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Outline

1. S-matrix bootstrap
Based on “Reconstructing S-matrix Phases with Machine Learning” 

• arXiv:2308.09451
• with Aurelian Dersy (Harvard) and Sasha Zhiboedov (CERN)

2. Simplifying spinor-helicity amplitudes
Based on “Learning the simplicity of scattering amplitudes” 

• arXiv:2408.04720 
• with Aurelian Dersy (Harvard) and Cliff Cheung (Caltech)



The S-Matrix
The S-matrix is the fundamental object of Quantum Field Theory

• A lot is known about it from pertubation theory (Feynman diagrams)

• Some things are known/conjectured about it non-perturbatively
• e.g. it should be unitary, analytic and satisfy crossing relations
• it cannot grow with energy faster than log2E (Froissart bound)

computation • spinor-helicity amplitudes
• twistor space
• mulitple-polylogarithms
• amplituhedron

Can ML help understand the S-matrix?



1. Can ML help with the non-perturbative S-matrix?

What does this mean?
• Use analyticity, unitarity, crossing symmetry to determine S

Example questions:

For a given cross section σ =|A|2

• Does there always exist a phase φ so that A = B eiφ ?
• e.g. Penedones et al 1708.06756, Fitzpatrick et al 2207.12448 found (B, φ) pairs 

φ

B

φ

B

Two questions ML can help with
1. Can we determine φ from B?
2. Can there be many phases φ1, φ2, ... for the same B?

s=8m2
s=4.5m2

[ Dersy, MDS, Zhiboedov, 2308.09451 ]



Elastic scattering

Focus on the elastic scattering region
• 4 m2 < s < 9 m2

• Only 2-particle cuts

Im = =

2

• Only states with fixed total energy are relevant
• States characterized by scattering angle z=cosθ

We write

Unitarity constraint

(θ,φ)

⇒

⇒

Does φ(z) exist satisfying this equation for a given B(z)?



≡ sin μ

Elastic scattering

e.g.  if B(z) = B and φ(z)= φ are constants then

If B >1 then no phase exists

Martin (1969) proved that 
• If sinμ < 1 for a given B(z) then there always exists a phase φ(z)
• easy to find examples of B(z) with sin μ > 1 for which no phase exists

set phase to zero

= sin μ

• If sinμ < 0.79 then the phase is unique
• Later, Gangal and Kupsch (1984) extended uniquess proof to sin μ < 0.89
• Crichton (1966)  found an example with multiple phases for same the B with sin μ =3.2
• Atkinson (1977) found an example with multiple phases with sinμ = 2.15  

• Can 0.89 be raised?
• Can 2.15 be lowered?
• How can we construct φ when it exists?

Open 
questions



Can we find φ(z) given B(z) with ML?  ... Yes!

some known examples ML solutions

• Parametrize φ(z) as a neural network • Loss function is unitarity condition 

excellent
agreement
with known
results

[ Dersy, MDS, Zhiboedov, 2308.09451 ]
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φ(z)

B(z)

s=8m2

sinμ = 1.6

φ(z)

B(z)

s=4.5m2

sinμ=0.88



Consider functions B(z) = a z + b

• Use ML to find φ(z)

Loss as a proxy for sinμ

• Totally different things have similar contours 
• Don’t need an exact solution to learn something:

•  suggests high sin μ solutions will be hard to find

Loss landscape from ML search for φ

a

b

bad solution
(high loss)

good solution

Contours of sin μ
high sinμ

low sinμ

high sinμ



Crichton (1966) found a phase-ambigous
 amplitude with only 2 partial waves

φ1

φ2

B(z)

Changing δ2 changes 
the solution along a curve [Atkinson 1973]

Chrighton

found a family of solutions
[Atkinson 1973]

Is the phase always unique? No!



Phase ambiguities with ML

• Unitarity condition loss for each φ:

Given B(z), find two phases φ1(z) and φ2(z)

• Add repulsive loss to keep solutions apart

• Two solutions found with ML agree
exactly with Crighton’s

• We input B(z) and find phasessolid = Crighton
dashed = ML

• Reduce repulsion to zero to
find exact solutions



Machine Learning approach
Atkinson (1977): consider a class of functions
based on a single complex number z1

Loss = 
unitarity for 

φ1

unitarity for 
φ2

φ1-φ2
repulsive 

term

one 
solution

one 
solution

+ +

Fig. 1 of Atkinson 1977

maybe
two solutions

First improvement on 
phase-ambiguity bound in  50 years!Gradient 

descent 
in sin μ 

• Crichton (1966),  sin μ =3.2
• Atkinson (1977), sin μ = 2.3
• MDS et al. (2023), sinμ = 1.67



Open questions

sin μ 1.0

0.89

unique φ exists

Can always construct at least one φ

Example of non-uniqueness φ1,φ2 2.15

Example of no φ
• Can 2.15 be lowered?

•  Yes: to 1.64 at least
• Can 0.89 be raised?

• Uniqueness proof hard to answer with ML
• How can we construct φ(z) given B(z)

• Using ML ✓

New questions
• What properties to the phase ambiguous solutions have?
• Is there a better way to characterize solutions than sinμ?

• Τrain NN 1 

• Train NN 2 to figure out what NN 1 is doing
• Symbolic regression? 
• Can we learn a better indicator for phase determination than sinμ?

B(z) NN  1

0: unique phase exists

1: multiple phase exists



calculate some Feynman diagrams for
4 gluon scattering get a messy answer

2. Spinor-helicity amplitudes

The S matrix is mostly understood perturbatively

=
simplify!

Parke-Taylor Formula

6-point amplitude

really big mess
(9 pages Parke, Taylor 1985)



• simpler form suggests deeper structure
• is there a better way to do the calculation?

• In this case, yes! (BCFW recursion)

Six gluon scattering

largely inspired the modern amplitudes 
program
(amplituhedron, tropical geometry, etc.)

Hundreds of Feynman diagrams

Parke and Taylor saw a pattern
• Then they guessed a simplified form
• That’s just what transformers do!

Parke and Taylor (1986)



Mathematical expressions are language: 

Simplification with transformers



Generate training data by scrambling

transformer 
will learn to
to unscramble
(translate)

scramble



Transformer performance

• Can’t simplify expressions more than 15 terms
• Expressions of interest can  be very long

• hundres of terms
• Need new techniques for organizing transformer

• We use contrastive learning

• Does not generalize well
• If trained on 3 scrambles
can only unscamble 3 times
• Can’t train for > 5 scrambles
(exponential amount of
          training data required) 



Contrastive learning 

Learn an embedding so that terms that are similar are close

• similar = appear in some identity
• close =  metric on embedding space

learned embedding

1. Pick subset of terms expected to simplify
2. Apply transformer
3. Repeat 



“cosine” similarity

Supervised contrastive loss 

Contrastive learning 

p and i in same identity

a and i not in any identites



Cross-checks

distance inversely 
correlated with complexity

• t-SNE on latent space

• color = mass dimension
• Learns dimensional analysis
• Learns other features as well



Performance

Yes! 
It can simplify long expressions nowDoes it work?



Example application: 5 gluon amplitude



Example application: graviton-scalar scattering

298 terms

simplifies to 2 terms



https://spinorhelicity.streamlit.app/

Try it yourself!

https://spinorhelicity.streamlit.app/


• Machine learning is a powerful tool to understand the S-matarix

Conclusions

• New results on old non-perturbative S-matrix questions

• Simplification of perturbative expessions

• Future of ML in high energy theory is symbolic
• Lots to do!
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