

# Analytic Regression and the Semi-numerical Landau Bootstrap



Symbology@15  
Dec 17, 2025

Matthew Schwartz  
Harvard University



Institute for Artificial Intelligence  
and Fundamental Interactions (IAIFI)

Based on

“Applications of the Landau Bootstrap” [2410.02424](#)

“Constraints on sequential discontinuities from the geometry of on-shell spaces” [2211.07633](#)

- By H. Hannesdottir, A. McLeod, MDS, C. Vergu

“Analytic Regression of Feynman Integrals from High-Precision Numerical Sampling”, [2507.17815](#)

- By O. Barrera, A. Dersy, R. Husain, MDS and X. Zhang

# Outline

## 1. Landau bootstrap



Easy

Hard

### Constraints # Coeffs

| Constraints                   | # Coeffs |
|-------------------------------|----------|
| All Symbols                   | 20736    |
| Integrability                 | 6993     |
| Galois symmetry               | 861      |
| Physical branch cuts          | 161      |
| Genealogical constraints      | 28       |
| $\alpha$ -positive thresholds | 6        |

Hard

Easy

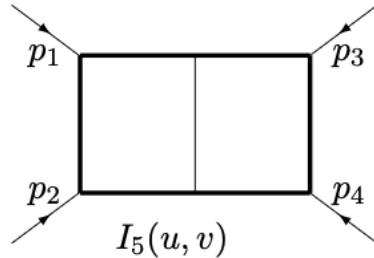


## 2. Analytic regression with lattice reduction

# Bootstrapping integrals

Q: Can we bootstrap Feynman integrals?

Rules: Don't integrate!



$$I_5(u, v) = \int \frac{d^D k_1}{(2\pi)^D} \int \frac{d^D k_2}{(2\pi)^D} \frac{1}{[k_1^2 + m^2] [k_2^2 + m^2] [(k_1 - p_1)^2 + m^2] [(k_2 - p_3)^2 + m^2] [(k_1 - k_2)^2]}$$

- Computed by Caron-Huot and Henn 1404.2922

$$\begin{aligned}
 g_{10} = & G_{1,0} H_{-1,-1} + G_{-1,\frac{t+1}{s+1}} H_{-1,-1} - G_{-1,-\frac{t+1}{s+1}} H_{-1,-1} + 2G_{0,0} H_{-1,-1} + G_{0,0} H_{-1,-1} \\
 - & 2G_{0,\frac{1}{s+1}} H_{-1,-1} - G_{0,\frac{t+1}{s+1}} H_{-1,-1} - G_{0,-\frac{t+1}{s+1}} H_{-1,-1} - G_{1,0} H_{-1,-1} - G_{1,\frac{t+1}{s+1}} H_{-1,-1} \\
 + & G_{1,-\frac{t+1}{s+1}} H_{-1,-1} + G_{-1,0} H_{-1,0} - G_{-1,\frac{t+1}{s+1}} H_{-1,0} - G_{-1,-\frac{t+1}{s+1}} H_{-1,0} + G_{0,\frac{t+1}{s+1}} H_{-1,0} \\
 - & G_{0,-\frac{t+1}{s+1}} H_{-1,0} - G_{1,0} H_{-1,0} + G_{1,\frac{t+1}{s+1}} H_{-1,0} + G_{1,-\frac{t+1}{s+1}} H_{-1,0} + G_{-1,0} H_{-1,0} + G_{-1,\frac{t+1}{s+1}} H_{-1,0} \\
 - & G_{-1,-\frac{t+1}{s+1}} H_{-1,0} + 2G_{0,-1} H_{-1,-1} + G_{0,0} H_{-1,-1} - 2G_{0,\frac{1}{s+1}} H_{-1,-1} - G_{0,-\frac{t+1}{s+1}} H_{-1,-1} \\
 - & G_{1,0} H_{-1,1} + G_{1,\frac{t+1}{s+1}} H_{-1,1} + G_{1,-\frac{t+1}{s+1}} H_{-1,1} - G_{-1,0} H_{-1,1} + G_{-1,\frac{t+1}{s+1}} H_{-1,1} - G_{-1,-\frac{t+1}{s+1}} H_{-1,1} \\
 - & G_{0,\frac{1}{s+1}} H_{-1,1} + G_{0,-\frac{t+1}{s+1}} H_{-1,1} + G_{1,0} H_{-1,1} - G_{1,\frac{t+1}{s+1}} H_{-1,1} - G_{1,-\frac{t+1}{s+1}} H_{-1,1} - G_{-1,0} H_{-1,1} \\
 + & G_{-1,\frac{t+1}{s+1}} H_{-1,1} - G_{0,0} H_{-1,0} + G_{0,1} H_{-1,0} - G_{0,\frac{t+1}{s+1}} H_{-1,0} - G_{0,-\frac{t+1}{s+1}} H_{-1,0} - G_{1,\frac{t+1}{s+1}} H_{-1,0} \\
 + & G_{1,-\frac{t+1}{s+1}} H_{-1,0} - G_{-1,0} H_{-1,0} + G_{-1,\frac{t+1}{s+1}} H_{-1,0} + G_{-1,-\frac{t+1}{s+1}} H_{-1,0} - G_{0,\frac{1}{s+1}} H_{-1,0} + G_{0,-\frac{t+1}{s+1}} H_{-1,0} \\
 + & G_{1,0} H_{0,1} - G_{1,\frac{t+1}{s+1}} H_{0,1} - G_{1,-\frac{t+1}{s+1}} H_{0,1} - G_{-1,0} H_{0,1} + G_{-1,\frac{t+1}{s+1}} H_{0,1} - G_{-1,-\frac{t+1}{s+1}} H_{0,1} \\
 + & G_{0,0} H_{0,1} + 2G_{0,1} H_{0,1} - 2G_{0,\frac{1}{s+1}} H_{0,1} - G_{0,-\frac{t+1}{s+1}} H_{0,1} - G_{0,\frac{t+1}{s+1}} H_{0,1} + G_{0,-\frac{t+1}{s+1}} H_{0,1} \\
 - & G_{1,\frac{t+1}{s+1}} H_{1,0} - G_{1,-\frac{t+1}{s+1}} H_{1,0} + G_{-1,0} H_{1,0} - G_{-1,\frac{t+1}{s+1}} H_{1,0} - G_{-1,-\frac{t+1}{s+1}} H_{1,0} + G_{0,\frac{1}{s+1}} H_{1,0} \\
 - & G_{0,-\frac{t+1}{s+1}} H_{1,0} - G_{1,0} H_{1,0} + G_{1,\frac{t+1}{s+1}} H_{1,0} + G_{1,-\frac{t+1}{s+1}} H_{1,0} - G_{-1,0} H_{1,0} + G_{-1,\frac{t+1}{s+1}} H_{1,0} \\
 - & G_{-1,-\frac{t+1}{s+1}} H_{1,0} + G_{0,0} H_{1,1} + 2G_{0,1} H_{1,1} - 2G_{0,\frac{1}{s+1}} H_{1,1} - G_{0,-\frac{t+1}{s+1}} H_{1,1} - G_{0,\frac{t+1}{s+1}} H_{1,1}
 \end{aligned}$$

## 1. Parametrize a finite basis

$$I_5(s, t, u, m) = \sum_{j=1}^{\text{finite}} c_j f_j(s, t, u, m)$$

- determined by singularities

## 2. Landau bootstrap

apply enough constraints  
to uniquely fix all  $c_j$

## 3. Analytic regression

fit the  $c_j$  numerically

# Landau Equations

$$I_G(p) = (n_{\text{int}} - 1)! \int_0^\infty \prod_{e \in E_{\text{int}}(G)} d\alpha_e \int \prod_{c \in \hat{C}(G)} d^d k_c \frac{1}{(\ell + i\varepsilon)^{n_{\text{int}}}} \delta \left( 1 - \sum_{e \in E_{\text{int}}(G)} \alpha_e \right)$$

A necessary condition for a singularity is that the *integrand* is singular ( $\ell=0$ )

$$\ell = \sum_{e \in E_{\text{int}}(G)} \alpha_e (q_e^2 - m_e^2) = 0$$

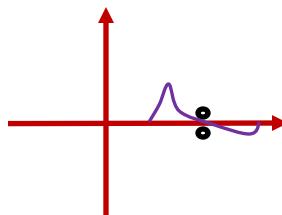
- every internal line is either on-shell ( $q^2=m^2$ ) or  $\alpha=0$  or both

A necessary condition for a singularity of the *integral* is that poles pinch the contour

for each loop  $k_c$ :

$$\sum_{e \in E_{\text{int}}(G^\kappa)} \alpha_e \frac{\partial}{\partial k_c} (q_e^2 - m_e^2) = 0.$$

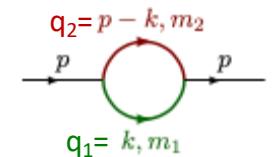
Double pole:



integration contour  
pinched between poles

- since  $q_e$  are linear in  $k_c$

$$\sum_{e \text{ in loop}} \pm \alpha_e q_e^\mu = 0$$



Landau loop equations

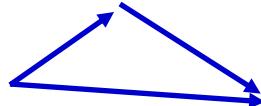
# Coleman-Norton interpretation

Landau equations

$$\ell = \sum_{e \in E_{\text{int}}(G)} \alpha_e (q_e^2 - m_e^2) = 0$$

$$\sum_{e \text{ in loop}} \pm \alpha_e q_e^\mu = 0$$

4-momenta add up to zero after rescaling by  $\alpha$



[Coleman and Norton 1965]

Landau diagram is interpreted as space-time diagram

- momenta are on-shell (classical)
- $\alpha_e$  are the proper times for propagation

More physically: singularities due to classically allowed processes

- similar to optical theorem

# Pham interpretation

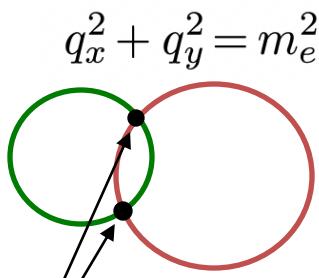
Landau equations

$$\ell = \sum_{e \in E_{\text{int}}(G)} \alpha_e (q_e^2 - m_e^2) = 0$$

$$\sum_{e \text{ in loop}} \pm \alpha_e q_e^\mu = 0$$

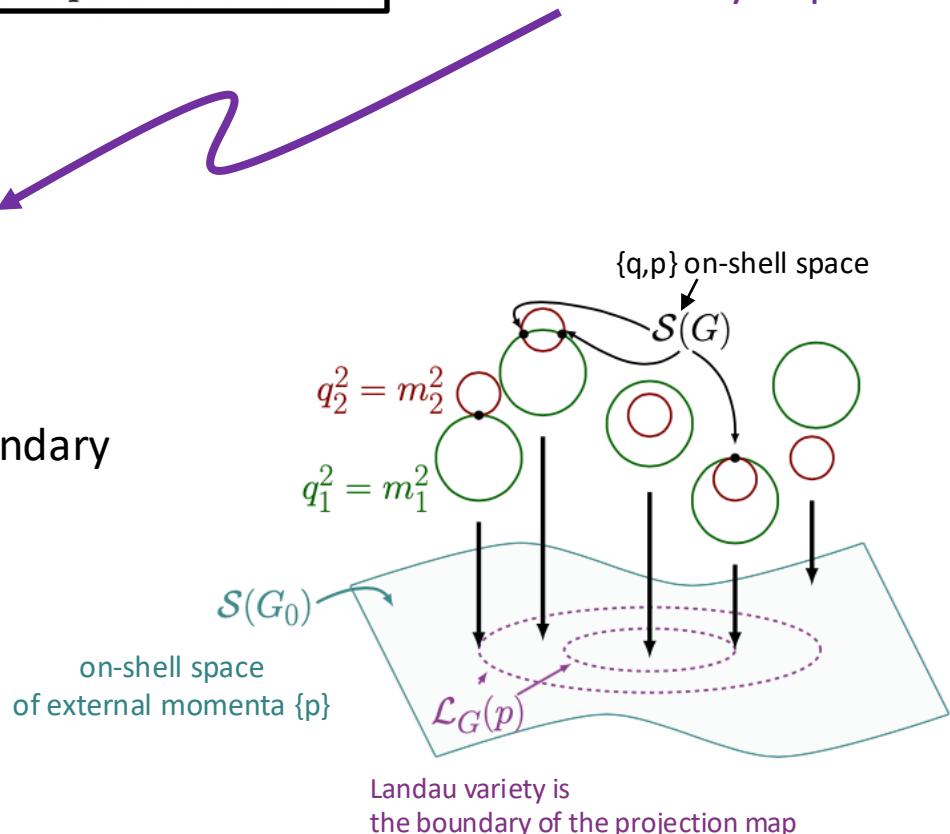
normal vectors  
of on-shell constraints  $q^2 = m^2$   
are linearly dependent

on-shell constraints (Euclidean  $d=2$ )



intersection  
satisfies both  
on-shell constraints

tangent on boundary  
of space where  
circles intersect

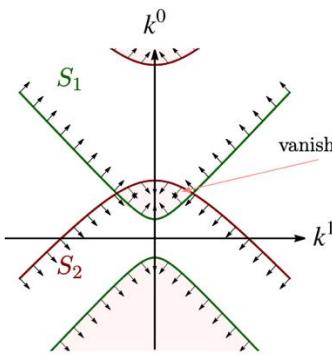


Landau variety is  
the boundary of the projection map

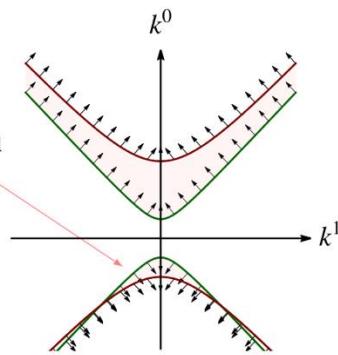
# Different kinds of singularities

## Simple pinches

near normal threshold



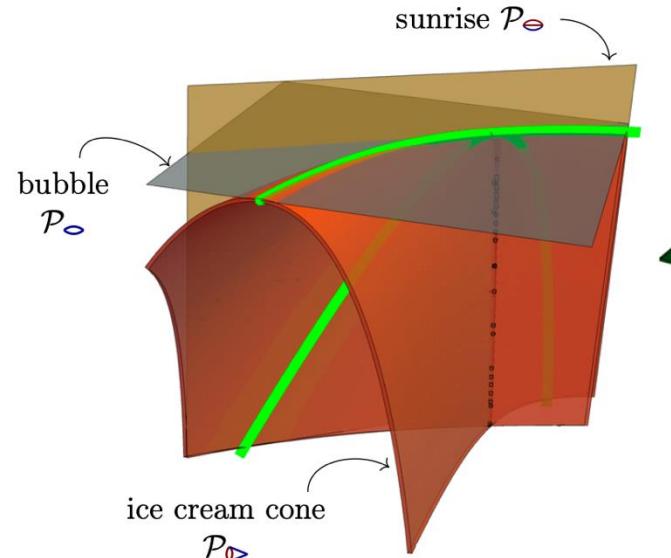
near pseudonormal threshold



- hypersurfaces meet transversely
- e.g. physical thresholds

McLeod, Hannesdottir, MDS, Vergu  
arXiv:2211.07633

## Non-simple pinches



- hypersurfaces meet tangentially
  - e.g. sunrise in the ice-cream cone

$$G_0 = \begin{array}{c} \diagup \diagdown \\ q_4 \end{array} \begin{array}{c} \diagup \diagdown \\ q_3 \end{array} \begin{array}{c} \diagup \diagdown \\ q_2 \end{array} \xrightarrow{\bar{\kappa}} G_0 = \begin{array}{c} \diagup \diagdown \\ q_1 \end{array} \begin{array}{c} \diagup \diagdown \\ q_2 \end{array}$$

- Permanent pinches (e.g. IR divergences)
- Pinches at infinity

# Solving the Landau equations

## Lots of ways to solve the Landau equations

- Solve them by hand (e.g. Eden et al 1950)
  - HyperInt (Panzer 2014)
  - PLD (Fevola, Mizera, Telen 2013)
  - BaikovLetter (Jiang et al 2024)
  - Recursive approach (Caron-Huot, M. Correia and M. Giroux 2024)
  - Numerical implementation for any diagram (Correia, Giroux, Mizera 2024)

## Input

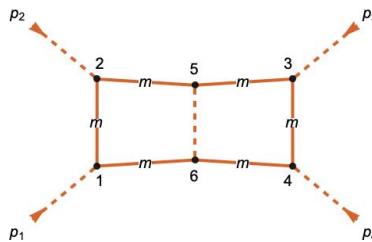
```

diag =
  {{{{1, 2}, m1}, {{2, 5}, m2}, {{3, 5}, m3}, {{3, 4}, m4}, {{4, 6}, m5},
    {{1, 6}, m6}, {{5, 6}, m7}}, {{1, M1}, {2, M2}, {3, M3}, {4, M4}}} //.
  m7 → 0 // . m_ → m // . M_ → 0

FeynmanPlot[diag]

{{{1, 2}, m}, {{2, 5}, m}, {{3, 5}, m}, {{3, 4}, m}, {{4, 6}, m},
  {{1, 6}, m}, {{5, 6}, 0}}, {{1, 0}, {2, 0}, {3, 0}, {4, 0}}}

```



## Output

```
]:= candidateSingularities =  
  SOFIA[diag, SolverBound → Infinity];  
  % // TableForm
```

s12  
s23  
s12 + s23  
mm - s12  
mm - s23  
4 mm - s12  
4 mm - s23  
4 mm s12  
mm<sup>2</sup> s12 -  
mm s12<sup>2</sup> +

Finds all  
singularities  
(simple & non-simple)

# Finite basis

Alphabet = {letters}

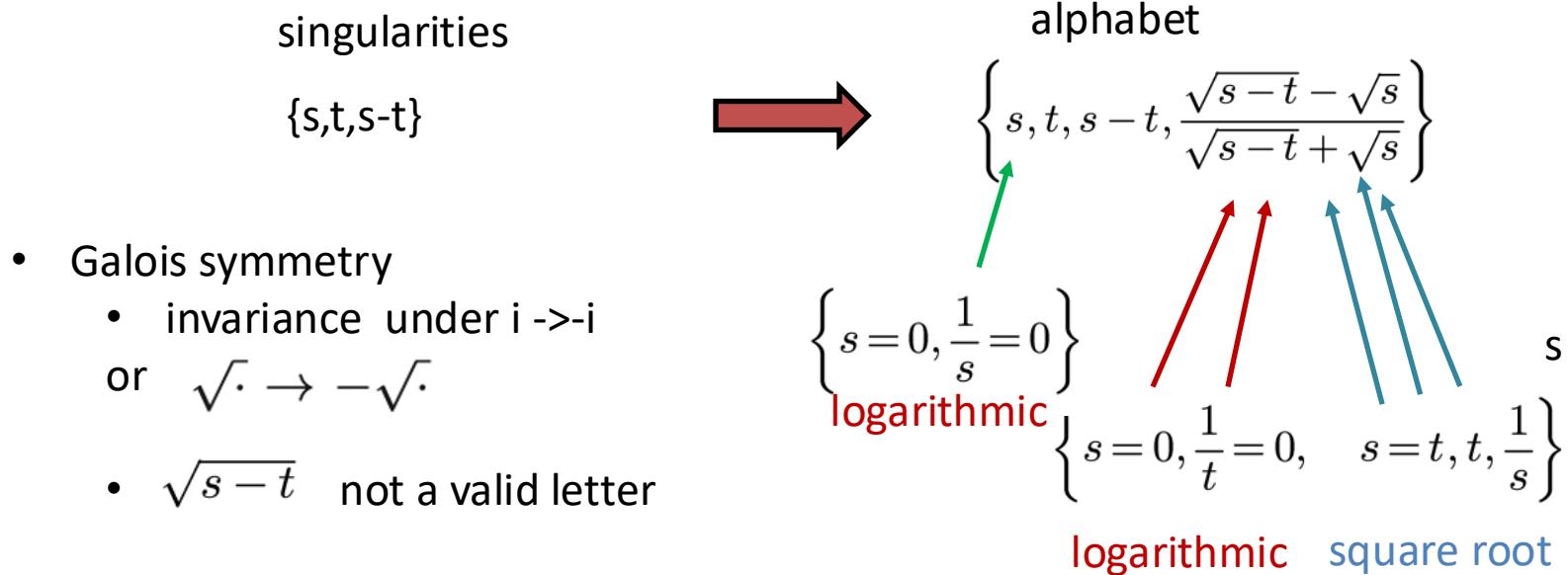
- A letter L can appear in the symbol
- Integral can **only** have singularities when L=0

$$S[\mathcal{I}] = L_{i_1} \otimes \dots \otimes L_{i_n}$$



Landau's original paper determined if singularities were logarithmic or square-root

- Not so easy to use, since singularities may appear multiple times on multiple sheets
- Still true that singularities are always either **logarithmic** or **square root**



# Finite basis

Location of Landau singularities

$$\begin{aligned}
 s &= 4m^2, \quad s \rightarrow \infty, \\
 t &= 4m^2, \quad t \rightarrow \infty, \\
 m^2 &= 0, \\
 s &= 0, \quad t = 0, \quad m^2 \rightarrow \infty, \\
 s+t &= 0, \quad st - 4m^2s - 4m^2t = 0.
 \end{aligned}$$

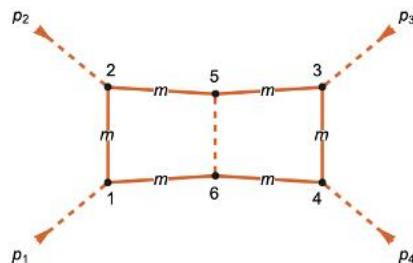


symbol alphabet

$$\tilde{A} = \left\{ u, v, 1+u, 1+v, u+v, 1+u+v, \frac{\beta_u - 1}{\beta_u + 1}, \frac{\beta_v - 1}{\beta_v + 1}, \frac{\beta_{uv} - 1}{\beta_{uv} + 1}, \frac{\beta_{uv} - \beta_u}{\beta_{uv} + \beta_u}, \frac{\beta_{uv} - \beta_v}{\beta_{uv} + \beta_v}, \frac{\beta_{uv} - \beta_u \beta_v}{\beta_{uv} + \beta_u \beta_v} \right\}$$

$$\beta_u = \sqrt{1+u}, \beta_v = \sqrt{1+v}; \beta_{uv} = \sqrt{1+u+v}.$$

- SOFIA can also produce the alphabet (may be larger than needed)
- Length of symbol is  $\leq 2 \times$  loop order
  - 12 letters
  - $12^4 = 20,736$  symbol entries



2 loop outer-mass double box

Finite basis!



# Landau Bootstrap

$$\mathcal{S}[\mathcal{I}] = \sum c_{\{i\}} L_{i_1} \otimes L_{i_2} \otimes L_{i_3} \otimes L_{i_4}$$

How can we fix the coefficients?

- Integrability
- Galois symmetry
- $\alpha$ -positivity
- First-entry conditions
- Last-entry conditions
- Genealogical constraints
  - Sequential discontinuities
  - Cluster adjacency conditions
- Regions analysis
  - Soft, collinear, Regge limits
  - Often don't work diagram-by-diagram
- Direct calculation

|                                              |       |
|----------------------------------------------|-------|
| Sequences of four letters                    | 20736 |
| Integrable weight-four symbols               | 6993  |
| Galois symmetry                              | 861   |
| Physical logarithmic branch cuts             | 161   |
| Genealogical constraints                     | 28    |
| Only algebraic $\alpha$ -positive thresholds | 6     |
| Threshold expansion in $t$                   | 1     |

# Integrability

- Every interated dlog integral has a symbol

$$f(u, v; \Gamma) = c_{i_1, i_2, \dots, i_n} \int_{\Gamma} d \ln L_{i_1} \circ \dots \circ d \ln L_{i_n} \cdot \sum c_{i_1, i_2, \dots, i_n} L_{i_1} \otimes \dots \otimes L_{i_n}$$

• Not every symbol corresponds to a function

- For  $f(u, v, \Gamma)$  to be a function, must be independent of local path deformations

$$\rightarrow [\partial_u, \partial_v]f = 0$$

- Derivatives only act on the last entry of the symbol (end of integration contour)

$$\partial_u [S \otimes K \otimes L] = (\partial_u \ln L) [S \otimes K]$$

$$\partial_v \partial_u [S \otimes K \otimes L] = (\partial_v \partial_u \ln L) [S \otimes K] + (\partial_u \ln L) (\partial_v \ln K) S$$

$$[\partial_u, \partial_v] [S \otimes K \otimes L] = \underbrace{[(\partial_u \ln L) (\partial_v \ln K) - (\partial_v \ln K) (\partial_u \ln L)] S}_{\text{must vanish}} \quad (\text{integrability condition})$$

must vanish  
(integrability condition)

# $\alpha$ positivity

- Symbol encodes all branch points, even on **unphysical sheets**

$$I_G(p) = (n_{\text{int}} - 1)! \int_0^\infty \prod_{e \in E_{\text{int}}(G)} d\alpha_e \int \prod_{c \in \bar{C}(G)} d^d k_c \frac{1}{(\ell + i\varepsilon)^{n_{\text{int}}}} \delta\left(1 - \sum_{e \in E_{\text{int}}(G)} \alpha_e\right)$$

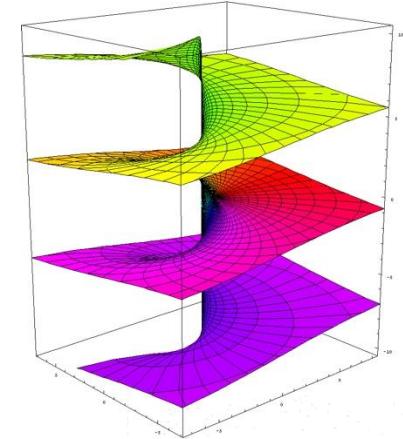


actual Feynman integral on physical sheet is over positive  $\alpha$

- Discontinuities/monodromies act on first entry of the symbol

$$I = \int \omega_1 \int \omega_2 \dots \int \omega_n$$

$$dI = \omega_1 \int \omega_2 \dots \int \omega_n$$



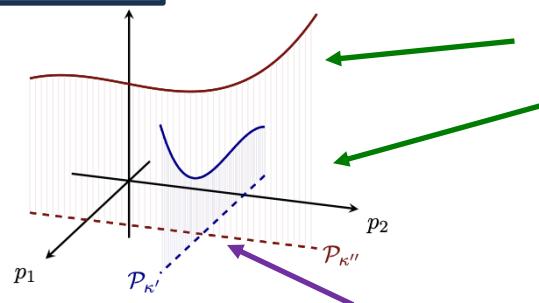
- Singularity for physical momenta (physical sheet)  $\leftrightarrow$  singularity of first entry
  - See if  $\alpha > 0$  in solutions to Landau equations: constrain first symbol entries

# Genealogical constraints

Which symbol entries can be adjacent?

- Adjacent means sequential discontinuities are possible

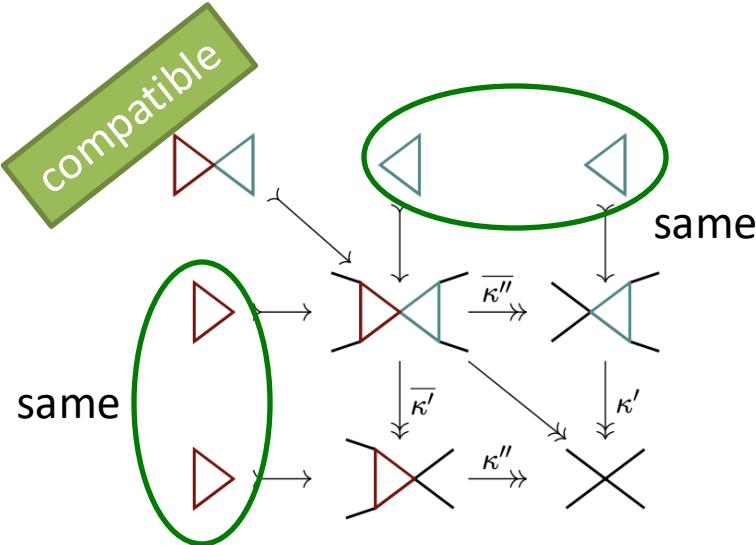
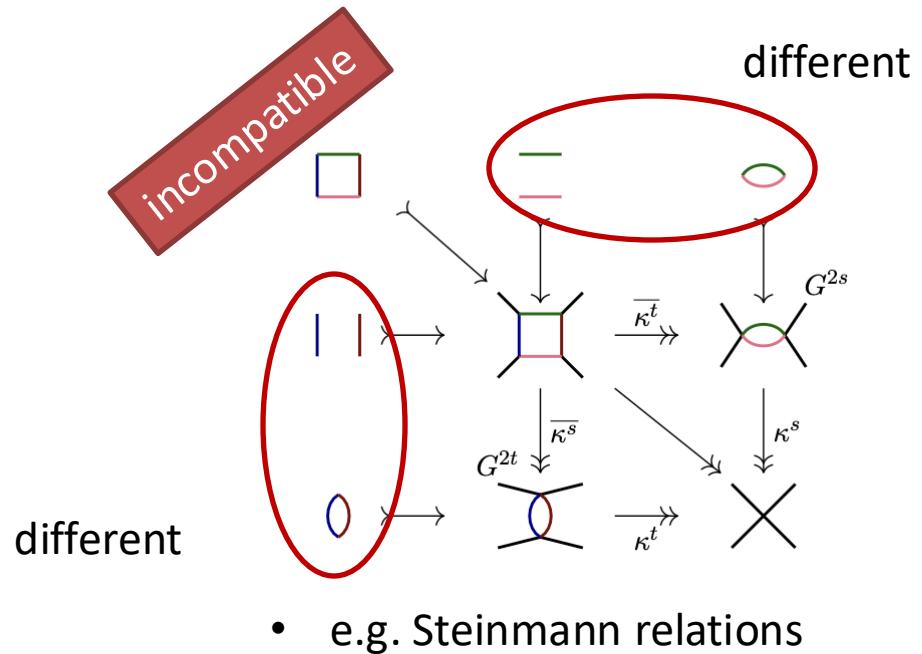
## Pham approach



- on-shell surfaces may not intersect in *internal momenta*
- vanishing cell from first monodromy doesn't intersect integration contour of second
  - sequential monodromy vanishes

$$(\mathbb{1} - \mathcal{M}_{P_{\kappa'}})(\mathbb{1} - \mathcal{M}_{P_{\kappa''}})I_G(p) = 0$$

Singular surfaces intersect transversally in *external momenta*

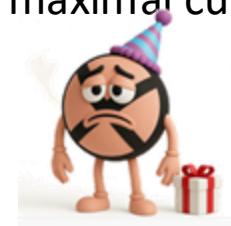


# Outer-mass double box

Landau bootstrap

| Easy   | Constraints                   | # Coeffs |
|--------|-------------------------------|----------|
|        | All Symbols                   | 20736    |
|        | Integrability                 | 6993     |
|        | Galois symmetry               | 861      |
| ;      | Physical branch cuts          | 161      |
|        | Genealogical constraints      | 28       |
| ↓ Hard | $\alpha$ -positive thresholds | 6        |

- Impose as many constraints as you can
- Work from easy generic stuff (integrability) to hard
- Also need **rational prefactor**
  - SOFIA can compute prefactor from maximal cut
  - **Not part of the symbol**
- Final steps may involve computing integral in a limit



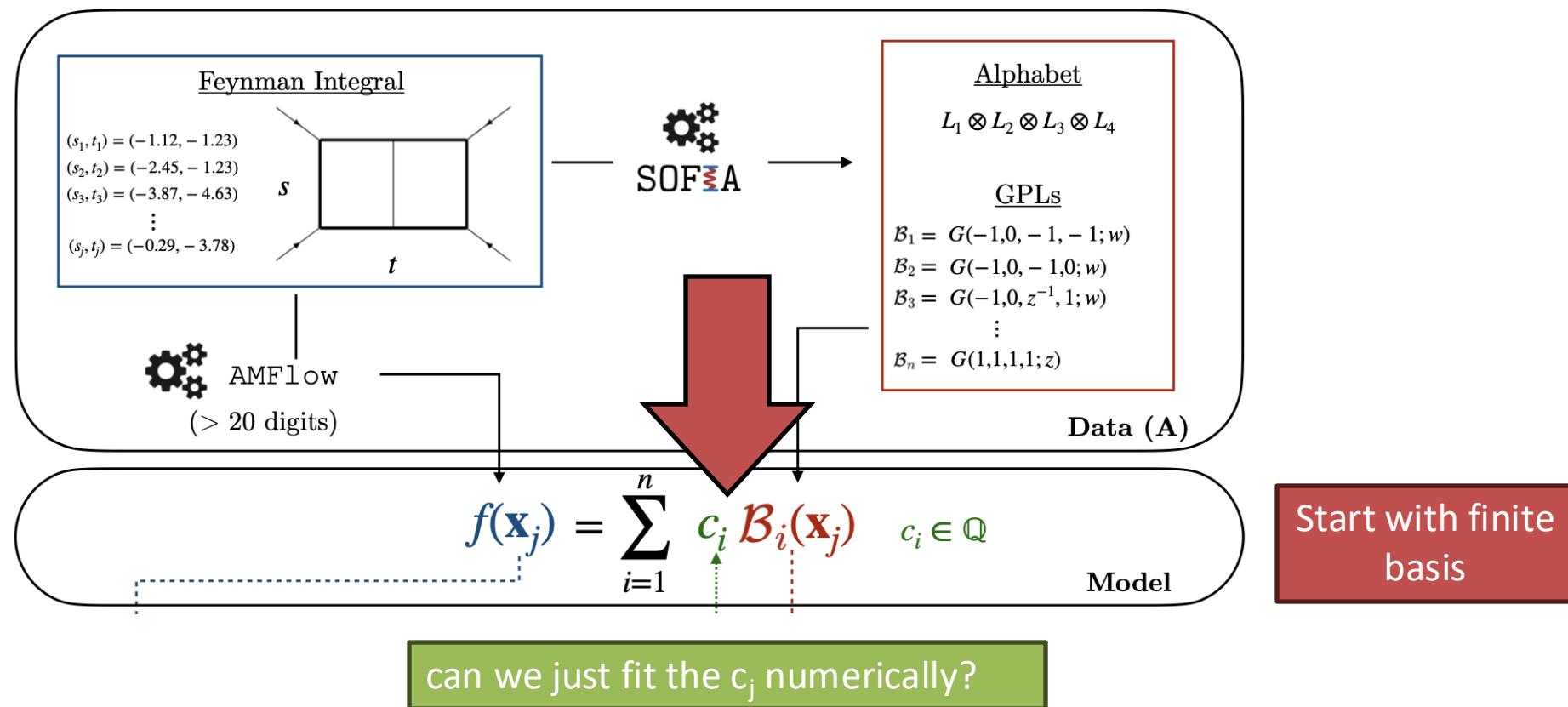
- **Landau bootstrap works!**

$$\begin{aligned}
 \mathcal{S}(\tilde{\mathcal{I}}_{\text{dbox}}) = & -L_6 \otimes \frac{L_1}{L_3} \otimes L_6 \otimes L_9 - L_6 \otimes \frac{L_1}{L_3} \otimes L_9 \otimes L_6 \\
 & + L_6 \otimes L_6 \otimes \frac{L_1 L_2}{L_3 L_5} \otimes L_9 + L_6 \otimes L_9 \otimes \frac{L_2}{L_5} \otimes L_6 \\
 & + L_6 \otimes L_6 \otimes L_8 \otimes L_6 + L_6 \otimes L_9 \otimes L_8 \otimes L_9 \\
 & + L_7 \otimes L_{10} \otimes \frac{L_2}{L_5} \otimes L_6 + L_7 \otimes L_{10} \otimes L_8 \otimes L_9 \\
 & + L_7 \otimes L_7 \otimes \frac{L_1}{L_5} \otimes L_9 + L_7 \otimes L_7 \otimes L_8 \otimes L_6 .
 \end{aligned}$$



- Agrees with Caron-Huot & Henn '14

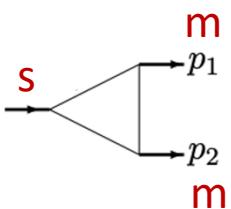
# Numerical bootstrap



## Requirements

1. Evaluate  $f(x)$  numerically to high precision
2. Evaluate  $B(x)$  to high precision
3. Solve the equation without losing precision

# 1-loop triangle

exact answer:  $T =$    $= \frac{x}{m^2(1-x^2)} \left( -\frac{\pi^2}{3} + 4G(0, -1, x) - 2G(0, 0; x) \right)$

Alphabet (from Sofia)

one invariant  $x = \frac{1 - \sqrt{1 + \frac{4m^2}{s}}}{1 + \sqrt{1 + \frac{4m^2}{s}}}$

3 letters

$$A = \{L\} = \{m, s, 4m^2 - s\} \leftrightarrow \{x, 1 + x, 1 - x\}$$

Basis is

$$T(x) = \sum_{i=1}^{17} c_i \mathcal{B}_i(x) = P(x) \times [c_{ij} L_i \otimes L_j + (a_j + b_j \pi) L_j + d_1 \pi^2 + d_2 \zeta_3]$$

rational prefactor  
(Sofia computes)  
Total runtime = 0.042703

$$-\frac{1}{16 \pi^4 \sqrt{(4m^2 - s) s}}$$

9 terms weight 2      6 terms weight 1      2 numbers

17 constants

- Need  $T(x)$  and  $B_i(x)$  to high precision

# Numerical Feynman Integration

- AMFlow: numerical evaluation for Feynman loop integrals to high precision

Integration-by-Parts (IBP) [Chetyrkin, Tkachov, 1981]

$$\mathcal{I}(p_i, m_e) = \int \prod_{j=1}^L d^D k_j \frac{N(p_i, k_j)}{\prod_{e=1}^E (q_e^2 - m_e^2 + i\epsilon)} \Rightarrow \mathcal{I} = \sum_a R_a(p_i \cdot p_j, m_e) \text{MI}_a$$

Rational functions      Master integrals  
(basis)

Auxiliary mass flow method (AMFlow)

[Liu, Ma, 1801.10523; 2107.01864;  
2201.11669; 2201.11637]

1. Introduce an auxiliary mass  $\eta$  to some of the propagator denominators
2. Set up closed differential equations w.r.t  $\eta$  using IBPs
3. Solve the differential equations numerically with boundary conditions  $\eta \rightarrow \infty$

Timing on 1-loop triangle

- each phase space point takes 5-10 CPU-min for 30 significant digits

# Numerical basis functions

$$T(x) = \sum_{i=1}^{17} c_i \mathcal{B}_i(x) = P(x) \times [c_{ij} L_i \otimes L_j + (a_j + b_j \pi) L_j + d_1 \pi^2 + d_2 \zeta_3]$$

- Rational prefactor evaluation is instant
- Weight-2 symbols can be integrated into closed form expressions
  - FiberSymbol in Polylogtools can do this
  - Numerical evaluation is very fast



Integrals of higher weight symbols are not always known

- Can always integrate numerically along a path

$$\tilde{B} = \sum_{i=1}^{|\tilde{A}|} c_{i_1, i_2, i_3, i_4} \int_0^1 d \log L_{i_4}(\lambda_4) \int_0^{\lambda_4} d \log L_{i_3}(\lambda_3) \int_0^{\lambda_3} d \log L_{i_2}(\lambda_2) \int_0^{\lambda_2} d \log L_{i_1}(\lambda_1),$$

- Individual terms may be path dependent, but final result is integrable
- Can do the first and last integral analytically
  - Reduce weight by 2: speeds up integration tremendously
- Sometimes analytic integrals can be so complicated that it is faster to do the integral numerically
  - More work needed on efficient numerical evaluation

# Matrix inversion

- Evaluate both sides of this equation at 17 points
- Solve 17 linear equations for coefficients
  - i.e. invert the matrix

$$T(x) = \sum_{i=1}^{17} c_i \mathcal{B}_i(x)$$

$$M_{ij} = \mathcal{B}_i(\mathbf{x}_j) \quad \rightarrow \quad c_i = (M^{-1})_{ij} \cdot T(x_j)$$

Problems:

1. No way to impose that  $c_j$  are rational
  - Cannot every resolve functions that differ by irrational constants

$$2 [\ln x] + 3 [\pi \ln x] = (1 + \pi)[\ln x] + \left(2 + \frac{1}{\pi}\right)[\pi \ln x]$$

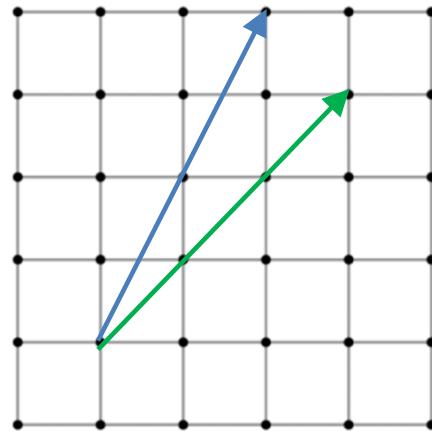
2. Matrix inversion loses precision very fast
  - Controlled by condition number

$$\kappa(M) = \|M\| \|M^{-1}\|.$$

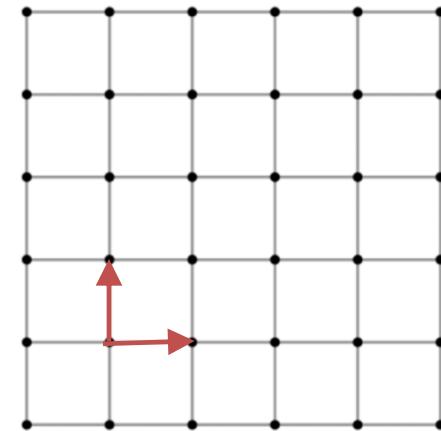
- Generally our matrices will be ill-conditioned
  - (they come from smooth functions)

# Lattice reduction

vectors span  
a lattice



$$\vec{u}_1^2 + \vec{u}_2^2 = 24$$



$$\vec{v}_1^2 + \vec{v}_2^2 = 2$$

- Lattice reduction finds another set of vectors for same lattice
- Can minimize some norm (length of lattice vectors)
- NP-Hard problem: no polynomial-time algorithm for truly best solution
- Efficient algorithms exist to find what is almost always the minimum

# Lattice reduction

Rational number coefficients can be fit for numbers using lattice reduction

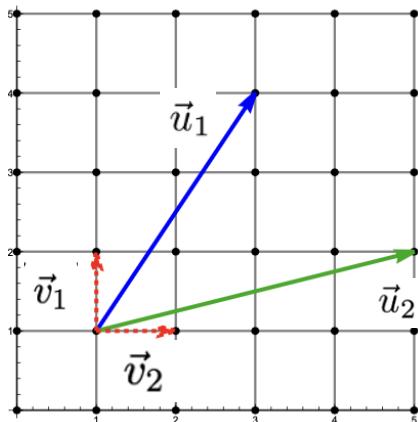
$$f = - \int_0^1 du \int_0^1 dv \frac{\log(1 - uv) + v \log(1 - u)}{uv} = \frac{\pi^2}{6} + \zeta_3 = c_1 \pi^2 + c_2 \zeta_3 = \vec{c} \cdot \vec{v}$$

$$f=2.847 \quad \longleftrightarrow \quad \text{Assume 4 digits known} \quad \longleftrightarrow \quad \pi^2=9.870 \quad \zeta_3=1.202$$

Multiply by  $10^3$  and put into a matrix

$$\begin{pmatrix} \vec{u}_1 \\ \vec{u}_2 \\ \vec{u}_3 \end{pmatrix} = \begin{pmatrix} 10^3 f & 1 & 0 & 0 \\ 10^3 \pi^2 & 1 & 0 & 0 \\ 10^3 \zeta_3 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2847 & 1 & 0 & 0 \\ 9870 & 0 & 1 & 0 \\ 1202 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{lattice reduction}} \begin{pmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vec{v}_3 \end{pmatrix} = \begin{pmatrix} 0 & -6 & 1 & 6 \\ 3 & -11 & 5 & -15 \\ 62 & 4 & -2 & 7 \end{pmatrix}$$

vectors span a lattice



- Lattices are the same so  $v$  in the span of  $u$

$$\vec{v}_1 = -6\vec{u}_1 + \vec{u}_2 + 6\vec{u}_3.$$

First component

$$0 = 10^3 \times (-6f + \pi^2 + 6\zeta^3) \quad \checkmark$$

# Precision requirements

Rational number coefficients can be fit for numbers lattice reduction

$$f = - \int_0^1 du \int_0^1 dv \frac{\log(1 - uv) + v \log(1 - u)}{uv} = \frac{\pi^2}{6} + \zeta_3 . = c_1 \pi^2 + c_2 \zeta_3 = \vec{c} \cdot \vec{v}$$

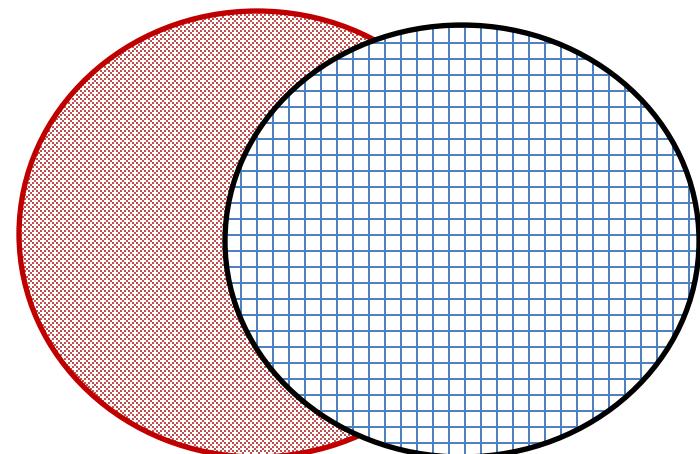
Q: how many digits of  $f$  are required to fit rational  $c_1$  and  $c_2$ ?

$$\vec{v} = (\pi^2, \zeta_3)$$

- Multiple solutions implies that  $\vec{c} \cdot \vec{v} = 0$
- Multiply by GCD so  $c_1$  and  $c_2$  are integers
  - There are  $(10^R)^n = 10^{2R}$  vectors  $(c_1, c_2)$
- Assume  $d$  digits of precision on  $v$ 
  - $\vec{c} \cdot \vec{v}$  produce  $10^{2R} d$  digit numbers
- There are only  $10^d$   $d$ -digit numbers in all
- Need precision  $d > nR$  to fit pure numbers
  - Information content must be sufficient

assume size of  $c$ 's

$$c_1 \sim c_2 \lesssim 10^R$$



# Precision requirements

For fitting *functions* we can sample at multiple points

$$f(x) = G(0, 1; x) - G(1, -1; x) \quad x_1 = 4/10, x_2 = 9/10$$

$$\mathcal{B}(x) = \{G(1, 0; x), G(0, 1; x), G(0, -1; x), G(1, -1; x)\}$$

$$M = \text{round } 10^s \left( \begin{array}{c|c} f(\mathbf{x}_1) \cdots f(\mathbf{x}_p) & 10^{-s} \mathbb{I}_{n+1} \\ \mathcal{B}_1(\mathbf{x}_1) \cdots \mathcal{B}_1(\mathbf{x}_p) \\ \vdots \\ \mathcal{B}_n(\mathbf{x}_1) \cdots \mathcal{B}_n(\mathbf{x}_p) \end{array} \right) = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_5 \end{pmatrix} = \begin{pmatrix} -35 & -24 & 1 & 0 & 0 & 0 & 0 \\ 92 & 154 & 0 & 1 & 0 & 0 & 0 \\ -45 & -129 & 0 & 0 & 1 & 0 & 0 \\ 36 & 75 & 0 & 0 & 0 & 1 & 0 \\ -10 & -106 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- With  $p$  points and  $d$  digits
  - net digits of information is  $p \times d$
- Expected digits needed

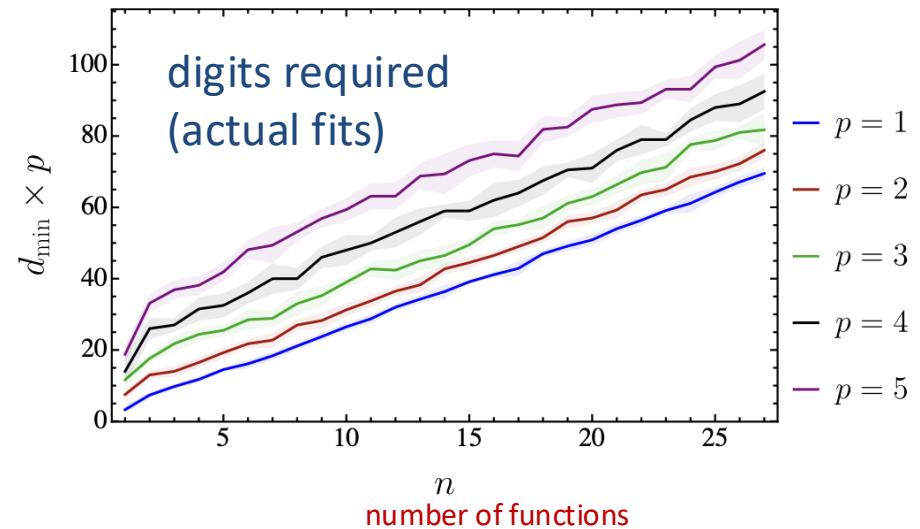
$$d \lesssim \frac{nR}{p}$$

digits of precision req'd

# basis functions

size of integers

number of points

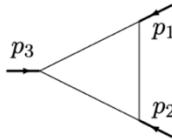
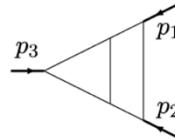
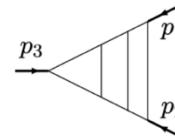


We can trade off digits of precision for number of points

- Will work even if only a few digits of precision are available!

# Example 1: Triangles

Triangle ladder diagrams



exact results known

$$T_1(z) = \frac{1}{z - \bar{z}} \left[ 2\text{Li}_2(z) - \text{Li}_2(\bar{z}) + \log(z\bar{z}) \log \left( \frac{1-z}{1-\bar{z}} \right) \right],$$

$$T_2(z) = \frac{1}{(1-z)(1-\bar{z})(z-\bar{z})} \left[ 6\text{Li}_4(z) - 6\text{Li}_4(\bar{z}) - 3 \log(z\bar{z}) (\text{Li}_3(z) - \text{Li}_3(\bar{z})) + \frac{1}{2} \log^2(z\bar{z}) (\text{Li}_2(z) - \text{Li}_2(\bar{z})) \right],$$

$$T_3(z) = \frac{1}{(1-z)^2(1-\bar{z})^2(z-\bar{z})} \left[ 20\text{Li}_6(z) - 20\text{Li}_6(\bar{z}) - 10 \log(z\bar{z}) (\text{Li}_5(z) - \text{Li}_5(\bar{z})) + \log^2(z\bar{z}) (\text{Li}_4(z) - \text{Li}_4(\bar{z})) - \frac{1}{6} \log^3(z\bar{z}) (\text{Li}_3(z) - \text{Li}_3(\bar{z})) \right]$$

$$z\bar{z} = p_2^2/p_1^2,$$

$$(1-z)(1-\bar{z}) = p_3^2/p_1^2$$

Full alphabet (from SOFIA)

$$A_{1,2} = \left\{ z\bar{z}, (1-z)(1-\bar{z}), z-\bar{z}, \frac{\bar{z}}{z}, \frac{1-z}{1-\bar{z}} \right\}$$

Simplified alphabet (quicker for testing)

Allow all possibilities up to weight 6

$$A_3^\star = \left\{ z\bar{z}, (1-z)(1-\bar{z}), \frac{\bar{z}}{z}, \frac{1-z}{1-\bar{z}} \right\}$$

Weight-0: 1

Weight-1:  $G(a_1, x)$ ,  $\pi$

Weight-2:  $G(a_1, a_2, x)$ ,  $\pi \times G(a_1, x)$ ,  $\zeta_2$

Weight-3:  $G(a_1, a_2, a_3, x)$ ,  $\pi \times G(a_1, a_2, x)$ ,  $\zeta_2 \times G(a_1, x)$ ,  $\zeta_3$

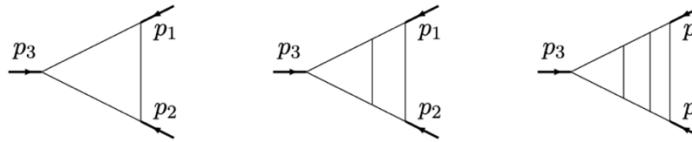
Weight-4:  $G(a_1, a_2, a_3, a_4, x)$ ,  $\pi \times G(a_1, a_2, a_3, x)$ ,  $\zeta_2 \times G(a_1, a_2, x)$ ,  $\pi^3 \times G(a_1, x)$ ,  
 $\zeta_3 \times G(a_1, x)$ ,  $\zeta_4$

Weight-5:  $G(a_1, a_2, a_3, a_4, a_5, x)$ ,  $\pi \times G(a_1, a_2, a_3, a_4, x)$ ,  $\zeta_2 \times G(a_1, a_2, a_3, x)$ ,  
 $\pi^3 \times G(a_1, a_2, x)$ ,  $\zeta_3 \times G(a_1, a_2, x)$ ,  $\zeta_4 \times G(a_1, x)$ ,  $\zeta_5$ ,  $\zeta_2 \times \zeta_3$

Weight-6:  $G(a_1, a_2, a_3, a_4, a_5, a_6, x)$ ,  $\pi \times G(a_1, a_2, a_3, a_4, a_5, x)$ ,  $\zeta_2 \times G(a_1, a_2, a_3, a_4, x)$ ,  
 $\pi^3 \times G(a_1, a_2, a_3, x)$ ,  $\zeta_3 \times G(a_1, a_2, a_3, x)$ ,  $\zeta_4 \times G(a_1, a_2, x)$ ,  $\zeta_5 \times G(a_1, x)$ ,  
 $\zeta_2 \zeta_3 \times G(a_1, x)$ ,  $\pi^5 \times G(a_1, x)$ ,  $\zeta_6$ ,  $\zeta_3^2$

# Example 1: Triangles

Triangle ladder diagrams



Pick random points in (unphysical) Euclidean region  $0 < z < \bar{z} < 1$

- Makes basis functions real
- Imaginary numbers are fine, just technically complicated python implementation

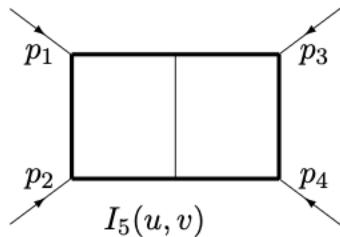
| Diagram    | AMFlow point time | Transcendental weights | # points sampled | Basis size      | Reduction time |           |
|------------|-------------------|------------------------|------------------|-----------------|----------------|-----------|
| One-loop   | 15.6 CPU-min      | $\leq 2$               | 5                | full(32)        | <1s            | 3 digits  |
|            |                   |                        |                  | simplified(26)  | <1s            |           |
|            |                   |                        |                  | uniform(25)     | <1s            |           |
| Two-loop   | 1.1 CPU-h         | $\leq 4$               | 100              | full(488)       | 9.6 min        | 20 digits |
|            |                   |                        | 100              | simplified(393) | 10.7 min       |           |
|            |                   |                        | 60               | uniform(366)    | 3.5 min        |           |
| Three-loop | 5.7 CPU-h         | $\leq 6$               | -                | full(1373)      | -              | 20 digits |
|            |                   |                        | -                | simplified(972) | -              |           |
|            |                   |                        | 200              | uniform(806)    | 1.1 h          |           |

## Results with timing

- Rate limiting step is AMFlow (computation of full function)
- Could be sped up (additional points much faster than first)

# Example 2: Double box

Loop



12 independent letters

$$\tilde{A} = \left\{ u, v, 1+u, 1+v, u+v, 1+u+v, \frac{\beta_u - 1}{\beta_u + 1}, \frac{\beta_v - 1}{\beta_v + 1}, \frac{\beta_{uv} - 1}{\beta_{uv} + 1}, \frac{\beta_{uv} - \beta_u}{\beta_{uv} + \beta_u}, \frac{\beta_{uv} - \beta_v}{\beta_{uv} + \beta_v}, \frac{\beta_{uv} - \beta_u \beta_v}{\beta_{uv} + \beta_u \beta_v} \right\}$$

with  $\beta_u = \sqrt{1+u}$ ,  $\beta_v = \sqrt{1+v}$  and  $\beta_{uv} = \sqrt{1+u+v}$ .

- $12^4 = 20,736$  weight-4 symbols + (?) lower weight terms
- square root letters are hard to integrate analytically

method 1:  
rationalize the square roots

$$u = \frac{(1-w^2)(1-z^2)}{(w-z)^2} \quad \text{and} \quad v = \frac{4wz}{(w-z)^2},$$

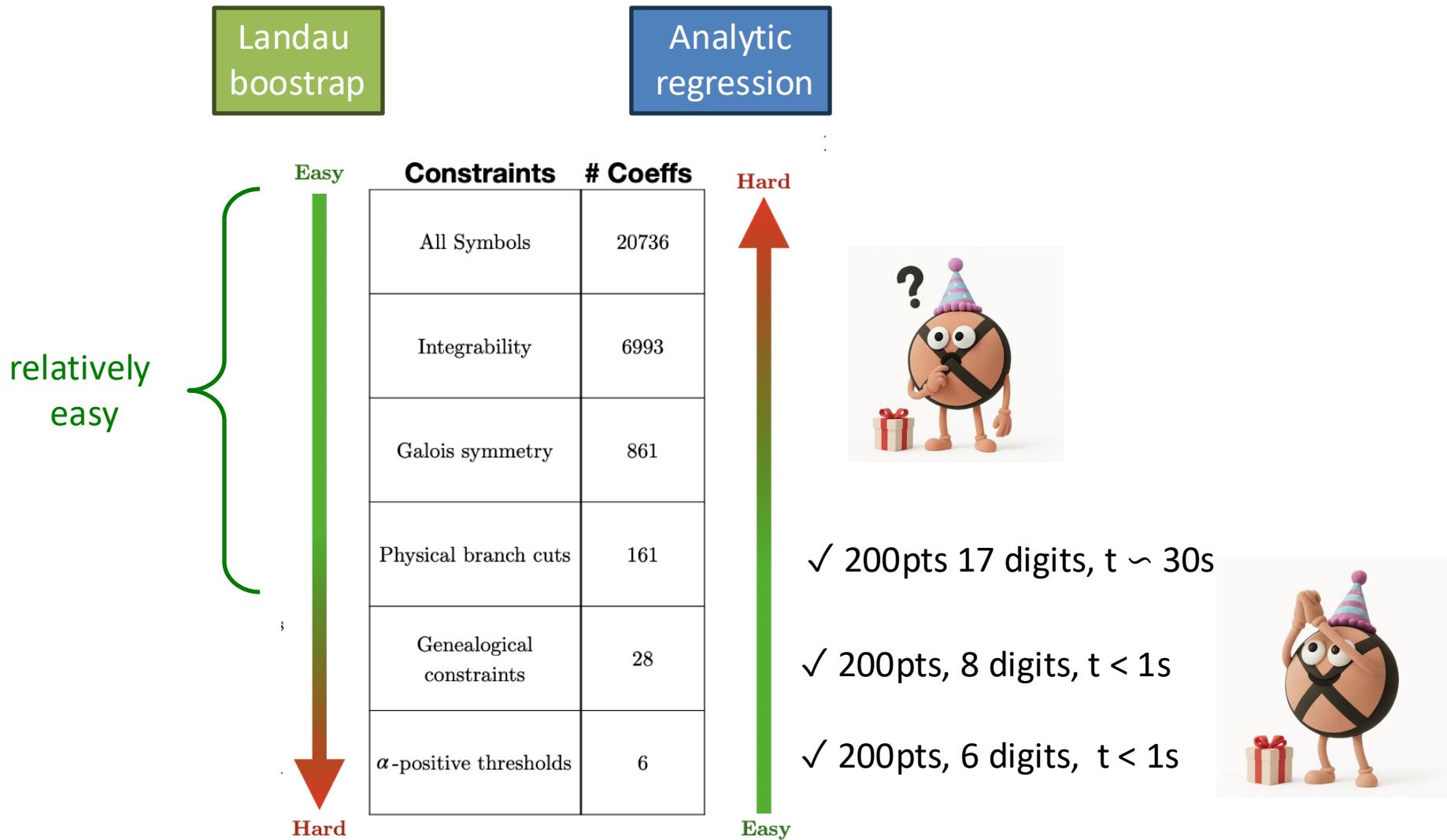
$$\tilde{A}_2 = \{w, z, 1 \pm w, 1 \pm z, w \pm z, 1 \pm wz, 1 \pm w \mp z + wz\},$$

method 2:  
numerically integrate along a contour

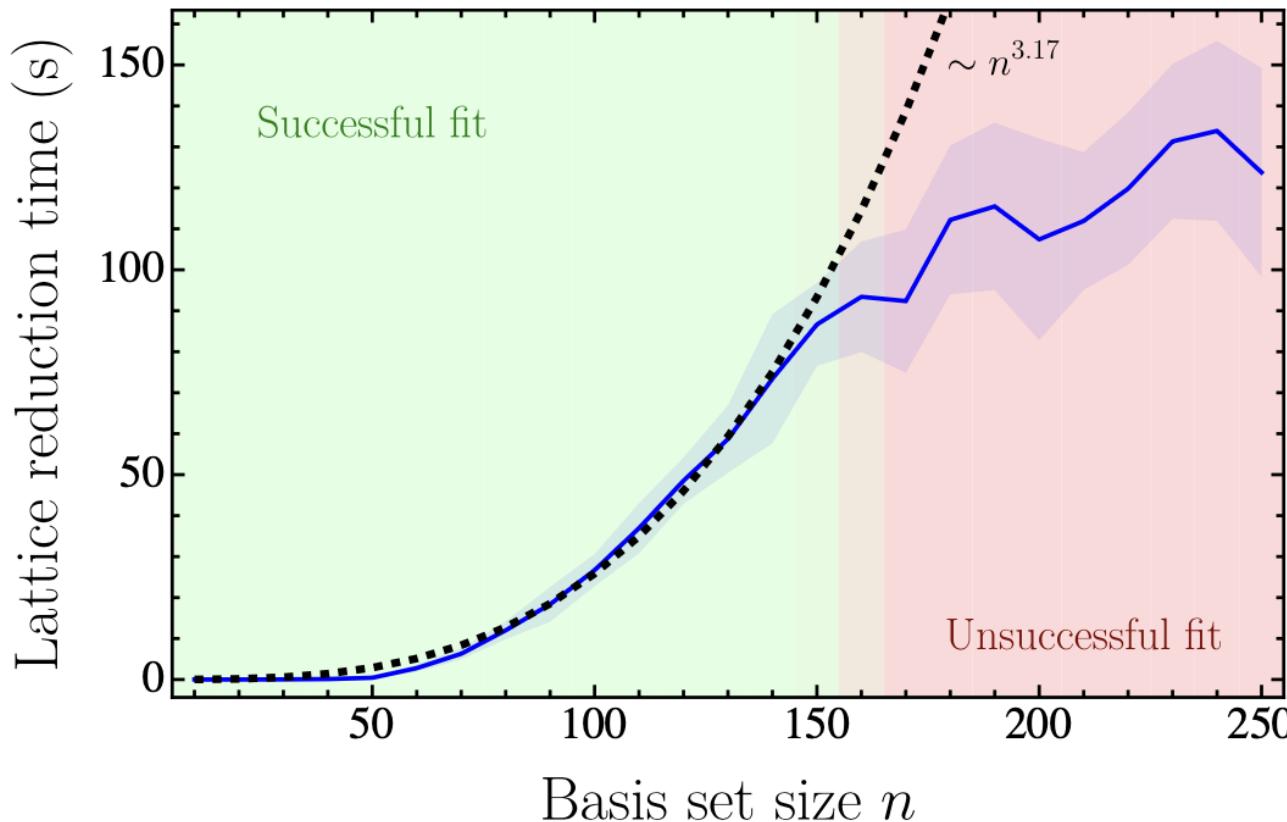
- integrate first and last symbol analytically
- need to be careful with branch cuts
  - euclidean region requires some thought
- using integrable contributions helps a lot

- Now symbols can be integrated analytically
  - Takes FiberSymbol hours to integrate
  - Result is hundreds or thousands of terms
- GiNaC can get numbers out, but very slow

# Example 2: Double box



# Double box: limitations



Should work with more functions

- With our compute, hard to succeed with more than  $n \lesssim 200$

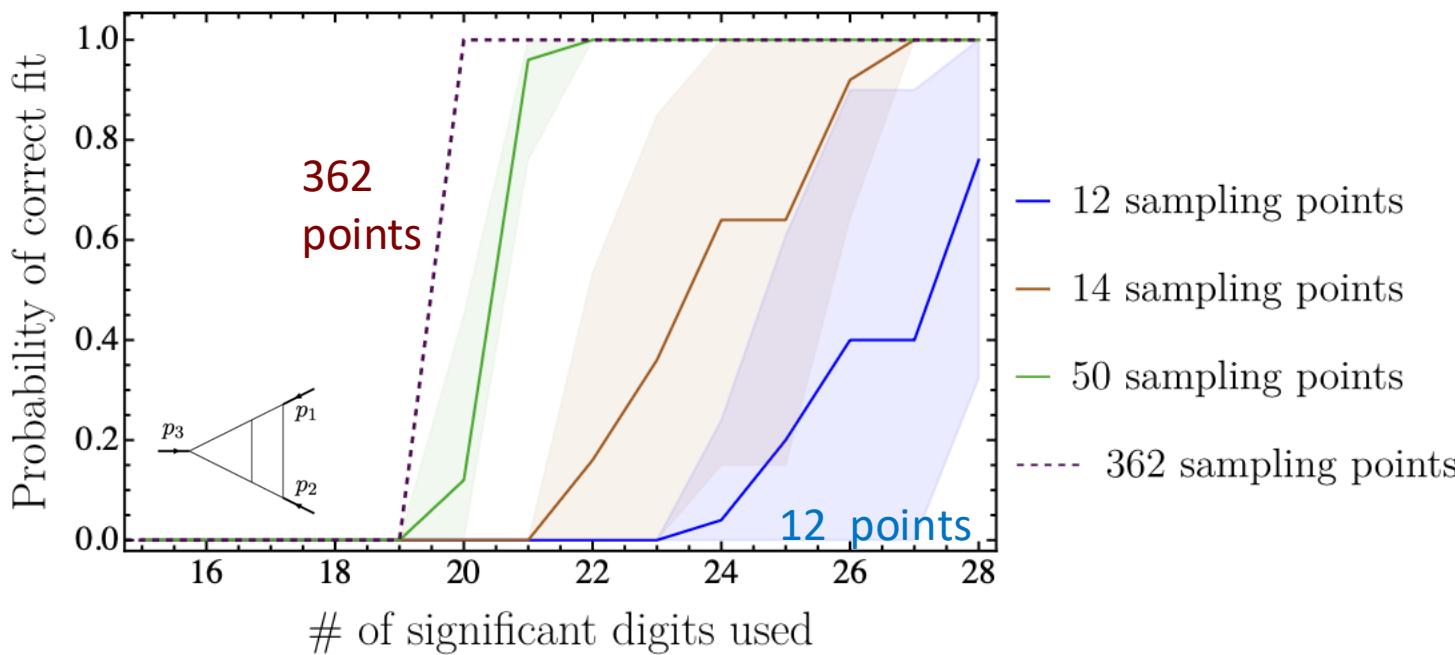
# Choosing points

- Before we said you can get away with fewer digits if you use more points

$$d \lesssim \frac{nR}{p}$$

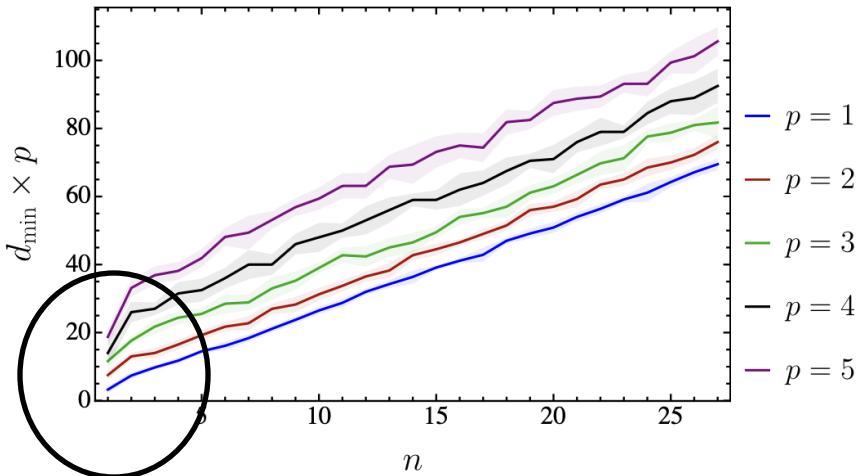
Annotations for the equation:

- # basis functions (green arrow)
- size of integers (orange arrow)
- number of points (purple arrow)
- digits of precision req'd (red arrow)



- Can never succeed below some digit lower bound
- Why did scaling fail?

# Choosing points



offset near  $d=0$

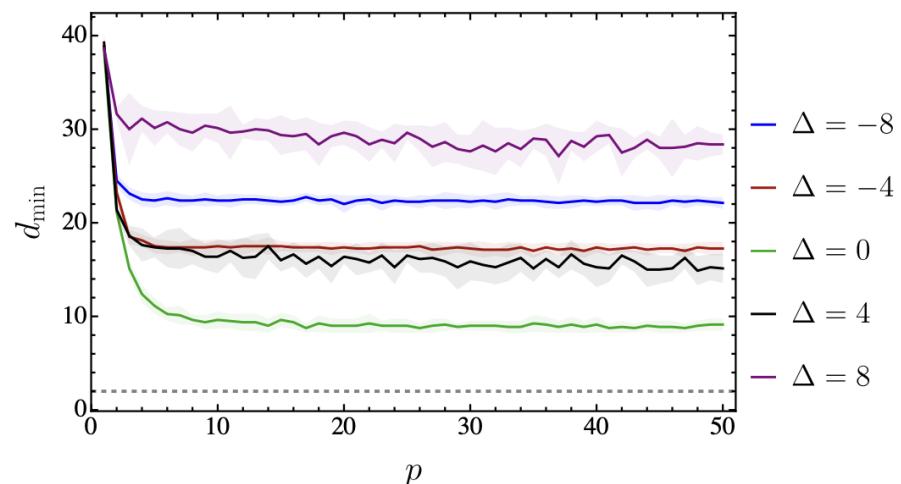
$$d_{\min} \approx R_{\text{eff}} \frac{n}{p} + d_0$$

- will never work with 1 or 2 digits

$$f(p_j) = \{103.2, \quad \underbrace{2.5, \quad 2.3}_{\text{unrecoverable information loss if we truncate to 2 digits}}\}$$

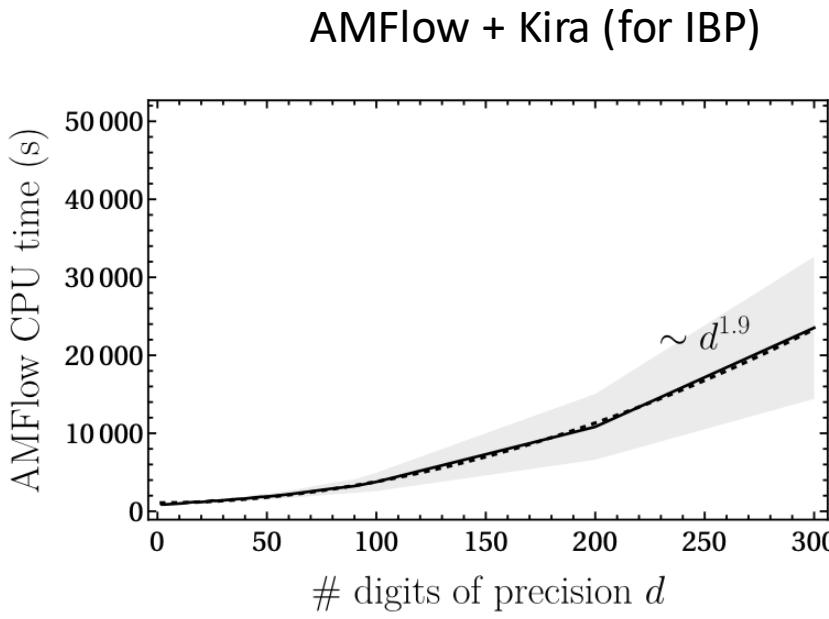
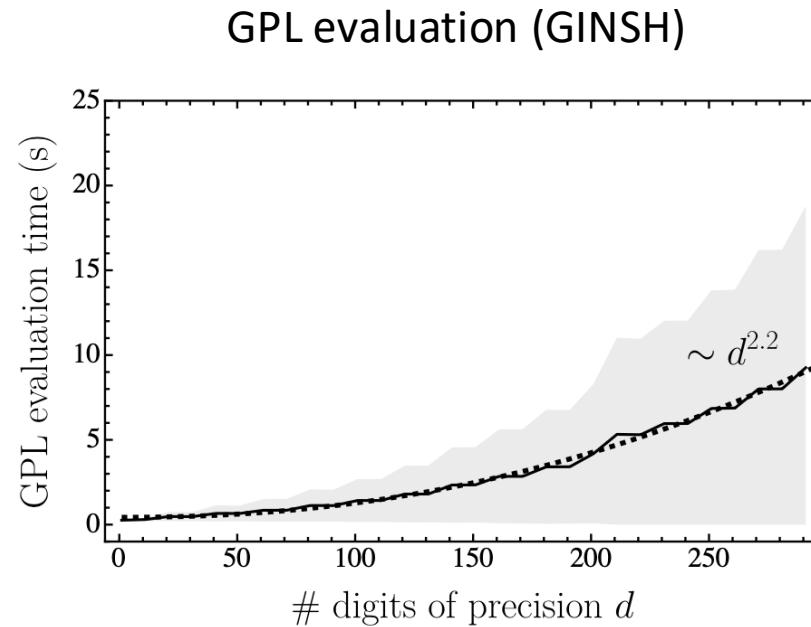
choose points in a range

$$\frac{1}{2} - 10^\Delta \leq x \leq \frac{1}{2} + 10^\Delta$$



- want to choose points
  - not too close (lose information)
  - not too far (need more digits)
  - Need 10-20 digits at least

# Double box: timing



$$t(p, n)/\text{ns} \approx \underbrace{10^9 \cdot p \cdot d_{\min}^2(n)}_{\text{AMFLOW}} + \underbrace{10^4 \cdot n \cdot p \cdot d_{\min}^2(n)}_{\text{GINSH}} + \underbrace{p \cdot n^4}_{\text{fitting}},$$

- Trading digits for points makes scaling go from quadratic to linear!

# Application to EECs

Toward the Analytic Bootstrap of Energy Correlators

Jianyu Gong<sup>a,b</sup> Andrzej Pokraka<sup>b,c</sup> Kai Yan<sup>b</sup>,<sup>a,b</sup> Xiaoyuan Zhang<sup>b,d</sup>

2509.22782

Consider some types of energy-energy correlators (unequal energy weights)

$$\frac{d\sigma}{dx_{12} \cdots dx_{(N-1)N}} \equiv \sum_m \sum_{1 \leq i_1, \dots, i_N \leq m} \int d\sigma_m \times \prod_{1 \leq k \leq N} \frac{E_{i_k}}{Q} \prod_{1 \leq j < l \leq N} \delta \left( x_{jl} - \frac{1 - \cos \theta_{i_j i_l}}{2} \right).$$

1

Uses of lattice reduction

- Find linear dependence among basis functions

$$G(z) = D(z) + a_{0,11} g_1(z) + a_{0,12} g_2(z) + a_{1,12} g_3(z) + a_{2,12} g_4(z) + c_{1,12} g_5(z) + d_{2,12} g_6(z)$$

$$g_3(z) = \frac{1}{(z-1)^2 z^2 (\bar{z}-1)^2 \bar{z}^2} \left[ z^4 \bar{z}^2 - z^4 \bar{z} + 8z^3 \bar{z}^3 - 14z^3 \bar{z}^2 + 8z^3 \bar{z} - z^3 + z^2 \bar{z}^4 - 14z^2 \bar{z}^3 + 24z^2 \bar{z}^2 - 14z^2 \bar{z} + z^2 + (2z^4 \bar{z}^3 - 3z^4 \bar{z}^2 + z^4 \bar{z} + 2z^3 \bar{z}^4 - 8z^3 \bar{z}^3 + 9z^3 \bar{z}^2 - 4z^3 \bar{z} + z^3 - 3z^2 \bar{z}^4 + 9z^2 \bar{z}^3 - 12z^2 \bar{z}^2 + 9z^2 \bar{z} - 3z^2 + z \bar{z}^4 - 4z \bar{z}^3 + 9z \bar{z}^2 - 8z \bar{z} + 2z + \bar{z}^3 - 3\bar{z}^2 + 2\bar{z}) \log((z-1)(\bar{z}-1)) + (-2z^4 \bar{z}^3 + 3z^4 \bar{z}^2 - z^4 \bar{z} - 2z^3 \bar{z}^4 + 8z^3 \bar{z}^3 - 9z^3 \bar{z}^2 + 2z^3 \bar{z} + 3z^2 \bar{z}^4 - 9z^2 \bar{z}^3 + 6z^2 \bar{z}^2 - z \bar{z}^4 + 2z \bar{z}^3) \log(z \bar{z}) - z \bar{z}^4 + 8z \bar{z}^3 - 14z \bar{z}^2 + 8z \bar{z} - \bar{z}^3 + \bar{z}^2 \right]$$

- Treat  $\{g_i\}$  as transcendental basis and  $a_{i,j}, b_{i,j}, c_{i,j}, d_{i,j}$  as coefficients to determine
- (1). Run lattice reduction among  $\{g_i(z)\}$  to get a linear-independent basis  $\{\tilde{g}_i(z)\}$
- (2). Run lattice reduction among both  $G(z)$  and  $\{\tilde{g}_i(z)\}$

In this case, 2 numerical points and 13 digits fix all six parameters

# Pros and cons: Landau bootstrap

## Landau bootstrap



- Can eliminate large swaths of symbols with physical constraints
- Don't need to do integrals
- Leads to new deep understanding in what amplitudes are
- Requires subtle understanding of singularities
  - Analytic structure of amplitudes
  - Branch points, euclidean regions
  - Algebraic geometry
- Rational prefactors not fixed by singularities alone
- Often still requires some integration at the end

# Pros and cons: analytic regression

Analytic regression  
with lattice reduction



- Easy to automate
- Can work for any functions
  - not just polylogs with symbols
  - elliptic polylogarithms? no problem!
  - cross sections, EECs, etc.
- Can find linear dependencies
- Can trade digits of accuracy for points
  - Scaling  $t \sim n^2$  or worse to  $t \sim n$
- Becomes computationally challenging above  $n \sim 200$ 
  - AMFlow scales like (# digits)<sup>2</sup>
  - lattice reduction scales like (# constants)<sup>4</sup>
- Minimum number of digits needed ( $\sim 5$  or  $6$ )

$$f(\mathbf{x}_j) = \sum_{i=1}^n c_i \mathcal{B}_i(\mathbf{x}_j) \quad c_i \in \mathbb{Q}$$



problem  
solved

# Conclusions

## Happy Birthday Symbol

