solve for J[H]  H =
@W

@J
3. Compute  

Method 2: Legendre transform 

Classical action 

��

�H

���
H=Hq

= 0

We want an effective action 

Classical minimum  

�S

�H

���
H=v

= 0

True quantum minimum 

�[H] = W [J [H]]�
Z

d4xHJ [H]

��

�H
= J [H]Has the property that                       so that ��

�H
= 0 when J=0 (i.e. in original theory) 

Current introduced by hand 
So that Γ depends on something 

•  Agrees with method 1 in perturbation theory 
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What do you get? 

3

FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µmax
X = 2.46⇥ 1010 GeV (6)

µmin
X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use mpole
h =

(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:

V (1,NLO)(h) =
�1

256⇡2


⇠Bg

2
1

✓
ln

�h4(⇠Bg21 + ⇠W g22)

4µ4
� 3

◆

+⇠W g22

✓
ln

�3h12⇠2W g42(⇠Bg
2
1 + ⇠W g22)

64µ12
� 9

◆�
�h4 (8)

Another contribution V (2,NLO)(h) comes from the �0 and
ln� terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as �
(2)
e↵ in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V NLO
min = V (LO)(µX) + V (2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
by V (⇤I) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy
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> (129.40± 0.58) + 2.26 (

mpole
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)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >
129.67 GeV). The ±0.58 is pertubative and ↵s uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

mpole
t

GeV
< (171.22± 0.28) + 0.12 (

mpole
h � 125.14 GeV
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)
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Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is mpole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as

H =
1p
2

✓
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vEW + h

◆
. The traditional perturbation ap-

proach leads to a renormalization-group-improved e↵ec-
tive potential of the form [2]
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4 the j-loop
fixed-order e↵ective potential.

Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
mpole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
mpole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to mpole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h4 can only turn over

due to 1-loop corrections of the form V1 ⇠ g4~
16⇡2h

4 for

some g if � ⇠ g4~
16⇡2 . Since � ⇠ ~, each factor of � in a

diagram changes its e↵ective loop order. Thus perturba-
tion theory in ~ may still be appropriate, but since � ⇠ ~
it is not the usual loop expansion.
An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �
counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g4j+2�1�j .
The consistent method for an order-by-order gauge-

independent calculation of Vmin presented in [13] trans-
lates to the SM as follows. First, we truncate the e↵ective
potential to order ~ with � ⇠ ~ power counting. This
gives the leading-order (LO) potential:
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Note that this potential includes tree-level and 1-loop
contributions, and is gauge-invariant. From this, we can
solve for the scale h = µX where dV (LO)/dh = 0. Ex-
plicitly µX is the MS scale where the condition
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FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µmax
X = 2.46⇥ 1010 GeV (6)

µmin
X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use mpole
h =

(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:

V (1,NLO)(h) =
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Another contribution V (2,NLO)(h) comes from the �0 and
ln� terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as �
(2)
e↵ in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V NLO
min = V (LO)(µX) + V (2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
by V (⇤I) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy

mpole
h

GeV
> (129.40± 0.58) + 2.26 (

mpole
t � 173.34 GeV

1.12 GeV
)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >
129.67 GeV). The ±0.58 is pertubative and ↵s uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

mpole
t

GeV
< (171.22± 0.28) + 0.12 (

mpole
h � 125.14 GeV

0.24 GeV
)

(11)
Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is mpole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional
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LO is mpole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
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condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as

H =
1p
2
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proach leads to a renormalization-group-improved e↵ec-
tive potential of the form [2]
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4 the j-loop
fixed-order e↵ective potential.

Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
mpole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
mpole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to mpole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h4 can only turn over

due to 1-loop corrections of the form V1 ⇠ g4~
16⇡2h

4 for

some g if � ⇠ g4~
16⇡2 . Since � ⇠ ~, each factor of � in a

diagram changes its e↵ective loop order. Thus perturba-
tion theory in ~ may still be appropriate, but since � ⇠ ~
it is not the usual loop expansion.
An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �
counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g4j+2�1�j .
The consistent method for an order-by-order gauge-

independent calculation of Vmin presented in [13] trans-
lates to the SM as follows. First, we truncate the e↵ective
potential to order ~ with � ⇠ ~ power counting. This
gives the leading-order (LO) potential:
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Note that this potential includes tree-level and 1-loop
contributions, and is gauge-invariant. From this, we can
solve for the scale h = µX where dV (LO)/dh = 0. Ex-
plicitly µX is the MS scale where the condition
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1. Gauge-dependence  
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Method 1 to compute Γ is gauge-invariant: 

Completely integrate over gauge-orbits 
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Method 2 to compute Γ introduces a charged source J 

ei� =
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DH · · · DAeiSAction/energy at minimum also gauge-invariant: 
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•  Action away from minimum has current present 
•  Action at minimum has no current, should be gauge-invariant 
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Figure 1: Under the rescaling of the dependent variable, a function changes but its values at
extrema do not [19]. This elementary mathematical fact explains why the e↵ective potential
can depend on the field normalization, but Vmin does not.

field redefinitions, and the e↵ective action in the true vacuum is defined as a path integral in
Eq. (2.6). Indeed, gauge invariance of the action at extrema is a special case of general field
redefinition invariance, since one can view gauge-transformations as field redefinitions. In
doing so, however, one must allow for the possibility that if with one definition an extremum
is at A

µ

= 0, with another definition it may be with a nonzero and x-dependent expectation
value for A

µ

.
A corollary of the above argument is that the potential away from its extrema does

depend on how the field is normalized and defined. This is also obvious from Fig. 1. Away
from an extremum, the action describes the system in the presence of a current J . When
one rescales the field �, the J� term with J fixed breaks the invariance of the path integral
under rescaling. Equivalently, from Eq. (2.5), we see that J

�

= 1


J

�

so that when a field is
rescaled, �[�] gives the least action in the presence of a rescaled current.

A number of authors have proposed that the gauge-dependence of the e↵ective potential
can be removed through a field redefinition [8–11,14]. For example, Tye and Vtorov-Karevsky
argue that one should replace �1 + i�2 ! � exp(i⇡) [10]. Then � is a U(1) singlet and
so its source J is neutral and the interaction J� in the Lagrangian does not cause the
Ward identity to be violated. Although there is nothing wrong with this argument, physical
quantities, such as the value of the potential at its minimum, should be independent of
field redefinitions. A field redefinition is in a sense similar to a gauge-choice. It does not
make the potential away from the minimum any more physical. Moreover, with this non-
linear field redefinition, a renormalizable theory becomes nonrenormalizable and nominally
straightforward calculations can become drastically more complicated (try computing �

�

at
1-loop in this theory). The point is that physics should be independent of field redefinitions,
so one should choose a basis which makes calculations easiest, not one that makes unphysical
quantities more comforting.
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•  Rescaling field leaves Vmin unchanged 



But is it? 
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No. 

(�Vmin)
1/4 appears linearly-dependent on gauge parameter ξ



What about field values? 
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also strongly gauge-dependent 

Instability scale ΛI =  value of h where V(h) = 0 

•  hmin  also gauge dependent 
•  hmax also gauge dependent 
•  … 
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Veff(h) 
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v = 247 GeV hmin = 1033 GeV  
ΛI = 1011 GeV  

hmax = 1010 GeV  
Landau gauge (ξ=0) 
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2. Large Logarithms 
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Can be resummed with RGE: 

Explicit µ dependence 

compensated for by rescaling couplings and fields 
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•  Same RGE as 1PI Green’s functions or off-shell matrix elements 
•  Observables/S-matrix elements satisfy simpler RGE: 

 

               Effective potential depends on the normalization of fields??!! 

•  Field-rescaling term canceled by LSZ wavefunction Z-factors 



Resum logarithms 
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1.  Compute Veff to fixed order (say 2-loops) at scale (say) µ0 ~ 100 GeV 

2.  Solve RGE 

3.  Set µ ~ h 
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Figure 1: Under the rescaling of the dependent variable, a function changes but its values at
extrema do not [19]. This elementary mathematical fact explains why the e↵ective potential
can depend on the field normalization, but Vmin does not.
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Even gauge-invariant Γ is unphysical 
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Γ(h) is now gauge-invariant 

Effective potential still depends on how it is calculated 
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•  This is OK.  
•  Off-shell quantities can be unphysical 

•  Observables should be physical 
•  S-matrix elements 
•  Vacuum energy (Vmin) 
•  Tunnelling rates 
•  Critical temperature 

But are they?  

What about field values? 
Instability scale? 
Inflation scale? 
Planck/new physics sensitivity? 
 

Are these questions about observables? 
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•   Not gauge-invariant 

•  For most values of e and λ, there is no minimum 

•  When 

Scalar QED   
Nov 18, 2016 Matthew Schwartz 

L = �1

4
F 2
µ⌫ +

1
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•  mass term gives small corrections, so we drop it 

4 Coleman-Weinberg Model

Now let us turn to the main subject of this paper, scalar QED with a massless scalar, also
known as the Coleman-Weinberg model. The Lagrangian is as in Eq. (3.1), with

V0 =
�

24
�

4 (4.1)

and the gauge-fixing term is

LGF = � 1
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µ

A

µ)2 (4.2)

These can be thought of as R
⇠

gauges (since vcl = 0 in this theory) or Fermi gauges. They
correspond to ⌥1 = ⌥2 = 0 in the 3-parameter gauge family discussed above, and so the
ghosts decouple and can be ignored. There is unavoidable kinetic mixing between � and
@

µ

A

µ

in this theory, but as in the Abelian Higgs model, this is an inconvenient but not
insurmountable complication.

The renormalized 1-loop e↵ective potential in MS in this theory is the m ! 0 limit of
Eq. (3.9):
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has been used to simplify the 1-loop potential.
The tree-level potential in this model has only a single minimum, at � = 0, where the

O(2) symmetry is unbroken. For there to be a minimum at 1-loop, the corrections must be
large enough to turn over the potential. For � small, so that the theory is perturbative, this
is only possible if the ~

16⇡2 e
4 term is as large as the tree-level �

24
piece. So let us assume

� ⇠ ~
16⇡2 e

4 and that there is a minimum at some scale v. Then the condition for the
minimum, V 0(v) = 0 provides a precise relationship between � and e:
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As discussed in [4], to understand this equation one must appreciate dimensional trans-
mutation. In scalar QED, the only scale is the scale µ at which the couplings are defined. µ
is arbitrary, so we may as well take µ = v. Then Eq. (4.6) reduces to

� =
~
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4 (6� 36 ln e) +O(e6) (4.7)
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1-loop potential in Rξ gauges: 
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This equation should be thought of as a condition on � = �(µ) and e = e(µ): the minimum
occurs at the scale v = µ where Eq. (4.7) holds. Of course, v will get corrections and, as we
will see, is gauge-dependent (unlike µ). But at least at 1-loop, this is an acceptable way to
think about the minimum in the e↵ective potential in scalar QED.

Since � and e can be anything, it is natural to wonder whether Eq. (4.7) requires some
kind of finite tuning. As explained in [4] it does not. The evolution of e and � are determined
by the � functions:
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The key feature of these equations is that e is multiplicatively renormalized (e = 0 is a fixed
point of the RG flow) while � can get an additive correction even at � = 0. What this means
is that if � and e start o↵ small, e runs logarithmically, but � will grow at ever increasing
rate until it hits a Landau pole. Indeed, the exact solutions to the 1-loop RGEs are [4]
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with C an integration constant which can be traded for �(µ0). The tangent in �(µ) implies
that as e2 changes by a factor of ⇡ 1.2, � will go from �1 to 1. In particular, if � and e

are small, there will always be a point where Eq. (4.7) is satisfied.
At the minimum, we find
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This is gauge-invariant, simply because the e

4 terms in V1(�) are gauge-invariant.
The first non-trivial check on the gauge invariance of V (v) requires the terms in the

e↵ective potential of order ~2e6, with � counting as order ~e4, and ln e and ln� counting as
order e0. In scalar QED, each loop comes with a factor of ~e2 or ~� from the vertices, so ~e2�
terms come from 1-loop graphs and ~2e6 terms from 2-loop graphs. Thus we need at least
the 2-loop Coleman-Weinberg potential. In addition, e↵ective potential calculations involve
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4 Coleman-Weinberg Model

Now let us turn to the main subject of this paper, scalar QED with a massless scalar, also
known as the Coleman-Weinberg model. The Lagrangian is as in Eq. (3.1), with

V0 =
�

24
�

4 (4.1)

and the gauge-fixing term is

LGF = � 1

2⇠
(@

µ

A

µ)2 (4.2)

These can be thought of as R
⇠

gauges (since vcl = 0 in this theory) or Fermi gauges. They
correspond to ⌥1 = ⌥2 = 0 in the 3-parameter gauge family discussed above, and so the
ghosts decouple and can be ignored. There is unavoidable kinetic mixing between � and
@

µ

A

µ

in this theory, but as in the Abelian Higgs model, this is an inconvenient but not
insurmountable complication.

The renormalized 1-loop e↵ective potential in MS in this theory is the m ! 0 limit of
Eq. (3.9):
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has been used to simplify the 1-loop potential.
The tree-level potential in this model has only a single minimum, at � = 0, where the

O(2) symmetry is unbroken. For there to be a minimum at 1-loop, the corrections must be
large enough to turn over the potential. For � small, so that the theory is perturbative, this
is only possible if the ~

16⇡2 e
4 term is as large as the tree-level �

24
piece. So let us assume

� ⇠ ~
16⇡2 e

4 and that there is a minimum at some scale v. Then the condition for the
minimum, V 0(v) = 0 provides a precise relationship between � and e:
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As discussed in [4], to understand this equation one must appreciate dimensional trans-
mutation. In scalar QED, the only scale is the scale µ at which the couplings are defined. µ
is arbitrary, so we may as well take µ = v. Then Eq. (4.6) reduces to

� =
~
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e

4 (6� 36 ln e) +O(e6) (4.7)
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These terms are important, but since � ⇠ e

4, they have e↵ects comparable to terms in the 3-
loop Coleman-Weinberg potential. Thus, an advantage of Landau gauge is that it postpones
the relevance of daisy resummation by one loop. Landau gauge does not however let us
ignore the daisy graphs completely.

Two recent papers also observed that resummation of certain graphs to all orders is
necessary starting at 3 loops in Landau gauge [40,41]. These two papers are concerned with
resolving an infrared divergence problem associated with massless Goldstone bosons starting
at 3 loops. While these two papers discuss diagrams similar to the ones here, the problem
they solve is di↵erent (infrared divergences, not gauge-dependence) and their results are not
directly transferable. However, these two papers, along with the earlier work in [35, 43], do
explain in a more systematic way how daisy and other relevant diagrams can be resummed
through a modification of the e↵ective propagators.

In summary, the full Coleman-Weinberg potential up to order e6 with � ⇠ e

4 is the sum
of Eqs. (4.1), (4.3), (5.20) and (6.10). It is helpful to write the result as
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scales as O(~) when � ⇠ ~e4 and the next-to-leading order (NLO) potential, scaling like
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with b

�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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•  Known in Landau gauge 
•  Some terms computed by Kang (1974), not in MS 
•  Some terms at order          unknown   e6~2There are 4 diagrams that contribute at order ~2e6:
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.

Adding the contribution of these graphs to the counterterm contribution in Eq. (5.4)
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where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.
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where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.
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where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.
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where again the · · · vanish as � ! 0.
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terms of order  

Then the relevant part of the 2-loop potential is 
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These terms are important, but since � ⇠ e

4, they have e↵ects comparable to terms in the 3-
loop Coleman-Weinberg potential. Thus, an advantage of Landau gauge is that it postpones
the relevance of daisy resummation by one loop. Landau gauge does not however let us
ignore the daisy graphs completely.

Two recent papers also observed that resummation of certain graphs to all orders is
necessary starting at 3 loops in Landau gauge [40,41]. These two papers are concerned with
resolving an infrared divergence problem associated with massless Goldstone bosons starting
at 3 loops. While these two papers discuss diagrams similar to the ones here, the problem
they solve is di↵erent (infrared divergences, not gauge-dependence) and their results are not
directly transferable. However, these two papers, along with the earlier work in [35, 43], do
explain in a more systematic way how daisy and other relevant diagrams can be resummed
through a modification of the e↵ective propagators.

In summary, the full Coleman-Weinberg potential up to order e6 with � ⇠ e

4 is the sum
of Eqs. (4.1), (4.3), (5.20) and (6.10). It is helpful to write the result as
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scales as O(~) when � ⇠ ~e4 and the next-to-leading order (NLO) potential, scaling like
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with b

�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
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The final term is the contribution from the daisies. Without this term, our result agrees with
Kang [17] (up to normalization and subtraction-scheme conventions). As before, one should
interpret v as the scale µ where this equation it satisfied. Therefore v is gauge-dependent.

This solution for � contributes to the scalar mass through V

00(v) (see Eq.(7.5) below).
Plugging Eq. (7.2) back into the potential, we find that in fact V (�) is completely insensitive
to the daisy contribution: the correction to � exactly cancels the V

e

6
daisies daisy contribution.

Thus there is no e↵ect of the daisies on the scalar mass. The vector propagator at the order
required (1-loop) is also independent of daisies; it can even be computed in the � = 0 limit.
Thus the daisies do not a↵ect the scalar to vector mass ratio at order e

6, which explains why
Kang’s result is correct.

Now let us consider the value of the e↵ective potential at the radiatively generated min-
imum, V
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This is gauge-dependent. One might have suspected that the daisies would help, but in
fact they do not contribute at all to this expression (since, as mentioned above, they do
not contribute to V (�) when expressed in terms of v, even away from the minimum). This
gauge-dependence is essentially what was observed but not resolved in [35].

What is going on? Shouldn’t the Nielsen identity in Eq. (2.7)

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is gauge-invariant? Since @V

@�

��
�=v

= 0, which indeed does hold, this

equation should automatically imply that @V

@⇠

= 0, which does not hold. The catch is that
C(v, ⇠) happens to be infinite. Indeed, since we know V we can sidestep the direct calculation
of C(�, ⇠) and simply solve for it using Eq. (7.4). Doing so, we find a function C(�, ⇠) which
has a logarithmic divergence as � ! v. Thus while the Nielsen identity may provide a
constraint on the exact e↵ective potential, it gives no indication of how we are to proceed
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The final term is the contribution from the daisies. Without this term, our result agrees with
Kang [17] (up to normalization and subtraction-scheme conventions). As before, one should
interpret v as the scale µ where this equation it satisfied. Therefore v is gauge-dependent.

This solution for � contributes to the scalar mass through V

00(v) (see Eq.(7.5) below).
Plugging Eq. (7.2) back into the potential, we find that in fact V (�) is completely insensitive
to the daisy contribution: the correction to � exactly cancels the V

e

6
daisies daisy contribution.

Thus there is no e↵ect of the daisies on the scalar mass. The vector propagator at the order
required (1-loop) is also independent of daisies; it can even be computed in the � = 0 limit.
Thus the daisies do not a↵ect the scalar to vector mass ratio at order e

6, which explains why
Kang’s result is correct.
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This is gauge-dependent. One might have suspected that the daisies would help, but in
fact they do not contribute at all to this expression (since, as mentioned above, they do
not contribute to V (�) when expressed in terms of v, even away from the minimum). This
gauge-dependence is essentially what was observed but not resolved in [35].
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= 0, which does not hold. The catch is that
C(v, ⇠) happens to be infinite. Indeed, since we know V we can sidestep the direct calculation
of C(�, ⇠) and simply solve for it using Eq. (7.4). Doing so, we find a function C(�, ⇠) which
has a logarithmic divergence as � ! v. Thus while the Nielsen identity may provide a
constraint on the exact e↵ective potential, it gives no indication of how we are to proceed
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in perturbation theory. Similar divegences in C(�, ⇠) were observed by Nielsen [15] in the
Abelian Higgs model and attributed to the infrared divergence problem in Fermi gauges
discussed in Section 3 (see also [24]).

The problem with V

min

written as in Eq. (7.3) is that it explicitly depends on v, which
in turn implicitly depends on ⇠. One way to remove the v dependence is to compute a
dimensionless quantity, such as V
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which is manifestly ⇠ independent. Daisies do not contribute to this ratio, as they contribute
to neither V

min

nor to m

S

.
That the potential at the minimum to the scalar mass is gauge-invariant is encouraging,

but shouldn’t these quantities separately be gauge invariant? Aitchison and Fraser observed
that the scalar mass that Kang calculated does not in fact satisfy its Nielsen identity [24].
They suspected, echoing Nielsen, that the discrepancy would be resolved by including the
daisies. We have shown that the daisies do not help. The real problem is that one simply
cannot express these quantities in terms of the expectation value v = h�i. This vev is
unphysical and gauge-dependent and infects all dimensionful quantities expressed in terms
of it.

An alternative to expressing V

min

in terms of v is to express it in terms of the renormal-
ization group scale µ. This scale is as physical as the MS couplings: the two are intrinsically
connected. So that we can continue to use perturbation theory, let us define the scale µ
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the scale where Eq. (4.7) is satisfied exactly. That is, µ
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Since this relation is exact, we can no longer solve for e

6 terms in the relation between � and
e. Instead, we can solve V

0(v) = 0 for v as a function of µ
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. Up to 2-loops we find
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More diagrams! 
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where the last two terms are the daisy contribution. Note that v = h�i is not gauge invariant.
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where, again, the last two terms are the daisy contribution. In this case, we see that for
V

min

the daisies precisely cancel the gauge dependence from the other terms as indicated
and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µ

X

, and then for the vector mass
using Eq. (7.1).

To reinforce some of the main points of this paper, we can explicitly work out various
unphysical quantities to see that they are indeed gauge dependent. The first gauge-dependent
quantity is the vev: v = h�i shown in Eq. (7.9). We can also look at value of the field where
the potential is zero ⇤

I

, which in the standard model is sometimes given an interpretation
as an instability scale. Setting V (⇤
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) = 0 gives a di↵erent relation between � and e than
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which, like v is gauge-dependent. In both cases, we see that the scale is linearly dependent
on ⇠. Comparing to Eq. (7.9), it is intriguing to observe that v and ⇤

I

have the same
⇠-dependent terms, so that v/⇤

I

is gauge-invariant at this order.

8 Renormalization group improvement

At this point we have shown that if the e↵ective potential in scalar QED is expressed in
terms of the MS couplings e and � and the scale µ
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where, again, the last two terms are the daisy contribution. In this case, we see that for
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the daisies precisely cancel the gauge dependence from the other terms as indicated
and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µ

X

, and then for the vector mass
using Eq. (7.1).

To reinforce some of the main points of this paper, we can explicitly work out various
unphysical quantities to see that they are indeed gauge dependent. The first gauge-dependent
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Daisy resummation 
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Higher order graphs can scale like inverse powers of λ:

critical temperature because, in the limit m ⌧ T , new infrared divergences arrive. Daisy
resummation as a solution to infrared problems associated with massless Goldstone bosons
has recently been proposed in [39,40]. The relevance of daisy resummation to solving gauge-
dependence problems at finite temperature has also been discussed [19,41,42]. It is therefore
not suprising that daisy resummation is relevant to the gauge-dependence problem in the
Coleman-Weinberg model. Nevertheless, the relevant calculation has not yet been done, to
our knowledge, which is why we resum the relevant daisy graphs here.

Normally, one does not get inverse powers of coupling constants from Feynman dia-
grams. Indeed, at any fixed order in perturbation theory, there are always positive powers
of couplings, even in e↵ective potential calculations. However, the e↵ective potential always
involves summing an infinite number of graphs, namely those with an arbitrary number
of background field insertions. It is this infinite sum which gives the ln� dependence in
the e↵ective potential and which can generate infinite powers of couplings. As discussed in
Section 5, we simplify the infinite sums by using dressed propagators. For exmaple, from
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Here, we have simply done the integral by dimensional analysis, since it is UV and IR finite.
This graph therefore contributes at order e
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Figure 3: Example daisy graphs which contribute inverse powers of �.

quantities at order e6 in this power counting. Nielsen argued that the reason the scalar mass
Kang calculated does not satisfy his identity was due to the absence of these terms [15].
Some time later, Johnston [35] showed how these terms can be summed into a dressed
propagator for the scalar fields, suggesting that these terms could be computed and the
Nielsen identity restored, although no explicit contributions to the potential were provided.
Shortly afterwards Bazeia [36] showed that even at 1-loop, where daisies are irrelevant, the
vacuum energy in the Coleman-Weinberg model has gauge-dependence. In this section, we
compute all of the daisy graphs relevant at e6 (and some of the subleading daisy graphs as
well to demonstrate their relevance in Landau gauge). In the next section we demonstrate
that, after carefully keeping track of the independent variables, the e↵ective potential at its
minimum is indeed gauge-invariant.

Before beginning, it is worth remarking that the daisy resummation we perform here is
related to, but not identical to, daisy resummation in finite-temperature field theory [37–
39]. At finite temperature, the resummation of daisy diagrams is necessary to calculate a
critical temperature because, in the limit m ⌧ T , new infrared divergences arise. Daisy
resummation as a solution to infrared problems associated with massless Goldstone bosons
has recently been proposed in [40,41]. The relevance of daisy resummation to solving gauge-
dependence problems at finite temperature has also been discussed [19, 42]. It is therefore
not surprising that daisy resummation is relevant to the gauge-dependence problem in the
Coleman-Weinberg model. Nevertheless, the relevant calculations have never been done, to
our knowledge, which is why we resum the relevant daisy graphs here.
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involves summing an infinite number of graphs, namely those with an arbitrary number of
background field insertions. It is this infinite sum which gives the ln� dependence in the
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Eq. (5.5) that the �1 propagator is D11 = i

k

2��
2 �

2 which has an e↵ective mass m

2 = �

2
�

2.

In the daisy graphs, each photon loop (the petals) gives a factor proportional to e

2
�

2, each
vertex gives a factor of e2, and the loop integral over the scalar propagators can give inverse

21

Figure 3: Example daisy graphs which contribute inverse powers of �.

quantities at order e6 in this power counting. Nielsen argued that the reason the scalar mass
Kang calculated does not satisfy his identity was due to the absence of these terms [15].
Some time later, Johnston [35] showed how these terms can be summed into a dressed
propagator for the scalar fields, suggesting that these terms could be computed and the
Nielsen identity restored, although no explicit contributions to the potential were provided.
Shortly afterwards Bazeia [36] showed that even at 1-loop, where daisies are irrelevant, the
vacuum energy in the Coleman-Weinberg model has gauge-dependence. In this section, we
compute all of the daisy graphs relevant at e6 (and some of the subleading daisy graphs as
well to demonstrate their relevance in Landau gauge). In the next section we demonstrate
that, after carefully keeping track of the independent variables, the e↵ective potential at its
minimum is indeed gauge-invariant.

Before beginning, it is worth remarking that the daisy resummation we perform here is
related to, but not identical to, daisy resummation in finite-temperature field theory [37–
39]. At finite temperature, the resummation of daisy diagrams is necessary to calculate a
critical temperature because, in the limit m ⌧ T , new infrared divergences arise. Daisy
resummation as a solution to infrared problems associated with massless Goldstone bosons
has recently been proposed in [40,41]. The relevance of daisy resummation to solving gauge-
dependence problems at finite temperature has also been discussed [19, 42]. It is therefore
not surprising that daisy resummation is relevant to the gauge-dependence problem in the
Coleman-Weinberg model. Nevertheless, the relevant calculations have never been done, to
our knowledge, which is why we resum the relevant daisy graphs here.

Normally, one does not get inverse powers of coupling constants from Feynman dia-
grams. Indeed, at any fixed order in perturbation theory, there are always positive powers
of couplings, even in e↵ective potential calculations. However, the e↵ective potential always
involves summing an infinite number of graphs, namely those with an arbitrary number of
background field insertions. It is this infinite sum which gives the ln� dependence in the
e↵ective potential and which can generate inverse powers of couplings. As discussed in Sec-
tion 5, we simplify the infinite sums by using dressed propagators. For example, we see from
Eq. (5.5) that the �1 propagator is D11 = i

k

2��
2 �

2 which has an e↵ective mass m

2 = �

2
�

2.

In the daisy graphs, each photon loop (the petals) gives a factor proportional to e

2
�

2, each
vertex gives a factor of e2, and the loop integral over the scalar propagators can give inverse

21

Figure 3: Example daisy graphs which contribute inverse powers of �.

quantities at order e6 in this power counting. Nielsen argued that the reason the scalar mass
Kang calculated does not satisfy his identity was due to the absence of these terms [15].
Some time later, Johnston [35] showed how these terms can be summed into a dressed
propagator for the scalar fields, suggesting that these terms could be computed and the
Nielsen identity restored, although no explicit contributions to the potential were provided.
Shortly afterwards Bazeia [36] showed that even at 1-loop, where daisies are irrelevant, the
vacuum energy in the Coleman-Weinberg model has gauge-dependence. In this section, we
compute all of the daisy graphs relevant at e6 (and some of the subleading daisy graphs as
well to demonstrate their relevance in Landau gauge). In the next section we demonstrate
that, after carefully keeping track of the independent variables, the e↵ective potential at its
minimum is indeed gauge-invariant.

Before beginning, it is worth remarking that the daisy resummation we perform here is
related to, but not identical to, daisy resummation in finite-temperature field theory [37–
39]. At finite temperature, the resummation of daisy diagrams is necessary to calculate a
critical temperature because, in the limit m ⌧ T , new infrared divergences arise. Daisy
resummation as a solution to infrared problems associated with massless Goldstone bosons
has recently been proposed in [40,41]. The relevance of daisy resummation to solving gauge-
dependence problems at finite temperature has also been discussed [19, 42]. It is therefore
not surprising that daisy resummation is relevant to the gauge-dependence problem in the
Coleman-Weinberg model. Nevertheless, the relevant calculations have never been done, to
our knowledge, which is why we resum the relevant daisy graphs here.

Normally, one does not get inverse powers of coupling constants from Feynman dia-
grams. Indeed, at any fixed order in perturbation theory, there are always positive powers
of couplings, even in e↵ective potential calculations. However, the e↵ective potential always
involves summing an infinite number of graphs, namely those with an arbitrary number of
background field insertions. It is this infinite sum which gives the ln� dependence in the
e↵ective potential and which can generate inverse powers of couplings. As discussed in Sec-
tion 5, we simplify the infinite sums by using dressed propagators. For example, we see from
Eq. (5.5) that the �1 propagator is D11 = i

k

2��
2 �

2 which has an e↵ective mass m

2 = �

2
�

2.

In the daisy graphs, each photon loop (the petals) gives a factor proportional to e

2
�

2, each
vertex gives a factor of e2, and the loop integral over the scalar propagators can give inverse

21

+ + 

Since the 1
"

term in A2�2 has no
1
�

piece, the cross term between it and the O(") part of Aloop
�

will not contribute at order e6 (with � ⇠ e

4). Thus, for all the daisies, we can drop the O(")
terms in A

loop
�

and take

A

�

= A

loop
�

+ A

c.t.
�

=
~

16⇡2
e

2
�

2

✓

1� 6 ln
e�

µ

◆

(6.6)

For n > 3, the scalar loop is UV and IR finite. We find

A

n�2 = =

Z

d

4
k

(2⇡)4
D

n

22 =
i~

16⇡2
�

4 e

2
�⇠

12(n� 1)

✓�6i

��

2

◆

n

(6.7)

so that

I

n

=
~

16⇡2

✓

� 1

24
e

2
�⇠�

4

◆

1

n(n� 1)



~e4
(16⇡2)�

✓

6� 36 ln
e�

µ

◆�

n

(6.8)

Each term in this series contributes at order e

6 when � ⇠ e

4. Thus they are all equally
important for checking gauge invariance and we must sum the series. Summing the series is
easy enough to do using

1
X

n=2

1

n(n� 1)
x

n = x+ (1� x) ln(1� x) (6.9)

which gives

V

e

6daisies = �

4 ~
16⇡2

✓

�e

2
�⇠

24

◆

"

b

�(�)

�

+
�

1�
b

�(�)

�

�

ln
�

1�
b

�(�)

�

�

#

(6.10)

where
b

�(�) ⌘ ~e4
16⇡2

✓

6� 36 ln
e�

µ

◆

(6.11)

We have defined b

�(�) so that according to Eq. (4.6) b�(v) = � at the scale v where the 1-loop
potential has its minimum. Remarkably, while each daisy graph with n > 1 is individually
power-divergent as � ! 0 with e fixed, the sum of all daisies scales only like ln�.

Before moving on, it is worth pointing out that daisy resummation is important even in
Landau gauge, ⇠ = 0. In Landau gauge, there is no kinetic mixing and the scalar propagators
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These propagators still have �-dependent masses and can produce 1
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dependence from daisy
graphs. For example, summing the daisy graphs with �1 or �2 running in the loop gives
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where the last two terms are the daisy contribution. Note that v = h�i is not gauge invariant.
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where, again, the last two terms are the daisy contribution. In this case, we see that for
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the daisies precisely cancel the gauge dependence from the other terms as indicated
and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µ
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, and then for the vector mass
using Eq. (7.1).
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These terms are important, but since � ⇠ e

4, they have e↵ects comparable to terms in the 3-
loop Coleman-Weinberg potential. Thus, an advantage of Landau gauge is that it postpones
the relevance of daisy resummation by one loop. Landau gauge does not however let us
ignore the daisy graphs completely.

Two recent papers also observed that resummation of certain graphs to all orders is
necessary starting at 3 loops in Landau gauge [40,41]. These two papers are concerned with
resolving an infrared divergence problem associated with massless Goldstone bosons starting
at 3 loops. While these two papers discuss diagrams similar to the ones here, the problem
they solve is di↵erent (infrared divergences, not gauge-dependence) and their results are not
directly transferable. However, these two papers, along with the earlier work in [35, 43], do
explain in a more systematic way how daisy and other relevant diagrams can be resummed
through a modification of the e↵ective propagators.
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with b

�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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which is manifestly gauge-invariant! The daisies have exactly canceled the ⇠ dependence of
the NLO 1-loop and 2-loop contributions.

Next, let us look at a field value expressed in terms of the MS scale µ, to double check
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This instability scale is linearly dependent on the gauge-parameter ⇠, and therefore should
not be used to draw physical conclusions. The ⇠ dependence of other field values can be
computed in a similar way, confirming that they are indeed unphysical.
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and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µ
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, and then for the vector mass
using Eq. (7.1).
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which, like v is gauge-dependent. In both cases, we see that the scale is linearly dependent
on ⇠. Comparing to Eq. (7.9), it is intriguing to observe that v and ⇤
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2

action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as

H =
1p
2

✓
0

vEW + h

◆
. The traditional perturbation ap-

proach leads to a renormalization-group-improved e↵ec-
tive potential of the form [2]
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4 the j-loop
fixed-order e↵ective potential.

Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
mpole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
mpole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to mpole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h4 can only turn over

due to 1-loop corrections of the form V1 ⇠ g4~
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diagram changes its e↵ective loop order. Thus perturba-
tion theory in ~ may still be appropriate, but since � ⇠ ~
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An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �
counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g4j+2�1�j .
The consistent method for an order-by-order gauge-

independent calculation of Vmin presented in [13] trans-
lates to the SM as follows. First, we truncate the e↵ective
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
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Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
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h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
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t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
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cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
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The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
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that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h4 can only turn over
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shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g4j+2�1�j .
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as

H =
1p
2

✓
0

vEW + h

◆
. The traditional perturbation ap-

proach leads to a renormalization-group-improved e↵ec-
tive potential of the form [2]

V (h) =
1

4
h4e4�(h)

h
�
(0)
e↵ (µ = h) + �

(1)
e↵ (µ = h) + · · ·

i

(3)

with �(h) ⌘ R h
mt

�(µ0)dµ
0

µ0 and 1
4�

(j)
e↵ (µ)h

4 the j-loop
fixed-order e↵ective potential.

Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m2h2 in
the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
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h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
mpole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
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son the stability bound appears gauge dependent is due
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-

out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
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t = (173.34± 1.12) GeV, with the central value and
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is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µmax
X = 2.46⇥ 1010 GeV (6)

µmin
X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use mpole
h =

(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
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Another contribution V (2,NLO)(h) comes from the �0 and
ln� terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as �
(2)
e↵ in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V NLO
min = V (LO)(µX) + V (2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
by V (⇤I) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy
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> (129.40± 0.58) + 2.26 (

mpole
t � 173.34 GeV

1.12 GeV
)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >
129.67 GeV). The ±0.58 is pertubative and ↵s uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

mpole
t
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< (171.22± 0.28) + 0.12 (
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(11)
Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is mpole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional
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is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µmax
X = 2.46⇥ 1010 GeV (6)
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Another contribution V (2,NLO)(h) comes from the �0 and
ln� terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as �
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the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V NLO
min = V (LO)(µX) + V (2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d
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loops are relevant, even in Landau gauge [13].
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much (but not all) of the gauge-dependence being in the
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Each term in this series contributes at order e
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4. Thus they are all equally
important for checking gauge invariance and we must sum the series. Summing the series is
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We have defined b

�(�) so that according to Eq. (4.6) b�(v) = � at the scale v where the 1-loop
potential has its minimum. Remarkably, while each daisy graph with n > 1 is individually
power-divergent as � ! 0 with e fixed, the sum of all daisies scales only like ln�.

Before moving on, it is worth pointing out that daisy resummation is important even in
Landau gauge, ⇠ = 0. In Landau gauge, there is no kinetic mixing and the scalar propagators
are

D11 =
i

k

2 � �

2
�

2
, D22 =

i

k

2 � �

6
�

2
, (6.12)

These propagators still have �-dependent masses and can produce 1
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Here we have given �
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e↵ in the approximation � = 0, which is well justified around the instability

region. The full expression of �(2)
e↵ can be found in ref. [4]. Moreover, we have defined
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where Li2 is the dilogarithm function, and
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Here we have given �

(2)
e↵ in the approximation � = 0, which is well justified around the instability

region. The full expression of �(2)
e↵ can be found in ref. [4]. Moreover, we have defined
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where Li2 is the dilogarithm function, and
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•  We don’t know the Daisy contribution. But we do know if 
vanishes in Landau gauge at NLO 

•  Assuming everything works like in scalar QED, we have everything we 
need for NLO 
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Absolute stability: for what values of the Higgs and top masses is  is Vmin = 0? 
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FIG. 3. Gauge dependence of the SM potential at its maxi-
mum with mpole

h = 125.14 GeV and mpole

t = 173.34 GeV.
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The consistent gauge-invariant values at NLO are
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= 2.88⇥ 109 GeV (13)

��V NLO
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= 2.40⇥ 1029 GeV

Note that �Vmin corresponds to an energy density well
above the Planck scale. Thus, the potential at the mini-
mum will surely be e↵ected by quantum gravity and pos-
sible new physics not included in our calculation. Previ-
ous analyses have defined stability to be Planck-sensitive
if the instability scale ⇤I > MPl [1, 2]. As we have ob-
served, the instability scale is gauge dependent, so this
is not a consistent criterion. An alternative criterion is
that new operator, such as O6 ⌘ 1

⇤2
NP

h6 be comparable

to Vmin when h = hhi. Although O6 and Vmin are gauge-
invariant, the value of O6 at the field value h where the
minimum occurs is gauge dependent, so this condition
is also unsatisfactory. A consistent and satisfactory cri-
terion was explained in [13]: the new operator must be
added to the classical theory and its e↵ect on Vmin eval-
uated.

Adding O6 to the potential, we find that the the po-
tential is still negative at its minimum in the SM even
for operators with very large coe�cients. For example,
taking ⇤NP = MPl = 1.22 ⇥ 1019 GeV, we find that
µmin
X = 6.0 ⇥ 1017 GeV and Vmin = �(1.1 ⇥ 1017 GeV)4.

Comparing to Eq. (13) we see that the energy of the true
vacuum is very Planck-sensitive.

More generally, a good fit is given by

Vmin = �(0.01⇤NP)
4, ⇤NP & 1012 GeV (14)

When ⇤NP < 3.6⇥1012 GeV, Vmin becomes positive and
for ⇤NP < 3.1 ⇥ 1012 GeV the maximum and minimum

Metastability

Rapid instability

Absolute stability
HPlanck-sensitiveL

LNP
=10

10

LNP
=10

12

LNP
=10

14

LNP
=10

16

LNP
=10

19

t=10
10 years

120 122 124 126 128 130 132
168

170

172

174

176

178

180

MHiggs

M
to
p

FIG. 4. Boundaries of absolute stability (lower band, NLO)
and metastability (upper line, LO). The thickness of the
lower boundary indicates perturbative and ↵s uncertainty.
The theoretical uncertainty of the metastability boundary is
unknown. The elliptical contours are 68%, 95% and 99%
confidence bands on the Higgs and top masses: mpole

h =

(125.14±0.23) GeV and mpole

t = (173.34±1.12) GeV. Dotted
lines are scales in GeV at which V

min

can be lifted positive by
new physics.

disappear. Thus the stability of the Standard Model can
be modified by new physics at the scale 1012 GeV.
If we vary the Higgs and top masses in the Standard

Model, we can compute the boundary of absolute stabil-
ity. This bound is shown in Figs. 4 and 5. The dotted
lines show where Vmin becomes positive when in the pres-
ence of O6 for the indicated value of ⇤NP. Unexpectedly,
we find that three independent conditions (1) that Vmin

goes to zero, (2) that Eq. (5) have no solution, and (3)
that Vmin goes positive when ⇤NP = MPl all give nearly
identical boundaries in the mpole

h /mpole
t plane. Know-

ing that quantum gravity is relevant at MPl, we should
therefore be cautious about giving too strong of an in-
terpretation of the perturbative absolute stability bound
in the SM. We also show in this plot the metastability
bound, that the lifetime of our vacuum be larger than
the age of the universe. At lowest order this translates to
�( 1

R )�1 < �14.53 + 0.153 ln[RGeV] for all R [30]. Since
�(µ) is gauge invariant, so is this criterion. Although for
the Standard Model this approximation is probably suf-
ficient, it has not been demonstrated that the bound can
be systematically improved in a guage-invariant way [31].
In this paper, we have only discussed a single physical

feature of the e↵ective action: the value of the e↵ective
potential at its extrema. There is of course much more
content in the e↵ective action, especially when tempera-
ture dependence is included. Unfortunately, many uses
of the e↵ective action involve evaluating it for particu-
lar field configurations, a procedure that has repeatedly
been shown to be gauge-dependent. For example, the
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Absolute stability: for what values of the Higgs mass is Vmin = 0 at fixed top mass? 
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FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µmax
X = 2.46⇥ 1010 GeV (6)

µmin
X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use mpole
h =

(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:

V (1,NLO)(h) =
�1

256⇡2


⇠Bg

2
1

✓
ln

�h4(⇠Bg21 + ⇠W g22)

4µ4
� 3

◆

+⇠W g22

✓
ln

�3h12⇠2W g42(⇠Bg
2
1 + ⇠W g22)

64µ12
� 9

◆�
�h4 (8)

Another contribution V (2,NLO)(h) comes from the �0 and
ln� terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as �
(2)
e↵ in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V NLO
min = V (LO)(µX) + V (2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
by V (⇤I) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy

mpole
h

GeV
> (129.40± 0.58) + 2.26 (

mpole
t � 173.34 GeV

1.12 GeV
)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >
129.67 GeV). The ±0.58 is pertubative and ↵s uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

mpole
t

GeV
< (171.22± 0.28) + 0.12 (

mpole
h � 125.14 GeV

0.24 GeV
)

(11)
Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is mpole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional

Holding top mass fixed 

•  Absolute stability bound lowered by 300 MeV 
•  Larger shift that including the 2-loop Veff 
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Veff(h) 

h ΛI 

From Buttazzo et al (arXiv:1307.3536) 
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-
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Old way: 
    when is ΛI = ΛNP?   

•  gauge dependent, since ΛI is gauge-dependent  

New gauge-invariant way 

•  Add                             to the SM Lagrangian 

•  See how big  ΛNP must be so that Vmin =0 
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•  Guidice, Strumia et al (arXiv:1307.3536):  
•  Instability scale below Mpl, so no. 

•  Sher, Brandina et al (arXiv:1408.5302): 
          field at center of bubble  
               is greater than Mpl, so yes 

βλ =0 at µ = 1017 GeV < MPl 

�B(r = 0) = 1019GeV ⇠ MPl

Does the tunneling rate depend 
on quantum gravity? 

Veff(h) 

h ΛI 
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0 
h

VSM 

Standard Model potential 
Liftetime = 10600 years 

Add 

•  Lifetime = 0 sec 
•  Arbitrarily small bubbles form and grow 

0
h

Add  �V = �↵
1

M2
Pl

H6 + �
1

M2
Pl

H8

�V = � 1

M2
Pl

H6

•  Lifetime can be anything! 

•  Planck sensitivity not due to coincidence that βλ =0 at µ ~ MPl 
•  Tunneling is non-perturbative and always UV sensitive.       

0
h
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•  Our universe will probably decay, eventually. 
•  We don’t know how long it will last 

•  Tunneling rates 
•  Two time scales relevant for tunneling: Tslosh << T << TNL 
•  Asymptotic expansions and analytic continuation critical 

•  Can be avoided with a direct approach  
 

Do we know if the universe is stable? 

•  Requires consistent use of perturbation theory 
•  λ ~ h power counting 

 
•  UV physics does not decouple 

•  Stability is necessarily Planck-sensitive 
•  Can make lifetime shorter, not longer 

Tunneling involves many exotic elements of quantum field theory 


