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Bootstrapping integrals

Q: Can we bootstrap Feynman integrals? Rules: Don’t integrate!
B 2
L(u,v) _/ dPky [ dPk, 1
ST @mP ) @oP [k m? K 4 m?] (k- o)+ ml] (ks — py)? + m?] [(ky — ka)?]

D2 Da
/ Is(u,v)

* Computed by Caron-Huot and Henn 1404.2922

2. Landau bootstrap
1. Parametrize a finite basis apply enough constraints

to uniquely fix all ¢

finite
Is(s,t,u,m)= Z cifi(s,t,u,m)
j=1 3. Analytic regression

* determined by singularities fit the ¢, numerically



Landau Equations

Ig(p)z(nim—l)!fnm 11 dae/ 11 ddk{:m&(l— » cue)
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e€Ein (G) ceC(G) e€ Eing (G)

A necessary condition for a singularity is that the integrand is singular (¢=0)

{ = Z ae(q? —m?) =0 e every internal line is either
€ By (G) on-shell (g?=m?) or a=0 or both

A necessary condition for a singularity of the integral is that poles pinch the contour

d . 9 2 o
for each loop k_: E QEE{QE m:)=0. qy=p — k.m2
= L (IR c p p
Double pole: €€ Eint (G~)

. . . = k,my
4 * since g, are linear in k_ =

I

—> > *a/=0 | Landauloop equations

einloop

integration contour
pinched between poles



Coleman-Norton interpretation

Landau equations

(= Y aug?-md) = S agh=0

e€ B (G) einloop

4-momenta add up to zero after rescaling by a
/\ [Coleman and Norton 1965]

=

Landau diagram is interpreted as space-time diagram
* momenta are on-shell (classical)
* a, are the proper times for propagation

More physically: singularities due to classically allowed processes
e similar to optical thoerem



Pham interpretation

Landau equations

normal vectors
(=) aclg—m) =0 E taeq, =0 mm) of on-shell constraints g2=m?2
€ (G) einloop are linearly dependent

on-shell constraints (Euclidean d=2)

gz + g5 =m3

{a,p} on-shell space

¥
S(

/ \
ol Y 0)
Intersection tangent on boundary {_ @ O

satisfies both ¢ =m?

el _ of space where
on-shell constraints circles intersect

S(G) 0| N s

on-shell space NS
of external momenta {p}

Landau variety is
the boundary of the projection map



Different kinds of singularities

Simple pinches

near normal threshold near pseudonormal threshold

K° K
S

N> %

kl
WPy
* hypersufaces meet transversely
e e.g.physical thresholds

7%

Mcleod, Hannesdottir, MDS, Vergu
arXiv:2211.07633

Non-simple pinches

sunrise Ps \v

bubble
Po

/—N

ice cream cone

Pe>

* hypersufaces meet tangentially
e e.g.sunrisein the ice-cream cone

q1 _ q1
G = q4 —» Go= XX
q2 q2

* Permanent pinches (e.g. IR divergences)
* Pinches at infinity



Solving the Landau equations

Lots of ways to solve the Landau equations

* Solve them by hand (e.g. Eden et al 1950)

* Hyperint (Panzer 2014)

e PLD (Fevola, Mizera, Telen 2013)

* BaikovLetter (Jiang et al 2024

* Recursive approach (Caron-Huot, M. Correia and M. Giroux 2024)

* Numerical implementation for any diagram (Correia, Giroux, Mizera 2024) SOFzA

diag =
{{{{1, 2}, my}, {{2, 5}, m}, {{3, 5}, m3}, {{3, 4}, my}, {{4, 6}, ms}, I= candidateSingularities =
{{1, 6}, mg}, {{5, 6}, my}}, {{1, M1}, {2, My}, {3, M3}, {4, Ms}}} //. SOFIA[diag’ SolverBound -» Inf-in-ity];
m;=»>0//.m »>m//.M 0 % // TableForm
FeynmanPlot[diag]
untime= 2.86441
{{{{1, 2}, m}, {{2, 5}, m}, {{3, 5}, m}, {{3, 4}, m}, {{4, 6}, m},
{{1, 6}, m}, {{5, 6}, 0}}, {{1, 0}, {2, 0}, {3, 0}, {4, 0}}} - i
sl2
s23
” o o s12 +s23
v 2 g 3., mm - s12
m‘?—‘m—‘l mm - s23
; 4 mm-sl12
. 4 mm - s23
e i 8 T 4mms12 + 4mms23 - s12 s23
v » mm? s12 - 2mm s12 s23 - 4mm s232 + s12 s232

P1 Pas
mm s122 + 4mm s12 s23 - s122 s23 + 4 mm s232 - s12 5232



Finite basis

Alphabet = {letters} S[I]
 Aletter L can appearin the symbol
* Integral can only have singularities when L=0

Landau’s original paper determined if singularities were logarithmic or square-root
* Not so easy to use, since singularities may appear multiple times on multiple sheets
 Still true that singuarites are always either logarithmic or square root

singularities alphabet

{s,t,5-t} —) S,t,s \/LZ: — f

* Galois symmetry
* invariance under i ->-i {8_0 1_ }

Vo= =V Iogarlthml
e VS8—1 notavalid letter

- = ) S_t)t)

logarithmic square root



Finite basis

Location of Landau singularities symbol alphabet
1 ﬁu_l
s=4m?, s oo, A:{u,fu,l—I—u,l—l—ﬁ,u—kv,l—l—u—l—v,m,
_ 2 U
t_4m2:’;_>00: ‘ Bo—1 Buv —1 Buv — Bu Buw — Bu IBUU_)B‘M)BU}
e Bo+ 1 Buv + 1" Buv + Bu’ Buv + Bo” Buv + Bubu
s =0, t=0, m° — 00,
s+t=0, st —4m?s —4m?*t =0. Bu=+V1+u, By, = ,/14_@;‘[-}“”:‘/14_”4_@.

e SOFIA can also produce the alphabet
(may be larger than needed)

* Length of symbolis <=2 x loop order

e 12 letters
b b e 124 =20,736 symbol entries

S[Z]= Z c{iyLi, ® Li, ® Liy @ L,

, e Finite basis!




Landau Boostrap

S[Z]= Z c{iyLi, ® Li, @ Lig ® Li,

How can we fix the coefficients?

Integrability
Galois symmetry
a-positivity
First-entry conditions
Last-entry conditions
Geneological constraints

* Sequential discontinuities

e Cluster adjacency conditions
Regions analysis

e Soft, collinear, Regge limits

* Often don’t work diagram-by-diagram
Direct calculation

Sequences of four letters

Integrable weight-four symbols
Galois symmetry

Physical logarithmic branch cuts
Genealogical constraints

Only algebraic a-positive thresholds
Threshold expansion in ¢

20736
6993
861
161
28




Integrability

* Everyinterated dlog integral has a symbol

f(uvva = Ciq,io, /dlIlL“ 'OdlﬂLin . Zcil,iz,...,in Lil ISR Lin

G ——

2 3
(u,v) * Not every symbol °
corresponds to a function
f ikl W

integration contour

n

(uOIVO)

* For f(u,ylN to be a function, must be independent of local path deformations

B [0.,0,)f =0

* Derivatives only act on the last entry of the symbol (end of integration contour)
Ou[S K ® L| = (0uln L)[S ® K|
OvOu[S ® K ® L] = (0p0uln L)[S @ K]+ (Ouln L)(0yln K)S
[0, 0][S @ K ® L] = [(0,In L) (9yIn K) — (8yln K)(DuIn L)]S

Y
must vanish

(integrability condition)




o positivity

* Symbol encodes all branch points, even on unphysical sheets

Ia(;::')=(fn:.m—1)!/:o 11 dcxe/ 11 ddkcmﬁ(l— > ae)

€€ Eini (G) ceC(G) € By (G)

/

actual Feynman integral on physical sheet is over positive a

* Discontinuities/monodromies act on first entry of the symbol

szwlfwg.../wn
dIzu)l/wg.../wn 1 \‘

« Singularity for physical momenta (physical sheet) €2 singularity of first entry
 See if a > 0in solutions to Landau equations: constrain first symbol entries



Genealogical constraints

Which symbol entries can be adjacent?

* Adja

cent means sequential discontinuities are possible

Pham approach

on-shell surfaces may not intersect in internal momenta
——\x// e vanishing cell from first monodromy doesn’t intersect

/ integration contour of second
\/ * seqguential monodromy vanishes

P1

- DX
same \ lﬁs
o >< different o ><

P'\P (]l — ﬂp&,) (]l — /gpnn) Ia(p) =0

Singular surfaces intersect transversaly in external momenta

different

e e.g.Steinmann relations



Outer-mass double box

* Impose as many constraints as you can
* Work from easy generic stuff (integrability) to hard
* Also need rational prefactor

Easy Constraints # Coeffs

* SOFIA can compute prefactor from maX|ma. cut
All Symbols 20736 * Not part of the symbol
* Final steps may involve computing
integral in a limit "I
Integrability 6993
* Landau bootstrap works!
i L L
Galois symmetry 861 S(Zapox) = —Le ® L—l Q@ Lg®@Lg— Lg® L—l ® Lg® Lg
3 3
L1L2 L2
L¢® L Lo+ Lg®Ly® — Q L
+ Le & 6®L3L5® g+ Le & 9®L5® 6
Physical branch cuts 161 4+ Le®Ls®@Lg® Lg + L ® Lo ® Lg ® Lg
Ly
+ L7 ® Lip ® L—®L5+L7®L10®L8 ® Lo
Genealogical 28 L 5
constraints +L7®L7®L—®LQ+L7®L7®L3®L5
5
. {
a-positive thresholds 6 * Agrees with Caron-Huot & Henn ‘14

Hard




Numerical bootstrap

( Feynman Integral Alphabet \

O‘g LOL®L®L

(s,.1) = (~1.12, - 1.23)

(53,1) = (—2.45, = 1.23) _— _

(s3.13) = (—3.87, — 4.63) § S OFEA GPLs

(5, 1) = (—(;.29, —3.78) Bi= G(-1,0,—1,— 1;w)
4 By= G(-1,0,-1,0;w)

‘ By= G(-1,0,z71,1;w)
L8 mrtow ——
L (> 20 digits)

i=1 | Model basis

B,= G(1,1,1,1;2)

Data (A)

can we just fit the ¢; numerically?

Requirements

1. Evaluate f(x) numerically to high precision
2. Evaluate B(x) to high precision

3. Solve the equation without losing precision



1-loop triangle

m
S —=DP1 9
exact answer: T = —< - (- +4G(0,-1,z) — 2G(0,0; )
_,_p2 m2(1 _ .7;2) 3 H H 7
m _ _ 1—4/14 4m2
one invariant z = -
Alphabet (from Sofia) 1+4/1+ %5

3 letters
A={L}={m,s,4m? —s} «—s {z,14+z,1—2x}

rational

0.042703
prefactor

1
Basis is / . 16 i N (4 m? - s) s

17
T(IL‘) = Z csz(x) — P(J}) X [C@jLi X Lj —+ (G,j —+ bjﬂ')Lj —+ dlﬂ'g —+ dgCg]
1=1

\ J \ J w y

Y Y N

9 terms 6 terms 2 numbers
weight 2 weight 1

* Need T(x) and B;(x) to high precision




Numerical Feynman Integration

« AMFlow: numerical evaluation for Feynman loop integrals to high precision

Integration-by-Parts (IBP) [Chetyrkin, Tkachov, 1981] Master integrals

(basis)

L
N(pi, k;)
Ipiame =/ de — =7= Ra. Di - DPj,Me MIa.
peme) [1 "TIi (a2 —m2 + ie) 2 Relpimymd

Rational functions

e=1

" Liu, Ma, 1801.10523; 2107.01864;
Auxiliary mass flow method (AMFLow) [y, D0 11650: 2201 11637]

1. Introduce an auxiliary mass n to some of the propagator denominators

2. Set up closed differential equations w.r.t n using IBPs
3. Solve the differential equations numerically with boundary conditions n - o

Timing on 1-loop triangle
» each phase space point takes 5-10 CPU-min for 30 signficiant digits



17
T(Hj) = Z C@Bz(&’,‘) = P(.CL‘) X [C@jL@' X Lj + (G,j + bjﬂ')Lj + d17T2 + dgCg]
=1 ‘
* Rational prefactor evaluation is instant
* Weight-2 symbols can be integrated into closed form expressions

* FiberSymbol in Polylogtools can do this ﬁ
 Numerical evaluation is very fast

Integrals of highter weight symbols are not always known

e Can always integrate numerically along a path

_ |‘Zi| 1 A A3 A2
B = Zcil,izjisjiﬁl/‘ dlogLi4(A4)f dlogLiS()\g)/ legLig(A2)f dlogLil(Al),
1 0 0 0 0
* Individual terms may be path dependent, but final result is integrable
e (Can do the first and last integral ananlytically
* Reduce weight by 2: speeds up integration tremendously
* Sometimes analytic integrals can be so complicated that it is faster to do the

integral numerically
* More work needed on efficient numerical evaluation



e Evaluate both sides of this equation at 17 points
* Solve 17 linear equations for coefficients
* j.e.invert the matrix

Problems:

Matrix inversion

T(x)

17

1=1

M;; = Bi(x;) mmmy ci= (M) T(x))

1. No way to impose that c; are rational
Cannot every resolve functions that differ by irrational constants

2[Inz] + 3 [x Ina] = (1 4+ 7)[In 2] + (Q—I—%)[Trln:c]

Even with infinite precision, will not find the exact analytic answer

2. Matrix inversion loses precision very fast

Controlled by condition number
k(M) = | M| M.

Generally our matrices will be ill-conditioned
(they come from smooth functions)




Lattice reduction

* * » L 2 * L 2 L 2

vectors span
a lattice . . | G U G G—
[ 2 * * * L 2 L 2
. . . L’. . .
U2+ i3=24 v U5 =2

* Lattice reduction finds another set of vectors for same lattice

* Can minimize some norm (length of lattice vectors)

* NP-Hard problem: no polynomial-time algorithm for truly best solution
e Efficient algorithms exist to find what is almost always the minimum



Lattice reduction

Rational number coefficients can be fit for numbers using lattice reduction

1 1 2
f:_/ dU/ dvog( uv) + vlog( u)=W—+C3:C17r2—I—62C3=c-v
0 0 uv 6

f=2 847 <—— Assume 4 digits known <——

Multiply by 103 and put into a matrix

iy 10%f 1 2847 1 0 0 vl 0 -6 1 6
ﬁQ - 103?2 1 - 9870 0 1 0 lattice reduction> v - d —11 5 -15
s 103¢3 1 1202 0 0 1 T3 62 4 -2 7

e Lattices are the same so vin the span of u
vectors span U1 B L )
a lattice 7 U1 = —6u1 + U2 + 6us.
= / l First component
- —T -
1 | _— il
V2 - - -




' ts

loN requiremen

Precis

icients can be fit for numbers lattice reduction

Rational number coeff

+C3._617T2—|—62C3:5'6

_
6

uv

log(1 — log(1 —
o og(1l — uv) + vlog(l — u)

1

J

fz—/oldu

U= (71.2, C3)

IS
O g
B 9
2 VR
DI
Q O
£
s ¢
A O
o
o
||
=
10

Multiple solutions imples that

There are (10R)" = 10?R vectors (c4,c,)

Multiply by GCD so ¢, and c, are integers

Assume d digits of precision on v

 C- U produce 102R d digit numbers

N\

AN

i

_—
S
o

3

&

e
S
£

5
e
et

=
o
b

o
R

2
£

2
=

There are only 10¢ d-digit numbers in all

Y
e

SR

O

Need precision d >n R to fit pure numbers

Information content must be sufficient

2

£
2

i
&

25
b
o
e
o

i

F
s

S
AT
it
b

i

b2

o

b2
I
o

25
b
o
Ao
et
£k

k2
o

b2

o

b2
I

o

o
&}




Precision requirements

For fitting functions we can sample at multiple points

flz) =G(0,1;2) — G(1,~1;2)  x; =4/10,x,=9/10
B(ac) = {G(la 05 LL'), G(O: ]-; .’13), G(O: _1; 37): G(la _1; 33)}

vi —35 —24 1.0 0 0 0
Bf(xl) IJ;("P) Lo-o1 V2 92 154 0 1 0 0 0
M = round 10° 1(X1) 1(xp) ol = vy =] -45 —-129 0 0 1 0 O
: V4 3 75 00 0 1 0
Bo(x1) - Bu(xp) Vs ~10 —106 0 0 0 0 1
With p points and d digits A
* net digits of information is p x d 19 digits required
Expected digits needed N o (actual fits)
i X 6ok
digits of f baS!S =R
precision unctions = w0l
req’d i
q \ \, /number 20}

d < of points
P / 5 10 15 20 25
n
number of functions

We can trade off digits of precision for number of points

Will work even if only a few digits of precision are available!




Example 1: Triangles

! 5 — m2 /2
Triangle ladder diagrams <[ <[[ - P zZ = p3 /D7,
P (1—2)(1 - 2) = p3/pi

exact results known

Ti(z) = [2L12(z) Lig(2) + log(2z ,
1 .
T2(Z) = (1 — Z)(l — 2)(2 — 2) |:6L14(Z> - 6L14(Z) - 310g(22) (L13(Z) - L13(Z>) FUII a Iphabet (from SOFIA)
+ %log2(z2) (Lin(2) ~ Lin(2) |, .
Ty(z) = L [ZOLiG(z) — 20Lig(2) — 10log(23) (Lis(z) — Lis(2)) Az = {Zz’ (1-2(1-2),2-3 7, 1 Z}
(1-2)2(1—2)2(z — 2) T2

+ 10g2(22) (Lig(z) — Lig(2)) — %logg (22z) (Lig(z) — Li3(2)>:|

Simplified alphabet (quicker for testing)

Allow all possibilities up to weight 6 A3 = {ZZ (1-2)(1-2), 3 i_—j}
Weight-0: 1
Weight-1:  G(ay
Weight-2:  G(ay,a2,z), ™ x G(ay,z), (2
Weight-3:  G(a1,a9,as3,z), ™ X G(ai,a2,z), (2 X G(a1,x), (3
Weight-4:  G(a1, as, a3,a4, ), ™ X G(ai,a2,a3,2), (2 x G(ay,as,z), ™ x G(ai,z),

Weight-5:  G(a1,a9,as,a4,as5,x), ™ X G(a1,az,a3,a4,2), (2 X G(a1,a2,a3, ),
7 % G(ay,a2,2), (3 X G(a1,az,%), {4 x Gla1,z), G5, Co X (s

Weight-6:  G(ay,as,as,a4,as,06,z), ™ X G(a1,as2,as,a4,05,2), (2 X G(ay, az,as,as,x),
7 x Glay, az,as,z), (3 x G(ay,az,as3,z), {4 x Glai,a2,z), (s x G(ay, ),
(als x G(ay, ), 7 x Glay, ), (s (2



Example 1: Triangles

Triangle ladder diagrams <[ <[ <[

Pick random pointsin (unphysical) Euclidean region 0 <z <z <1
* Makes basis functions real
* Imaginary numbers are fine, just technically complicated python implemntation

Diagram AMFLow Transcendental # points Basis size Reduction
point time weights sampled time
full(32) <1s
One-loop 15.6 CPU-min <2 5 simplified (26) <ls 3 dlgItS
uniform(25) <1s
100 full(488) 9.6 min
Two-loop 1.1 CPU-h <4 100 simplified(393)  10.7 min 20 digits
60 uniform(366) 3.5 min
- full(1373) -
Three-loop 5.7 CPU-h <6 - simplified (972) - 20 d|g|‘ts
200 uniform(806) 1.1h

Results with timing
* Rate limiting step is AMFlow (computation of full function)
* Could be sped up (additonal points much faster than first)



Example 2: Double box

Loop 12 independent letters
\m\ D3 ﬁ:{u,'v,l+u,1+v,u+v,1+u+v,%,
;va_l ;Bu'v_]- ;Bu'u _JB'LL ;Buv_ﬁv ﬁuv“ﬁuﬁv}
P2 P4 ;Bv‘l‘]-,ﬁuv‘l‘]-,ﬁuv‘l'ﬁu,ﬁuv-l'ﬁv,ﬁuv-l'ﬁuﬁv
// I5(u,v)

with 8, = vV1+u, 8, = vV1+v and By = V1 +u+v.

e 124=120,736 weight-4 symbols +(?) lower weight terms
e square root letters are hard to integrate analytically

<7\

method 1: method 2:
rationalize the square roots numerically integate along a contour
o Qe =29 o 4wz * integrate first and last symbol analytically
(w — 2)? (w—2)? * need to be careful with branch cuts

Ay = (w2l twltzwtzltwnl twFzsws, * euclidean region requires some thought
e using integrable contributions helps a lot
 Now symbols can be integrated analytically

* Takes FiberSymbol hours to integrate

e Result is hundreds or thousands of terms

e GiNaC can get numbers out, but very slow



Example 2: Double box

Analytic
regression

Landau
boostrap

Easy Constraints # Coeffs ..4

/'
All Symbols 20736
, Integrability 6993 (e)e
relatively _< 7
€asy b,
Galois symmetry 861 :
\ Physical branch cuts 161 \/ 200pts 17 d|g|ts' t « 30s
;
Genealogical L.
constraints 28 v 200ptS, 8 dlgltS, t<1s
) a -positive thresholds 6 \/ 200pt$, 6 d|g|tS, t<1s
Hard Easy



Double box: limitations

= 150 F oo :
- v a ..
> Successful fit ’
=
= |
= 100 J
o L
. —
4=
Q =
— L
"8 L
~  50F i
D L
R~ L
4=
p L
e - Unsuccesstul fit
—_ ol

50100 150 200 250
Basis set size n

Should work with more functions
* With our compute, hard to succeed with more than n < 200



Choosing points

Before we said you can get away with fewer digits if you use more points

Probability of correct fit

—
=]

S
o

g
o

<
~

FD
bo

&
o

digits of

precision — d < nlt
req’d it P
[ s i
./ — 12 points ]
16 18 20 22 24 26 28

# of significant digits used

number

«— of points

— 12 sampling points
— 14 sampling points
— 50 sampling points

----- 362 sampling points

Can never succeed below some digit lower bound

Why did scaling fail?



Choosing points

100F
80+
[,
X 6ok
g 40k
= 40l
20r 30k
~5 20}
mn
offset near d=0 10}
n
dmin ~ Reﬂg + dU %

* will never work with 1 or 2 digits

choose points in arange B
2—10% <z <1i+10°

— A=-8
— A=—4
M-_A:
— A=4
_______________________________________________________________ — A=38
10 20 30 40 50
p

e wantto choose points

f(pi)={103.2, 2.5, 2.3} .
\ J]
Y °

unrecovarable information
loss if we trunctate to 2 digits

not too close (lose information)
not too far (need more digits)
Need 10-20 digits at least



Double box: timing

AMFlow + Kira (for IBP) GPL evaluation (GINSH)
"""""""""""""""""""""" 25I'"'I'"'I""I""I""I""
__ 50000f :
) =
S 40000} v 20
= =N
> 30000f = 15f
o RS
Q ~ LY = A
_ 20000} = 10}
z = |
= T
= 10000 st
= ool
) O . e O
0 50 100 150 200 250 300 0
# digits of precision d # digits of precision d

~ 1Nn9 2 4 2 4
t(p,n)/llSru}O pjmm(nl—l_}o ngdmm(nl_l_pn )
AMFLow GiNsH fitting

* Trading digits for points makes scaling go from quadradic to linear!



. . Toward the Analytic Bootstrap of Energy Correlators
Application to EECs

Jianyu Gong®,*" Andrzej Pokraka®,® Kai Yan®,%? Xiaoyuan Zhang®“

Consider some types of energy-energy correlators (unequal energy weights)

do

B E; 1 —cosb;;
dxlg---dm(N_l)NZZ Z /damx H Qk H 6($j,3— > JI).

m 1<iy, iy <m 1<k<N 1<j<I<N

£

Uses of lattice reducion
* Find linear dependence among basis functions

G(z) = D(z) + ao,11 91(2) + 0,12 92(2) + @1,12 93(2) + 2,12 94(2) + ¢1,12 95(2) + d2,12 96(2)

1
93(2) = 122z )22 272 — 2'2 4+ 82°7° — 142°2° + 82%7 — 28 + 277t — 142773

+24227% — 14225 + 2 + (22423 — 32472 + 2224+ 2232 — 82323 + 92372 — 4237 4+ 23
— 32271 +92%2% — 122227 + 9277 — 327 + 22" — 427° + 92727 — 822+ 22+ 7° — 332
+2z)log((z — 1) (2 — 1)) + (=222 + 32*2% — 2"z — 2237* + 82°2° — 9237 + 2232

+32%2% — 92%2° + 62°2% — 22" 4 222%) log(22) — 22" + 822° — 1422° + 822 — 2° + 2°

o Treat {g;} as transcendental basis and a

b

i.j2 Ci

ij> ij d; ; as coefficients to determine

 (1). Run lattice reduction among {g;(z)} to get a linear-independent basis {g,(z)}
* (2). Run lattice reduction among both G(z) and {£(2)}

In this case, 2 numerical points and 13 digits fix all six parameters



Landau boostrap

Pros and cons: Landau bootstrap

Can eliminate large swaths of symbols with physical constraints
Don’t need to do integrals
Leads to new deep understanding in what amplitdues are

Requires subtle understanding of singularities

e Analytic structure of amplitudes

* Branch points, euclidean regions

e Algebraic geometry
Rational prefactors not fixed by singularities alone
Often still requires some integration at the end



Pros and cons: analytic regression

Analytic regression e Easy to automate
with lattice reduction

Can work for any functions
* not just polylogs with symbols
e elliptic polylarithms? no problem!
* cross sections, EECs, etc.
* Can find linear dependencies
e Can trade digits of accuracy for points
e Scaling t~n? or worse to t~n

 Becomes computationally challenging above n ~ 200
* AMFlow scales like (# digits)?
 |attice reduction scales like (# constants)*

*  Minimum number of digits needed (~ 5 or 6)

problem
solved




Conclusions
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