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Events / 3 GeV

July 4, 2012: Higgs boson discovered!
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What did we learn?
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The Standard Model

1980-2012 2012 -- 77




What is the Higgs field?

« The Higgs field h(x) pervades all space
« The Higgs field h(x) has charge under the weak force

» If <h> =0 space is not empty — it has weak charge too
» The Higgs field h(x) has a potential

V(h) = A+ m?h? + \h?

» Lowest energy state has <h>=v
» This Higgs field value surrounds us all

What do we know about this potential?



Classical potential:  V/(h) = A + m°h? + A2

« 3 free parameters (A, m, A)
 Must be measured from data



Higgs potentlal V(h) = A +m?h? + AR

1998: acceleration of universe gives

1933: Rate for beta decay (Gg=<v>%) vacuum energy density V(v)= (103 eV)*

gives vacuum expectation value v =

SIE

0 1 h 2 3 4 0 1 h 2 3 4
2012: Higgs boson mass V”(v)=(126 GeV)?

gives curvature at minimum



Classical potential: V' (h) = A +m*h* + \h*

6

» 3 free parameters (A, m, A)
» Must be measured from data v |

Why are the values of A, m, A in nature interesting?

1.Fine tuning

2.Vacuum stability
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1. Fine tuning

Mp* = 1

V(H)

1 0-68

N
_
o

10-124




Classical potential: V' (h) = A +m*h* + \h*

6

» 3 free parameters (A, m, A)
» Must be measured from data v |

* Only 3 free parameters

* Quantum Field Theory otz s e
determines V(h) for arbitrarily large h

» Called the quantum-corrected or Effective Potential




Fine tuning Stability

Mp* =1

Our vacuum is absolutely stable

V(H) J

1 0-68

) 0

10-124 r‘

Our vacuum will eventually decay ...
... but how long will it take?

/ N\

Lifetime > 15 billion years Lifetime < 15 billion years
= metastable = unstable




Stablity phase diagram

Rapid instability
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Stablity phase diagram

Rapid instability
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Metastability

_ Is the rate calculated precisely?
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Standard Model Effective Potential

Veff(H)
Ny = 1010 GeV
1
!
| |
oINS | _: |
i | i h
i ! ]
! A= 101" GeV i
] 1
v = 247 GeV h,.. = 103 GeV

Are these scales physical?
Is the stability Planck sensitive?
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(Gauge dependence

Landau gauge (£=0)
Veff(h)
\/I_\ hmin
i
T ~l = -
! ‘ True minimum
v =247 GeV /\ f Vmin
Instability scale A, V... >0 - Absolute stability
= value of h where V(h) =0 / \/ m

* Indicates sensitivity to new physics

5x10"
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................. ne
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110 ‘
0 100 200 %0 400 %0 * h,, also gauge dependent

h.,.x @ISO gauge dependent



How do we calculate a decay rate?

Vi(x)

x(T)=a
/ Z = (ale~HTa) = / Due—Sele]
™ .

x(0)=a
a b c
—FET 2
Z=>Y e " yp(a)
E
o1
Isolate ground state energy EFy=—1lim —=InZ
from late times T—oo T

Decay rate is the imaginary
part of the energy

= ImTIEI;O?an

Clearly this is not exactly what is meant
« Zisreal
« True ground state at E_ = V(c) has nothing to do with the false vacuum

How do we get an imaginary part?



Qutline

/ 1. The Coleman-Callan potential-deformation method

« What s E the energy of?
How does something manifestly real becomes complex?

A

2. Solve the Schrodinger equation
« What exactly do we mean by a tunneling rate?
* The two relevant time scales
« The Gamow-Siegert prescription

Decay rates in QM and QFT
(1602.01102/1604.06090)

3. Adirect approach
\ «  Calculate the probability of going through the barrier

4. Using effective potentials to calculate decay rates
* Resolving the gauge dependence issue
* Understanding Planck sensitivity

Effective potentials
(1408.0287 & 1408.0292)



1. THE POTENTIAL
DEFORMATION METHOD

Colelman & Callan (1977)



Coleman and Callan

V(z)
x(T)=a
Z = (ale~HTa) = / Due—Sele]

N x(0)=a

a b c o
—FET 2
Z=>Y e " yp(a)
E
o1
Isolate ground state energy EFy=—1lim —=InZ
from late times T—oo T

Decay rate is the imaginary
part of the energy

= ImTIEI;O?an

Clearly this is not exactly what is meant
« Zisreal
« True ground state at E_ = V(c) has nothing to do with the false vacuum

How do we get an imaginary part?
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Saddle points

0.2}
0.1F
0.0F
—-0.1f
-0.2f
-0.3f

Matthew Schwartz

x(T)=a
Z = (ale T |a) = / DueSele
z(0)=a

Dominated by saddle points
= solutions to the Euclidean equations of motion

e S:/dt B(@tx)—V(w)] SE:/dT B(@Tﬂv)+V(a:)]

02z = —V'(2) O2x = V'(z)

7

particle rolling down the inverted potential

03:
0.2f
0.1f
0.0F
-0.1f
-0.2¢

| with boundary conditions z(0) = z(7) = a

-15 <10 -05 00

05

10 15



Saddle points S—

ot
03}
0.2} ] _ 1t
o /\ | =
0.0 \ 0
—0.1} ] il
—024 ] False vacuum
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Saddle points S :

03} _
0.2} ] 1F

= i
g(l) /\ ] =< O //\biunce
-0.1 / _1 _

02 _ False vacuum ]
~15 -10 05 00 05 10 15 o :

1.5¢

1.0}

00 05 10 15
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Saddle points —

7l
0.3}
0.2} ] = Lt
0.1} . = bounce
0.0} ] Op
—0.1} ] it
—0.2¢ ] False vacuum
15 210 -05 00 05 10 15 0 — 5 — 10 — '1'5' — 20 —

Bounce is a saddle point of action:
local maximum along one direction

1.5]

00 05 10 15
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Maximum —> negative eigenvalue of S” = Z has an imaginary part

x(T)=a
Z = / Drxe 98] x(T) = anyn(T)
z(0)=a
2(T)=0 : =07 + V" (@)] yn = Ann
_ / DaeSrlal- 55—
z(0)=0 /dTynym - 5nm
x(7T)=0
_ e—SE[:Z']/ DLL‘G_% de{—mazm—i—mV”(a_c) a:}
z(0)=0 One of these is negative (A, <0)

if £ is a maximum of S in some direction

— /d§o°~d§ne[_ > 3 Ankn]

27 2@ 1.5F
VAV A

1.0}

r o1
3 :Im711_1)réo7—_an ?é 0

S[x]

0.5]

But Z is real! So how did this happen? 0'0;'

00 05 10 15
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The Shot S — |

0.3 ]
0.2f
0.1f
0.0f
-0.1¢
-0.2}

~15 -10 05 00 05 10 15 e 3
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The Shot

03 ]
0.2}
0.1
0.0}
-0.1f
-0.2}

~15 -10 05 00 05 10 15

x(T)=a
Z = (ale T |a) = / Dire—Sel
x(0)=a

~ e—SE[xshot] (>> e—SE[a:bounce])

_ o~ BT
* Bounce is exponentially subdominant
» Consistent expansion must drop it
 True vacuum dominates
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Contour mtegratlon

static false
vacuum

——@=

Integrate
along real axis

TRe [S(2)]

Real axis = sum of steepest descent contours

/ / shot Lbounce LFV

_S(mshot) _|_ ’I/

2
+ e_S(CBbounce)

1T

+ e—S(wFV) 4
~ e_S(xshot)

Y

I
57’



2. SCHRODINGER
EQUATION

Gamow (1928) & Siegert (1939)



Quantum mechanics 10 (1) = [—%ag + V(az)] (@, )

v
FV R (%) L
— |
— 50
X
a b\_—/

Pe(T) = / da (e, T)]
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Quantum mechanics 10 (1) = [—%ag + V(a:)] (1)

FV R V(x) e
— gl
— 50|y
X
a b\_—/

Pey(T) = / ol D P

Two time scales
« T>Tg,en — removes transients
« T<Ty --avoids all ¢ in true vacuum

1 d
I'=— Ilim lim —— —FPpy
Tsil;sh o0 ﬁ_)o PFV dT




Gamow’s method

V(z) * Hermitian Hamiltonian - energies are real

- P*p independent of time

x ' Enforces T << Ty, (no return flux)

Choose outgoing boundary conditions: D=0, ¥ () = Ce'** =50

« Modes now have outgoing flux

« Zeros of D - energies are quantized

J = i(Y* 0 — Y0,*) = —2p * Resonances ~ bound states
V(z)

» Violates unitarity - energies are complex

1 : 1
E=Ey— 3T p,t) = BTty (z)

+ Probability is time dependent

* —I't a )
P = /w Y ~e Assume E, E, etc components already died off

Enforces T >> T, (only metastable FV decay)




1. THE POTENTIAL
DEFORMATION METHOD

(CONTINUED)

Colelman & Callan (1977)



Potential deformation

static false
vacuum
@ @

=

T 2 4
Se(r) =5 —9—=+—
o(®) 12 9277 o - realatg=+1
_ Z, = / dre=9s(*) <« realatg=-1
deform potential —o0  an analytic function of g

to prevent tunneling
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g=1+1€ —00

More standard example = [~ e

Divergent along
physical

/ integration contou
=~ . (real axis)

Analytically
continue

to g=-1

_/

S = N W s D

Fix integration to be along contour passing through saddle at x=0
Return to g=1, keeping integration along green contour
Z now has imaginary part at g=1

Well-defined procedure. But is the imaginary part the decay rate?
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Add convergence factor sy P

2 4 60
* Modifying potential/action away from region of interest should not affect rate
g = exp (Z%) 9= P (Z%) z 100
Hg= +1 80
%% )
Zg = / dze™%9()
— o0

« realatg=+1
* realatg=-1
[ A | - Z,is an analytic function of g
\ %& /
g = exp (i€) «  We can still fix the contour at g=-1

g = —exp (—ie) and follow it back.
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Physical limits

potential

| paths
shot
— 1 ]
-1 static FV '
0 5 10 15 20

T

action

T>> Ty, (only metastable FV decay)

T << Ty (no return flux)

['=— lim lim —— —Frv
Tsilc:sh oo ﬁ_)() PFV dT
z(T)=a
Z = (aleHT]a) = / DueSelw
z(0)=a

G_EOT 4 e—EFVT

)

1
h — lim Tan:min(Eo,EFV)

T— 00

Taking T'— oo picks out true ground state E,




. . . T>> T, (only metastable FV decay)
Physical limits
2.07 S S IR e S B
potential

T << Ty (no return flux)
1 d
I'=— lim lim —— —Fpv
Tsilc—;sh o0 WTI_._)O PFV dT
! "(T)=a
| N 7 = (a|e_HT|a> = / DyeSel?]
op 5 (0)=a
[ \“ B ~ €_E0T+€_EFVT

05 U PP EE et ] 1

: ] — lim —InZ = min(FEy, K
0‘0; ] h TH)noo T i mln( 05 FV)

_0'5: Taking T — oo picks out true ground state E,
—23 | —l' | 0 | 1 | 2
5 paths We want to T << T\, (no return flux)
' shot { 1. Deform the potential so FV is true ground state
1t
| /bounce | 2. Take T — o0
* Picks out EFV(g) T>> T, (Only metastable FV decay)
-1 static EV 3. Deform back
0 5 10 15 20
. T
action

The T — oo limit does not commute with analytic continuation
* min(Ey, Ery ) is not analytic

T — oo limit
& like i — 0 limit
T~ /dwe—sE N /dxe_w% forces saddle point approximation
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Saddle point approximation

Zy :/dibe%(_%w2+%m4)

1 2
z/dxe_%gc2 {1—|—gx4—|-— (gx4) +w

4 2 \4
3g 105g? 3465g® 675675g" 43648B605g> 7027 425405 ¢°
=V2r( 1+ + . . + +
32 128 2048 8192 65536

» Asymptotic series
» Coefficients grow factorially
« Summing the series does not reproduce the original function

b Performing the saddle point approximation does not commute with

analytic continuation 1

C\h move contour from real line to thimble

[
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Examples
Sy(z) = h% —gx; +%4

Deform to stabilize
false vacuum

\{_/

N

L

T > * limit fixes to green contour

Matthew Schwartz

Deform to stabilize /

(h,g) = (1,1 + ie)
bounce \

®
Z has imaginary part *

equal to all of the bounce contour ~—1 —

bounce static false

vacuum

Deform to stabilize
shot

1) e
"7

m

Z has imaginary part
equal to half of the
bounce contour

Z has imaginary part
equal to minus half of the bounce contour

* Probability grows with time
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Discontinuity

Can we just integrate along the FV contour?

bounce

Yes, at least for this toy integral
Z:/ dze= @)
C
No

* Not clear what “fixing to a contour” means for a path integral

« Saddle point approximation loses the imaginary part
« Expanding around the saddle gives a real integral
* Imaginary part comes from region far away
« Saddle point approximation does work for the discontinuity

7] IS =1/2!

\_I.I—/

—

static false
vacuum




Summary of potential deformation method

1. Deform the potential so FV is true ground state | T <<Ty._ (no return flux)
2. Take T > «
e Picks out EFV(g) T>> Ty, (Only metastable FV decay)
* Fixes integration contour to be the steepest descent contour passing through
the static FV saddle point
3. Deform back

OR

« Compute Z by integrating along the steepest descent contour passing through
the static FV saddle point

OR

« Compute I" by integrating along the steepest descent contour passing through
the bounce, taking the imaginary part, and multiply by 1/2

+ Mathematically consistent procedure to get imaginary part out of an analytic real function Z
« Has the right ingredients associated with the necessary limits

Does this procedure give
the decay rate?
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3. DIRECT METHOD

Andreassen, Farhi, Frost, MDS (2016)
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1 d

Adirect approach  r=- jm Jm m—mhe

T 0 Ppy dT
Tslosh 0 N1 —0 1Y

Back to our definition

T>> T, (only metastable FV decay)

Pey(T) = /FV dz |¢(z, T)|2 T << Ty, (no return flux)
V(x)
<—R— X
a b
Propagator from a to x;in time T
. - N sf z(T)=wy
Start with: ¢(z,t =0) = 6(z — a) D(a,z;,T) = Dy o5l

We will compute 2(0)=a
1 dPgr
I'r = i —
R T/Tll\fg—m PFV dT 7 /\/
,1—1/,1—'slosh_><>O

Pr(T) = /R dz; |D(a, x5, T))

\ )
Y
probability of finding v
in region R attime T




Step 1: Split up propagator

ZIZ(T):xf
D(a,zy,T) = Dy 517 .
ZIZ(O):CI, fl
Split path integral into before b and after b: by
2(T)=z; XI
D(CL,QCf,T) — Dxezs[‘”] /dt5(t—tb[gj])

z(0)=a /.\/ a

ty[x] = First time path x(t) hits b

0 — T
x(t) =b z(T)=xf \—/-\/
= /dt Dz e*S2l§(t — ty[z]) Dy ']

¥:1;(0)=a ka(t):b

_ Y Y
D(a,b,t)  D(b,xs, T —1t)

hits b only once, at t * Regular propagator from b to x;
« Paths can go back past b

D(a,z¢,T) :/dtD(a,b,t)D(b,xf,T—t)



Step 2: Apply T << T,

D(a,z;,T) = /dtD(a, b,t)D(b, s, T —4)

Regular propagator from b to x;

* Hits b only once, at t Paths can go back past b

PR(T) = / dz; |D(a,a5,T)[?
R

= /dxfdtldt2l_?(a, b, tl)D* (a, b, tQ)D(b, Zf, 1T — tl)D<b, Zf, 1T — tg)

\ J
\. J v

Y
(xg, T|b,t1) (b, ta|lx s, T)

T << Ty (no return flux)

Propagation from b out of R is negligible: /da;f lzf) (] =1
R

b PR(T) = /dtldt2D<a, b, tl)l_)*(a,b, tg) <b, tz’b, t1>

T
_ / dtD(a, b, t)D* (a, b, t) + c.c.
0



Step 3: Simplify Ve

Pp(T) = / dtD(a,b,t)D* (a, b, ) + c.c. | \e—r—>/ x
0 \\_/

'k = lim 1 dPg — lim D(a,b,T)D*(a,b,T)

r/Tai-0 Pev dT ~ 7o Joy dz | D(a, 2z, T)|?

T/Tslosh — 00

Go to Euclidean time and take | 15> T

slosh

fm(T)za Do e—Sul] 5(7'b [x])

. x(—=T)=a
'k = 2Im lim
T — 00 z(T)=a —Sglx
- o= Pre )

* Non-perturbative definition of the decay rate
« Does not require analytic continuing potential
« Does not require saddle-point approximation



Nov 18, 2016 Matthew Schwartz

Bounce dominates numerator

Expansion | | (E5 5tk

50 z(T)=a _ "
" fﬂc(—T)=a Dy ¢Sl T—iT

b botential | i FV dominates denominator
o 1 ~ exp(_Sshot’) + eXp(_Sbounce)
or 1 ~ eXp(_Sshot) + eXp<_Sbounce> + eXp<_SFV)

) —1 b 0 al 2

Sshot - ETVT+ Sg’ - iETVT + Sg

SFV = EFVT = ZEF\/T
3 . . - - Sbounce — EFVT+ S% = ’LEFVT + S%
paths 0 0
2F
shot Sg>S55>0
T 1t e N b / =2.5 =1.2
= 0__/ bouy\ \ /
-l static FV 1@ shot must go faster than bounce,
5 : 05 . 55 —> it has more kinetic energy \
.
action

G_SFV >> e_Sbounce >> e_Sshot




T~
FaCtOr Of 1 /2 I'= Im (FV contour) = % Im (bounce contour)

bounce || giatic false

vacuum

forces all paths to hit b at time t=0

fac(T)—a Doy e_SE[x](S(Tb[.’BD
'k = 2Im lim
T —iT

T— o0 f;((_z),):ia Dz e—SElz]

Expand around bounce: (1) = Z(7) + Y &uyn(T)

/ \ linear in g

Hits b at its maximum

e—Selzrv] T 55

2Im [ d"¢ Jr.(C), (e 3 ZME OEnyn (0)] |

[ Doz e~ 25BlervIse® \

« Half the fluctuations don’t hit b, half do Must hit b
* Gaussian integral is symmetric. usthi
« Can remove 6-function restriction and multiply by 72

~1/2

det/ (=02 + V" (z(1)))

[NLO _ e %l [Spla]
det(—0? + V"(a))

e—Selrrv] 2

Agrees with formula from potential deformation method



Summary of tunneling rates

Precise definition of decay rate involves two limits [' = — lim lim —— —PFPrv

T << Ty, (no return flux)

Three methods to compute I' |
1
[
« Solve Schrodingers equation A P
« Impractical for QFT 00| Tt - 5
e PoeTT ounce static false
NL S T vacuum

« Take T = « limit
» Deform back and compute imaginary part

Is the result the decay rate?

« Direct approach using Minkowski space causal propagators
3 + Does not rely on saddle-point approximation <—R >

2 + Deform potential to stabilize false vacuum

* Does not rely on deforming potential
* QFT derivation is simple — no bold leap of faith
* Non-perturbative formula (

I'r = 2Im li

x(T)=a _Srlx
f:c((—7)-)=a Dz el ]5(Tb[$]))
T—iT

S, Daemsela



EFFECTIVE POTENTIALS
AND DECAY RATES




COMPUTING EFFECTIVE
POTENTIALS




How do we compute V ?

Classical potential: V' (h) = A + m2h? + \h*

- Renormalizable
- Three parameters (A, m and A), measured from data

How can the quantum-corrected potential be computed?



How do we compute V ?

Classical action
= [ouet = [on D DA —
\

N o

_ _ Integrate out everything but H
Effective Action

I = /d%{ — Z[H|HOH — Vog(H) + - - - }

* Generally non-local (has nasty things like In

LHO/mE )
2
H . OKif H ~ (H)

» Nearly impossible to compute

S
« Can'’tinclude loops of H itself this way

If we integrate over everything, /DI‘ _ /DH .. -DAeiS

effective action is just a number
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Method 2: Legendre transform

Classical action We want an effective action
oS
05 0 or 0
OH | H=v OH |H=mH,
LN

Classical minimum True quantum minimum

1. Compute WJ] "1V E/DH...pAeifd‘*x{HJH}

oW \N

2. Solve H — —— for J[H] Current introduced by hand
6] So that T" depends on something

3. Compute I'|H|=W|JH]|| — /d%HJ[H]

or
Has the property that SH - J|H]| so that (;5—]1:[ = (0 when J=0 (i.e. in original theory)

» Agrees with method 1 in perturbation theory
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Tree-level (classical)

What do you get? /
1 4 212
Vveff — Z)\h —m~h
h? (g7 + 93) g2h2 27,2
4 4 2 22 1 2 4 y
+h 204872 [_ 591 +6(91 +92)" In 102 —10g2g5 — 1595 +12g5 In 227 12 + 144y} — 96y} In t,uz }
—1 Ah4 2 + 2 A3p12
262 [éBg% (ln i ) —3) rewed (1n fwggﬁ? v o) e
one-loop R
V. x(h

K
/\
I !
O\T : : 5
i é\l/ h
! A;= 10" GeV
= 247 GeV _
v © h,;, = 103 GeV
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What do you get? Tree-level (classical)
1 e
V:aff - Z)\h4 — m2h2

1
A ( -|-
g [ (T ) <_-9

one-loop R

{

Two curious features



1. Gauge-dependence

Method 1 to compute I' is gauge-invariant:

/ DHe' = / DH Dy ---DAe™
\ )
Y
Completely integrate over gauge-orbits

Action/energy at minimum also gauge-invariant: ¢’ — /DH- DA

Method 2 to compute T" introduces a charged source J

W) — / DH .. DAci J d*a{e+TH)

I=Ww-HJ |
6T « Action away from minimum has current present
SH J « Action at minimum has no current, should be gauge-invariant
Encoded in 0 0
Nielsen identity 3_5 +C(h, f)ﬁ Ver(h, &) = 0
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Potential at minimum indep. of rescaling

A '
/
[ /
r /
r /
51 // —
L //
/
\// I | I »
i / 15
r /
L /
50 o
~1or « Rescaling field leaves V., unchanged

Nielsen identity

0 0
68_5 + C(hag)% ‘/eff(hv g) =0



But is it?

3.0x10%}

No.

25x10%}

2.0x10%}

("len)1M

1.5x10%

1.0x 10

0 .5...‘10.‘..15....20
§

(—Vmin)1/4 appears linearly-dependent on gauge parameter g
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\What about field values?

Veff(h)
h.. =,1010 GeV

max ~ |

Landau gauge (§=0) —> \/F\

5x10™ /
4xA010F e
A, T * h., also gauge dependent
...................... h.,ax @ISO gauge dependent
2x10"0¢
also strongly gauge-dependent
1x10%0F
0 100 200 300 400 500

g



2. Large Logarithms

Can be resummed with RGE:

Explicit uw dependence

0 0 0
(M@ + b 90 Vh%> Ve =0

N

compensated for by rescaling couplings and fields

« Same RGE as 1Pl Green’s functions or off-shell matrix elements
* Observables/S-matrix elements satisfy simpler RGE:

0 0
(M— + ﬁi—) o =0
H dgi

» Field-rescaling term canceled by LSZ wavefunction Z-factors

‘ Effective potential depends on the normalization of fields??!!



Resum logarithms

1. Compute V to fixed order (say 2-loops) at scale (say) u, ~ 100 GeV

2. Solve RGE (u%+ﬁ__7h§h)nﬂ:o

Vit (R, giy 1) — Veg(ePHoR b g (1), 1)

v’
(20, ) /7 )d1n p/
v

0

3. Setu~h

Vg (R, o) = Veg (el WM R gi(R), h)

Potential depends on scale u, where it is calculated??!!

0 1,
‘ (5—M0 — ’Yhah) V(h, o) =0
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Potential at minimum

-10 1

Nielsen identity (gauge invariance) Calculation-scale invariance

0 9
0 _

V. .., should be gauge invariant and independent of how it is calculated



Even gauge-invariant I' is unphysical

Even if we source a gauge-invariant field "Vl = /DH ... DAet S e LTH}

W = /DH”.DAeifd‘lx{/L—l—JHTH}
eVl = /DH DA S LT H} I'(h) is now gauge-invariant

0 0
Effective potential still depends on how it is calculated (a — ’yh%> V(h, o) =0
0

« This is OK.
« Off-shell quantities can be unphysical
- Observables should be physical What about field values?

* S-matrix elements Instability scale?

« Vacuum energy (Vi) Inflation scale?

* Tunnelling rates Planck/new physics sensitivity?

» Critical temperature

But are they? Are these questions about observables?
u :




SCALAR QED




A
Scalar QED

1 1
L= _ZFiv + §|Du¢|2 —V(9) Y

U~ o) = 26"

mass term gives small corrections, so we drop it

1-loop potential in R; gauges:

NE 2 5\ A2/ A\ 3
4 T Y4 -z Y o Y
(@) =915 [46 (ln 12 6) 16 (ln 2 2)

A1 2 1 1
+ (— — —62)\§> <1n¢— — §) + —Ki an_i + ZKi In K2

144 12 4
K2 = % ()\ + /N 24/\625)

Not gauge-invariant

A
« For most values of e and A, there is no minimum /4
4
« When \ ~ g - =W=WN — Veil(9)
s

And.... V_, depends on § Spontaneous
symmetry breaking
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n 64
e IS 16772 u

\ 2
Solve B, = h 6_3 4. () = ¢ (o)
: °7 1672 \ 3 1 — Sl gy
RGEs: 2472 L0
B 4 o2y, LON e2(1) V9 e(p)?
By = 1672 <36€ 12e" X + 3 D Ap) = 10 19 + V719 tan 5 In c

2
it e(u) / 1+ erunsrelatively slowly

« For any e, A runs through all values

/ 1 = Thereis always a scale uy where

°f Le(ﬂ)4 6(”){)4
-1} 7\'(“) - )\(,LLX) ~ ]_67-‘-2

10-—1 70 10—120 -70 -20

10 10% 1™ <« Near this scale, V is pertubative
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Proper loop expansion

\
Vo) = %& Comparable V\ilhen
. h 262 5\ A2 [, A\® 3
i) =935 {46 (1“7 - a) * 16 (1 Bo7 5) > 1672
+ (121 e 2A£> <ln¢—z —~ 2) + %Kiani+ %Ki anE} « Then VO and V1
| / of order
f f K== ()\ /2 24A625)
These terms all have extra A suppression
Expanding in /; with A ~ &
. Agay Bt a5 3, o LO 3
order h : ¢5 Tk ( cto ) — sV 1287T264<¢>4
he? 2\
order h2: VMO = 1§W2¢4 (§ - 25—41 65f ) —_— VHIEI;IO

Problem: higher-loop contributions also of order A2



2-Loop potential in scalar QED

« Known in Landau gauge
« Some terms computed by Kang (1974), not in MS
 Some terms at order %% unknown

We computed all the relevant 2-loop graphs:
_ IP¢het 2 €0 £, e 5 = 2 AN
@Q _(16W2)25[—121n7+(8 31n @)1 7—§—E—1—61 G T @}
@ :%_(2%-65)1112 e —(3+7¢n 7¢+1+%2+15§+3i§]

£y ree -(18+6§)ln2%—(21+7§)ln ¢ AT, T 1 3 g]

A R
h2gteb 5 €0 ep 15  3m?

Then the relevant part of the 2-loop potential is

Y 62

+¢ (_% + iln 6—e€2> + %1 +--- terms of order i>




Potential at minimum

_ 4 64 " _§ 3 _¢ h@ A é. g 62)\£¢4
R ¢ 1672 < 5T ﬂ) V= T 2¢4( T 91 g )
RS, 2 €0 62 3 NE e 1 1. X
T {or2e? {(10_65”1 7+(_?+45_§“ 6c? )1 7+£(_§+11 W)JFF]
« Solve V'(¢p=v) =0 for A(v):
het heb e 5 €V 5 2 cv }
A= 2(6 361n—)—|—(16 )2 { 160—24€+(376+90§)1ng—2401 u+9§1 {6 o (1—6111;)]

* Plug in to V(v):

4 652 2
VLAY G B NG o O e [ g
Vinin = v 167r2( 8)+v (16792 12 62 — 9¢ + ( 60+18£)lnu +2§1 T2 \1 6lnM

Still gauge-dependent!

Problem : v = <¢> is gauge-dependent

Express V. in terms of only other dimensionful scale: u

min



In terms of uy

h
1672

« Tree-level vev is v=u
4 X
¢ (x) [6 =30 ln[e(ﬂx)]] - Exact (non-perturbative) definition of uy

Define uy by | Mux) =

Then, vev is:

he? (40 94 20 £ 3 g rl&n 1
v ,UJX—i—,uXm?TQ{ 5 + 5 ne 3 n‘e 2—!-25 ne—|—4n 167r2( 6lne) 6§ §

« gauge-dependent vev is OK — not physical

Potential at minimum is:

eth , (3 eh (Tl 62 ) eh (€ 3
Vinin = Jg7atix ( 8) T Tom2)2'x < ¢ 3 i e) et 4 peine

* gauge-dependent vacuum energy is not OK
Still gauge-dependent!

What's missing? _
More diagrams!
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Daisy resummation

Higher order graphs can scale like inverse powers of A:

Effective masses depend on A
Only one series of graphs contribute at order ~

We can sum the series:

Ve6daisies — ¢4 h (_62>‘€) [)‘<¢) + (1 _ M) In (]_ — M)]

1672 24 A A




Full potential at NLO:

NLO _ he? )\¢4 (é B il 2)\§¢4>

1672 24 6
R%eb 5 €0 62 £ 0, 1 1. X 71
+ 6 ~¢ [(10—65)1n ;+( 5 4§—§§ln?)l ?+€( 2+Zln@> +ﬂ
BN (6N [A9) A(9) (@)
<5 (~21) [T+<1‘T)1“(1‘T>]
Now... vacuum energy is gauge-invariant!
3het eSh? 71 62
Vmin — A oo — — —1 101
ozt (1672 )2“X ( 6 3 crom 6)
Field values are still gauge-dependent:
U_'UJX+,UX17262 {_4304_%411’16—?111 —g+g§lne+iln {1222(1—611&6)] _%ﬁ—i-flne}‘
AIZMI+M117267:2 {—g—k%lne—?l 2 —g—l-gﬁlne—l-%l [éh (1-61In e)]—%f—l—ﬁlne}.



S TANDARD MODEL




| essons from scalar QED

1. Gauge invariance requires consistent expansion in /i

/ To NPLO order \

Drop some n-loop contributions Include contributions from > n loops

2. Don’t resum logs by solving RGE for V ¢
(N% + 6; 8(; — ’Yh%> Ver =0

« Mixes up orders in & in an uncontrolled way

3. Do resum logs by using couplings at some scale uy

« Natural condition for uy is that V| 5'(¢p=uy) =0

4. Don't express V.. interms of v = <gb>

« Express V., in terms of uy instead

min
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Standard Model

1 h2( 2+ 2)

LO _ 4 4 g1 T 92

v = M S o -
h

25
100202 — 1502 +1204 In 2215 4+ 1440 — 96441 yt—}
/ \ 9192 g +12g5 In 42 + lady, Yy 2/1/2/

Tree-level Y

Part of 1-loop A\ ~ O(h)

[ —5¢1 +6(g7 +¢93)°In

d :
« Scale h=py where %V(LO)(h) =0is

2

2
— 6g5In % + 48y} In y?t]

1

A= 56

2 + 2
9t + 20703 + 393 — 48y}~ 3 (g% + 3) 1 22

* Run couplings with 3-loop p-functions, find numerical solutions

Veff(h)
P = 2.46 x 10'° GeV Hmax =107 GoV

M%in = 3.43 x 1030 GeV L\‘l' : \i/ _h)




Standard Model at NLO

*  We know the 1-loop contribution to Vo

-1 )\h4 2 2 >\3h12 2 4 2 2
V(l,NLO)(h) _ . ng% In ({BY1 jfwgz) _3 +§wg§ In Ew 92 (53121 +&wgs) _9)| \p4
2567 4p 64p

*  We know the 2-loop contribution to Vo in Landau gauge

1 1 2 4
28 = (e [893312‘ (377 — 8¢ +9) + Sy (=6rerw — 3rf + 48r, — 6raw — 69 —7°) + +%(132mz — 6612 + 3061y — 15313, — 367y + 92412 — 408077 + 4359 +
3y2gs 936/ 2 2 2 2
#2921y 4 dry — 37— Grury — 120+ 12ray 4154 20) + + 52 (6r7(347, + 3ryy — 470) — 10207 — Orfy + T08r + 2883 + 2067%) +
Y29y (o o Y2929 1.2 +y—?(42(32—8 0) =002 (e — w4+ 1)) + 5 (g6 — 3602 1) Lip 22
+08 (27r7 — 5dryrz — 681 — 2877 + 189) + =22 (9r7 — 18ryrz + dry + 441z — 57) + g 9y (9T —om g5 (re —rw +1)) + 1 (92 — 392u7 + 4u;) 122yt2 +
g8 9 5 9 5 Yi 9+ 9% 4_ o2 2 4 2(m 2 o, 64gs
+@(36Ttrz+54rt — 414y +69rf,+1264ry + 15615 +632r7 — 144y — 2067+907%) + +3g€( 52 ) (992 — 6939% + 179y + 247 (Tgy — T35 + 2+ 92)
13 Y 2
4.2 2 2 2 6
" 48
+ 29 (12107 — 617 — 611w (5377 + 50) + 2131y + drz(5Trz — 91) + 817 + 467°) + +2¢( 25T <189%g% +gb —51g8 — 2 2> ] ~
93 9y + 93

» We don’t know the Daisy contribution. But we do know if
vanishes in Landau gauge at NLO

Veﬁdaisies — ¢4 h (_62)\5) [)\(Qb) + ( )‘<¢)) ln( A(QS))

1672 24 by D\ D\

« Assuming everything works like in scalar QED, we have everything we
need for NLO



Results

Absolute stability: for what values of the Higgs and top massesis is V. = 0?

min

200 180

Rapid instability

Rapid instability

 Metastability

150
Metastability

50

126

MHiggs

50 100 150 200

M Higgs

mh%® = (125.1440.23) GeV
mP°® = (173.3441.12) GeV



Results

Absolute stability: for what values of the Higgs massis V,,;, = 0 at fixed top mass?

Holding top mass fixed

129.9;

1-loop, traditional method

N
N
©
oo
T
I

129 7k . e ]
e :

2 loops, traditional method (Landau gauge) -

Absolute stability bound on Mgy
N
(o]
(o]

129.5F ]
NLO, consistent method ]
129.4}
42930
0 50 100 150 200
St

« Absolute stability bound lowered by 300 MeV
 Larger shift that including the 2-loop V
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From Buttazzo et al (arXiv:1307.3536)

Sensitivity to new physics

Old way: v e =
when is A; = Ayp? L —u s L
A hf s
g 1l
H L

* gauge dependent, since A, is gauge-dependent 170

Stability |

: : a2 s 126 18 130 13
New gauge-invariant way L
1
 Add 06 = —5
A2
NP

« See how big Ayp must be so thatV_,, =0

|H|6 to the SM Lagrangian




Planck-sensitivity

Does the tunneling rate depend L~
on quantum gravity? A >

« Guidice, Strumia et al (arXiv:1307.3536): 1%
 Instability scale below Mpl, so no.

ﬁ)\ =0 at w = 1017 GeV < MPI 178

Rapid instability

- Metastability

176

« Sher, Brandina et al (arXiv:1408.5302):
field at center of bubble

gl A
is greater than Mpl, so yes ¥R

dp(r=0) =10"GeV ~ Mp,

L Qb‘"(
170H %> .

168
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M, corrections:

—> —>

Standard Model potential * Lifetime = 0 sec
Liftetime = 106 years » Arbitrarily small bubbles form and grow

VSM
0 \/\
~—_"

1 1
AV = —a—HS g8
/ Add Vv OzMPQ)l + BM;%l

0 \/\ —

\/\/ h
* Planck sensitivity not due to coincidence that g, =0 at u ~ My,
« Tunneling is non-perturbative and always UV sensitive.

» Lifetime can be anything!




Conclusions

Tunneling involves many exotic elements of quantum field theory

180

° Tunneling rateS Rapid instability
« Two time scales relevant for tunneling: T, << T << Ty,
« Asymptotic expansions and analytic continuation critical

« Can be avoided with a direct approach 176

~ Metastability et 4

» Requires consistent use of perturbation theory
* A~ h power counting

» UV physics does not decouple
« Stability is necessarily Planck-sensitive
« Can make lifetime shorter, not longer

Do we know If the universe is stable?

« QOur universe will probably decay, eventually.

* We don’t know how long it will last



