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1. What central value of the scales should we choose? 
•  Goal is to have best agreement with data 

 

2. How much should we vary around that scale 
•  Goal is to produce uncertainty treatable like statistical uncertainty 
•  Want 95% (or 68%?) confidence that next order will be within uncertainty bands 
 

SCET helps with this 

Does SCET help with this? 
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20.1 e+e− → µ+µ− (+γ) 357

For an S-matrix calculation, only amputated graphs are necessary (see Section 18.3.2).
In this case, there are five relevant 1-loop graphs in QED:

, , , , . (20.7)

The next-to-leading order O(α3) result is the interference between these graphs (of order
α2) and the original graph (of order α).

In addition to loop corrections to the 4-point function, we will also need to calculate
real emission graphs to cancel the IR divergences. Real emission graphs correspond to
processes that are the same order in perturbation theory as the loops but involve more final
state particles. We will do the loops first, then the real emission graphs, and then show that
we can take mγ → 0 after all the contributions are combined into the full cross section
σtot = σ(e+e− → µ+µ−(+γ)).

An important simplifying observation is that since, as far as QED is concerned, the elec-
tron and muon charges, Qe and Qµ, can be anything, the IR divergence must cancel order
by order in Qe and Qµ separately. The tree-level cross section scales as σ0 ∼ Q2

eQ
2
µ.

The loops in Eq. (20.7) scale as QeQ3
µ, Q3

eQµ, Q2
eQ

2
µ, Q2

eQ
2
µ and QeQµQ2

X respectively,
where QX is the charge of the particles going around the vacuum polarization loop, which
can be anything. In particular, we will focus on the cancellation of divergences propor-
tional to σ0QeQ3

µ. This cancellation gives the critical demonstration of IR finiteness, and
is phenomenologically relevant. Other loop contributions will be discussed afterwards.

20.1.1 Vertex correction

The vertex correction is

iMΓ =

p1

p2

p

p4

p3

+
p1

p4p2

p p3

= i
e2

R

Q2
v̄(p2)γµu(p1)ū(p3)Γµ

2 (p)v(p4),

(20.8)
where pµ = pµ

1 + pµ
2 is the photon momentum entering the vertex with p2 = Q2. In this

equation, Γµ
2 (p) refers to the O(e2) contribution to the 1PI vertex function, for which we

do not introduce any new subscripts for readability. Conveniently, we already computed
Γµ

2(p) for a general off-shell photon in Section 19.3, so we can just copy over those results.
Recall from Section 19.3 that the general vertex function Γµ(p) can be parametrized in

terms of two form factors:

Γµ(p) = F1(p2)γµ +
iσµν

2m
pνF2(p2). (20.9)
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20.2 Jets

We have found that the sum of the e+e− → µ+µ− cross section σV , at order e6
R from

the graphs + , and the e+e− → µ+µ−γ cross section σR also at order

e6
R from the graphs + , was IR and UV finite. Photons emitted from

final state particles, such as the muons in this case, are known as final state radiation. The
explanation of why one has to include final state radiation to get a finite cross section is
that it is impossible to tell whether the final state in a scattering process is just a muon or
a muon plus an arbitrary number of soft or collinear photons. Trying to make this more
precise leads naturally to the notion of jets.

For simplicity, we calculated only the total cross section for e+e− annihilation into
states containing a muon and antimuon pair, inclusive over an additional photon. One could
also calculate something less inclusive. For example, experimentally, a muon might be
identified as a track in a cloud chamber or an energy deposition in a calorimeter. So one
could calculate the cross section for the production of a track or energy deposition. This
cross section gets contributions from different processes. Even with an amazing detector,
there will be some lower limit Eres on the energy of photons that can be resolved. Even for
energetic photons, if the photon is going in exactly the same direction as the muon there
would be no way to resolve it and the muon separately. That is, there will be some lower
limit θres on the angle that can be measured between either muon and the photon.

With these experimental parameters,

σtot = σ2→2 + σ2→3, (20.52)

where

σ2→2 = σ
(
e+e− → µ+µ−)+ σ

(
e+e− → µ+µ−γ

) ∣∣∣
Eγ<Eres or θγµ<θres

(20.53)

is the rate for producing something that looks just like a µ+µ− pair and

σ2→3 = σ
(
e+e− → µ+µ−γ

) ∣∣∣
Eγ>Eres and θγµ>θres

(20.54)

is the rate for producing a muon pair in association with an observable photon.
The cross section for muons plus a hard photon is now IR finite due to the energy cutoff,

even for Eres ≪ Q and θres ≪ 1. Unfortunately, the phase space integral within these
cuts, even with mγ = 0, is complicated enough to be unilluminating. The result, which we
quote from [Ellis et al., 1996], is that the rate for producing all but a fraction Eres

Q of the
total energy in a pair of cones of half-angle θres is

σ2→3 = σ0
e2

R

8π2

{
ln

1
θres

[
ln
(

Q

2Eres
− 1
)
− 3

4
+ 3

Eres

Q

]

+
π2

12
− 7

16
− Eres

Q
+

3
2

(
Eres

Q

)2

+ O
(
θres ln

Eres

Q

)}
. (20.55)
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that

σ
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)
≡ σ

(
e+e− → µ+µ−)+ σ

(
e+e− → µ+µ−γ

)

= σ0

(
1 +

3e2
R

16π2

)
, (20.3)

where σ0 = e4
R

12πQ2 is the tree-level cross section for e+e− → µ+µ− at ECM = Q. While
this QED cross section is very difficult to measure, its analog in QCD, e+e− → q̄q(+g),
to be discussed in Section 26.3, is an important precision calculation which has been well
confirmed by data and provides strong constraints on beyond-the-Standard-Model physics.

We will see how having to sum over final states (and sometimes initial states) with
different particle multiplicities is related to a muon not being physically separable from its
surrounding cloud of soft photons. Trying to make this photon cloud more precise leads
naturally to the notion of jets. Similarly, trying to understand the initial state radiation
contribution leads naturally to the notion of parton distribution functions. The total cross
section calculation is so important that we will calculate it two ways, with a Pauli–Villars
UV regulator and a photon mass IR regulator, and with dimensional regularization for both
the UV and the IR, showing that the total cross section is regulator independent.

20.1 e+e− → µ+µ− (+γ)

At leading order, the cross section for e+e− → µ+µ− involves a single Feynman diagram:

iM0 =
p1

p4p2

p3

= i
e2

R

Q2
v̄(p2)γµu(p1)ū(p3)γµv(p4), (20.4)

where Q2 = (p1 + p2)2 = E2
CM = s is the square of the center-of-mass energy.

We already studied this process at tree-level in Section 13.3 and found that, in the high-
energy limit, Q≫ me,mµ, the differential cross section is (Eq. (13.78))

dσ

dΩ
=

e4
R

64π2Q2
(1 + cos2 θ). (20.5)

The total tree-level cross section is then a simple integral:

σ0

(
Q2
)

=
∫ 2π

0
dφ

∫ 1

−1
d cos θ

dσ

dΩ
=

e4
R

12πQ2
. (20.6)

What we would like to calculate is the next-to-leading-order correction to σ0, which begins
at O

(
α3
)
.
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•  Only one scale, so choosing µ = Q = ECM turns σtot into a series in α(Q) 

•  Varying µ adds terms at higher order in α, example of higher order effects 

•  Doesn’t even have the right scaling with group factors 
•  With one flavor, we need µ = 8000 Q to get NLO effect right 
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•  Choose µ = Q  
•  by dimensional analysis? 

•  Why not µ = τ Q or µ2 = τ Q2? 
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Figure 7: Thrust distribution at Q = MZ at LO (blue), NLO (green) and NNLO (red). The solid
lines represent the prediction for renormalisation scale µ = Q and αs(MZ) = 0.1189, while the
shaded region shows the variation due to varying the renormalisation scale between µ = Q/2 and
µ = 2Q. The data is taken from [1].

The inclusion of the NNLO corrections enhances the thrust distribution by around

(15-20)% over the range 0.04 < (1− T ) < 0.33, where −ln(1−T ) is not too large. Outside

this range, one does not expect the perturbative fixed-order prediction to yield reliable

results. For (1 − T ) → 0, the convergence of the perturbative series is spoilt by powers

of logarithms ln(1 − T ) appearing in higher perturbative orders, thus necessitating an all-

order resummation of these logarithmic terms [10, 11], and a matching of fixed-order and

resummed predictions [48].

The perturbative parton-level prediction is compared with the hadron-level data from

the ALEPH collaboration [1] in Figure 7 and Figure 8. We observe that for all Q values,

the shape and normalisation of the parton level NNLO prediction agrees better with the

data than at NLO. We also see that the NNLO corrections account for approximately half

of the difference between the parton-level NLO prediction and the hadron-level data.

6.2 Heavy jet mass

The perturbative prediction for the heavy jet mass distribution is displayed in Figure 9.

The solid lines represent the prediction at the physical scale Q = MZ , while the shaded

bands represent the effect of varying the renormalisation scale upwards and downwards

by a factor of 2. We observe that the relative scale uncertainty is reduced by about 50%

between NLO and NNLO. It is noteworthy that the original motivation for introducing the

heavy jet mass distribution [20] was the hope for improved perturbative stability over the

thrust distribution. This improved stability was not evident from the existing NLO results

alone, but becomes visible at NNLO.

Compared to NLO, the inclusion of the NNLO corrections enhances the heavy jet

mass distribution by around 10% over the range 0.02 < ρ < 0.33, where ln(ρ) is not too

– 15 –

•  Clearly underestimating errors! 
•  Poor convergence 

[Gehrmann et al. 0711.4711, 2011] 
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the endpoint region, one finds

R(τ) =

∫ τ

0

dτ ′ 1

σ0

dσ

dτ ′
= 1 +

2αs

3π

[
−2 ln2 τ − 3 ln τ + . . .

]
. (3)

Double logarithmic terms of the form αn
s ln2n τ arise from regions of phase space where the

quarks or gluons are soft or collinear. For small enough τ , higher order terms are just as
important as lower order ones and the standard perturbative expansion breaks down. Re-
summation refers to summing a series of contributions of the form αn

s lnm τ for the integral
R(τ) or αn

s (lnm−1 τ)/τ for the differential distribution. Leading logarithmic (LL) accuracy is
achieved by summing the tower of logarithms with m = 2n, next-to-leading logarithmic accu-
racy (NLL) also sums the terms with m = 2n − 1. Resummation at NkLL accuracy, provides
all logarithmic terms with 2n ≥ m ≥ 2n − 2k + 1, as detailed in Section 2.

The first resummation of event shapes was done by Catani, Trentadue, Turnock and Web-
ber (CTTW) in [12]. Their approach was to define jet functions JC(p2) as the probability
for finding a jet of invariant mass p2 in the event. These can be calculated to NLL by sum-
ming probabilities for successive emissions using the Alterelli-Parisi splitting functions. Each
term in the series that is resummed corresponds to an additional semi-classical radiation. The
splitting functions only account for collinear emissions; to include soft emission, it is common
either to impose some kind of angular ordering constraint to simulate soft coherence effects, or
to use more sophisticated probability functions, such as Catani-Seymour dipoles [13]. Except
for [14], none of these approaches has led to a resummation for event shapes beyond NLL.

The approach to resummation of event shapes [15] based on Soft-Collinear Effective The-
ory (SCET) [16, 17, 18] contrasts sharply with the semi-classical CTTW treatment. The
most important conceptual difference is that effective field theory works with amplitudes, at
the operator level, instead of probabilities at the level of a differential cross-section. Conse-
quently, the resummation comes not from the exponentially decreasing probability for multiple
emissions, but from a solution to renormalization group (RG) equations.

The starting point for the effective field theory approach is the factorization formula for
thrust in the 2-jet region,

1

σ0

dσ2

dτ
= H(Q2, µ)

∫
dp2

Ldp2
Rdk J(p2

L, µ) J(p2
R, µ) ST (k, µ)δ(τ −

p2
L + p2

R

Q2
−

k

Q
) , (4)

where H(Q2, µ) is the hard function, J(p2, µ) the jet function, and ST (k, µ) is the soft function
for thrust. Q refers to the center-of-mass energy of the collision, µ is an arbitrary renormaliza-
tion scale, and the born-level cross section σ0 appears for normalization. A similar factorization
formula was derived to study top quark jets in [19], and then transformed into this form to
study event shapes in [15]. Factorization properties of event shape variables were also studied
in [20, 21]. The expression (4) is valid to all orders in perturbation theory up to terms which
are power suppressed in the two-jet region τ → 0,

dσ

dτ
=

dσ2

dτ

[
1 + O(τ)

]
. (5)

The key to the factorization theorem is that near maximum thrust, τ reduces to the sum

2

Each function has one scale 

Hard function: Q 
 (hard scale, like COM energy) 

Jet function: p2 

(mass of the jet) 
Soft scale 

(out-of-jet energy) 

•  Natural scales read off from factorization formula 

 
•  Evolve each function from its scale to common scale µ using RGE 
•  Logs of µ linked to logs of τ 

•  Reduces problem to the fixed-order inclusive calculation case 
•  Single scale at fixed order is misleading: multiple scale problem 

Thrust distribution: SCET 

µh = Q µj =
p
⌧Q µs = ⌧Q

ln
µj

µ
= ln

Q

µ
+

1

2
ln ⌧ ln

µs

µ
= ln

Q

µ
+ ln ⌧ln

µh

µ
= ln

Q

µ



Natural scales improve convergence 
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Hadron collisions more complicated 
March 30, 2017 Matthew Schwartz 

2.2 Differential cross sections

Using v and w, the cross section can be written in the form [3]

d2σ

dydpT
=

2

pT

∑

ab

∫ 1−
pT

ECM
e−y

pT
ECM

ey
dv

∫ 1

pT
ECM

1
v
ey
dw

[
x1fa/N1

(x1, µ)
] [
x2fb/N2

(x2, µ)
] d2σ̂ab
dwdv

, (15)

where the sum is over the different partonic channels.
At leading order the mass of the final state is zero, w = 1, and

d2σ̂ab
dwdv

= σ̃ab(v)δ(m
2
X) =

v̄

p2T
σ̃ab(v) δ(1− w) (16)

where

σ̃qq̄(v) = παeme
2
qαs(µ)

2CF

Nc

(
v2 + v̄2

) 1
v̄
, (17)

σ̃qg(v) = παeme
2
qαs(µ)

1

Nc

(
1 + v̄2

) v
v̄
.

Here, eq are the charges of the quarks and Nc is the number of colors.
At next-to-leading order (NLO), the partonic cross section acquires w dependence. It has

the form (leaving the partonic indices ab implicit)

d2σ̂

dwdv
=

v̄

p2T
σ̃(v)

{
δ(1− w) + αs(µ)

[
δ(1− w)h1(v) +

[
1

1− w

]

+

h2(v)

+

[
ln(1− w)

1− w

]

+

h3(v) + h4(v, w)

]}
. (18)

The plus distributions indicate the singular behavior at NLO as w → 1, that is, as the
kinematic threshold is approached. An NnLO computation would lead to higher-order plus

distributions, up to
[
ln2n−1(1−w)

1−w

]

+
. Keep in mind that there is implicit, non-singular, w de-

pendence in the PDF fa(x1, µ) as well. These functions hi can be found in [3]. The singular
ones, h1, h2 and h3, as well as the singular coefficients at NNLO are listed in Appendix B.

The result from effective theory, which we derive in Section 3, has the form1

d2σ̂

dwdv
= w σ̃(v)H(pT , v, µ)

∫
dk J(m2

X − (2EJ)k, µ)S(k, µ) . (19)

Here, H , J , and S are the hard, jet and soft functions, respectively and EJ is the energy
of the jet. The functions H , J , and S are different in the two partonic channels. The hard
function comes from matching SCET to QCD. It depends only on v, since w = 1 at the hard

1 The w prefactor in this equation is a convention, but it follows from the ŝ
−1 dependence of the partonic

cross section and conveniently cancels the w-dependence of x1 in Eq. (15).
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The result from effective theory, which we derive in Section 3, has the form1

d2σ̂

dwdv
= w σ̃(v)H(pT , v, µ)

∫
dk J(m2

X − (2EJ)k, µ)S(k, µ) . (19)

Here, H , J , and S are the hard, jet and soft functions, respectively and EJ is the energy
of the jet. The functions H , J , and S are different in the two partonic channels. The hard
function comes from matching SCET to QCD. It depends only on v, since w = 1 at the hard

1 The w prefactor in this equation is a convention, but it follows from the ŝ
−1 dependence of the partonic

cross section and conveniently cancels the w-dependence of x1 in Eq. (15).
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P

Mass of jet 

P

photon 

Qualitatively similar in threshold expansion: 

At the hadron level, the event is characterized by two quantities, pT and y. At the parton
level, it takes four, for example, {pT , y, x1, x2}, or {pT , y, v, w}.

To understand the thresholds, it is helpful to define the hadronic invariant mass

M2
X = P 2

X = (P1 + P2 − pγ)
2 = s+ t + u (9)

and the partonic invariant mass

m2
X = (p1 + p2 − pγ)

2 = ŝ+ t̂+ û . (10)

The partonic invariant mass, mX , includes only the partons involved in the hard scattering
process, while the hadronic mass, MX , includes also the proton remnants. Note that while MX

is observable, mX must be integrated over in any measurable quantity. In the literature (e.g.
in [5]), the above two quantities are sometimes denoted by S4 = M2

X and s4 = m2
X . These

quantities represent the mass of everything in the final state except the photon, at the hadron
and parton levels respectively. At leading order in perturbation theory, where the partonic
final state consists of a single parton, w = 1 and mX = 0 exactly.

In terms of pT , y, v and w the threshold variables read

M2
X = E2

CM − 2pTECM cosh y = E2
CM (1− pT/p

max
T ) (11)

and

m2
X =

p2T
v̄

1− w

w
. (12)

In terms of mX , x1, x2 and v,

M2
X =

m2
X

x2
+ E2

CM [(1− x1)v + (1− x2)v̄] . (13)

Since partonic configurations are specified by four variables, surfaces of constant MX(pT , y)
are three dimensional. That is, there are three independent ways we can have the a small
deviation from MX = 0. It is natural to take the independent variations to be x1, x2 and m2

X

because setting x1 = x2 = 1 and mX = 0 forces MX = 0 exactly. The fourth variable, v, can
be thought of as moving us along the surface of constant MX . As MX → 0, vv̄ → p2T/E

2
CM.

Then, to first order in 1− x1, 1− x2 and m2
X ,

M2
X = m2

X +
p2T
vv̄

[(1− x1)v + (1− x2)v̄] + . . . . (14)

This is equivalent to the threshold expansion in [5]. This form for MX will be convenient for
checking the SCET factorization theorem in Section 5.

Note that the limit MX → 0 automatically enforces that the reaction takes place at the
threshold x1 → 1, x2 → 1, where the leading partons carry almost all of the proton momentum.
In contrast, taking mX → 0 does not force x1 → 1 or x2 → 1. At the partonic level, the
factorization theorem will resum logs of mX , which appear as αn

s ln
m(1 − w). It will also

resum logs from the evolution of the parton distribution functions, of the form αn
s ln

m(1−xi),
which are only relevant near the machine threshold.
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Factorization derived at small MX 
  

•  MX typically large – so why is this regime interesting? 

•  We want to measure the jet mass 
•  We expect resummation to be important as 

Jet mass in direct photon 

Machine Threshold limit 
• Initial state: 2 protons 
• Final state: 1 jet + 1 photon+ soft radiation only   
                                      (no jet-like proton remnants) 

γ 

γ 

Assumption for 
SCET factorization theorem 

MX = mass of everything-but-the-photon 

Observable is photon pT  and rapidity (y) 
•  Inclusive measurement -- no jet definition necessary 



Threshold Enhancement 
(mass of jet)  (mass of everything but the photon) 

Machine threshold Partonic threshold 

•  Assumed for SCET 
calculation 

•  Where partonic logs 
are large 

large large large 

small 

•   typical x << 1 

  
• jet masses are typically small 
        (as we know) 

logs = logs +  logs     +      logs 

•   Most of large MX comes 
        from proton remnants 

 expect some logs still large 



Direct photon in SCET 
PDF 

Jet function Soft function 

PDF 

Hard function 
•  NLO (from QCD) 
•  SCET: γH to 3-loops 

•  Quark jet to NNLO 
•  Gluon jet to NLO 
•  γJq and γJq to 3-loops 

•  both channels to NLO 
•  γS  to 3-loops 
(from RG and 
       Casimir scaling) 

Direct photon distribution with 
  NNLL resummation + NLO fixed order 



What are the matching scales? 
= mass of jet 

Matching scales appear as: 

Hard scale = pT Jet scale = mJ?  

• Works for thrust 

• Problematic for direct photon 
• mJ is integrated over, including mJ= 0 

•  probes Landau pole of QCD → unphysical power corerctions 
 
 All matching scales should depend only physical, observable scales –i.e.  pT   



Natural scales 

Hard scale Jet scale 

So we take: 

Always well above LQCD  
• avoids unphysical region 

note that 



Jet masses 

R=1.2 

R=0.4 

Rule of thumb “m = 0.2 pt” 

mJ really  is close to the mass of 
the partonic jet 
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Figure 3: Size of the hard and jet function one-loop corrections as a function of the scale for
different values of pT at ECM =1960 GeV. The right panel shows the optimal scale choice at
different pT , with the dashed lines denoting our default choice, Eq. (107).

Finally, the fixed order expressions for hard, jet, and soft functions when combined at
the scales µh = µj = µs = pT , should reproduce all the singular terms in the exact parton
level NLO amplitudes from the full standard model. The results for these singular terms are
presented in Appendix B and agree precisely with [3]. In addition, working to order α2

s, we can
derive all of the terms singular in 1−w at NNLO. Previous results with NLL resummation [9]
were able to predict only some of these singularities.

6 Scale choices and matching

While the resummed result is formally independent of the scales µh, µj , and µs, there is
residual higher-order dependence on these scales if the perturbative expansions of the hard,
jet and soft functions are truncated at a finite order. To get a well behaved expansion, we want
to evaluate each contribution at its natural scale, where it does not involve large perturbative
logarithms. In a fixed order calculation, the presence of several scales can preclude such a
choice, but since the hard jet and soft functions each only depend on a single scale, we are
guaranteed that there are scale choices for which large logarithms are absent.

By examining the form of the resummed distribution, Eqs. (92) and (93), it can be seen
that the hard, jet and soft scales appear in the cross section only through the combinations

p2T
µ2
h

,
m2

X

µ2
j

,
m2

X

pTµs
. (106)

Picking µh = pT , µj = mX and µs = m2
X/pT as the canonical scales would guarantee the

absence of large logarithms, but this choice is problematic. To see the problem, recall that
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Finally, the fixed order expressions for hard, jet, and soft functions when combined at
the scales µh = µj = µs = pT , should reproduce all the singular terms in the exact parton
level NLO amplitudes from the full standard model. The results for these singular terms are
presented in Appendix B and agree precisely with [3]. In addition, working to order α2

s, we can
derive all of the terms singular in 1−w at NNLO. Previous results with NLL resummation [9]
were able to predict only some of these singularities.

6 Scale choices and matching

While the resummed result is formally independent of the scales µh, µj , and µs, there is
residual higher-order dependence on these scales if the perturbative expansions of the hard,
jet and soft functions are truncated at a finite order. To get a well behaved expansion, we want
to evaluate each contribution at its natural scale, where it does not involve large perturbative
logarithms. In a fixed order calculation, the presence of several scales can preclude such a
choice, but since the hard jet and soft functions each only depend on a single scale, we are
guaranteed that there are scale choices for which large logarithms are absent.

By examining the form of the resummed distribution, Eqs. (92) and (93), it can be seen
that the hard, jet and soft scales appear in the cross section only through the combinations
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Picking µh = pT , µj = mX and µs = m2
X/pT as the canonical scales would guarantee the

absence of large logarithms, but this choice is problematic. To see the problem, recall that
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Finally, the fixed order expressions for hard, jet, and soft functions when combined at
the scales µh = µj = µs = pT , should reproduce all the singular terms in the exact parton
level NLO amplitudes from the full standard model. The results for these singular terms are
presented in Appendix B and agree precisely with [3]. In addition, working to order α2

s, we can
derive all of the terms singular in 1−w at NNLO. Previous results with NLL resummation [9]
were able to predict only some of these singularities.

6 Scale choices and matching

While the resummed result is formally independent of the scales µh, µj , and µs, there is
residual higher-order dependence on these scales if the perturbative expansions of the hard,
jet and soft functions are truncated at a finite order. To get a well behaved expansion, we want
to evaluate each contribution at its natural scale, where it does not involve large perturbative
logarithms. In a fixed order calculation, the presence of several scales can preclude such a
choice, but since the hard jet and soft functions each only depend on a single scale, we are
guaranteed that there are scale choices for which large logarithms are absent.

By examining the form of the resummed distribution, Eqs. (92) and (93), it can be seen
that the hard, jet and soft scales appear in the cross section only through the combinations

p2T
µ2
h
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X/pT as the canonical scales would guarantee the

absence of large logarithms, but this choice is problematic. To see the problem, recall that
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Figure 3: Scale sensitivities. These plots show the effect of adding part of the fixed-order NLO
calculation to the LO calculation. The left panel shows what happens if all the µ-dependent
terms at NLO are added together. There is a slow monotonic logarithmic µ dependence,
with no natural extremum. In contrast, when the hard, jet, or soft contributions are added
separately, there are natural extrema. These extrema indicate the average value of momenta
⟨p⟩ appearing in the logarithms. That there are different extrema for the different components
proves that multiple scales are relevant. The plots are for W+ bosons, but the qualitative
features are the same for all bosons.

these degrees of freedom, appearing in the large logarithms. After integrating over the PDFs,
the perturbative correction will then have the form

∆σ

σLO
= αs(µ)(c2L

2 + c1L+ c0) , (28)

with L = ln µ
⟨p⟩ . If µ is chosen either much lower or much higher than ⟨p⟩, the perturbative

corrections will become large. Since we do not have an analytic expression for the distribution,
due to the necessity of convoluting with PDFs, we determine ⟨p⟩ numerically by computing the
individual corrections to the cross section as a function of µ. The result is shown in the right
plot of Figure 3. It has the expected form (28) and we see that while the jet and soft scales
are concave upwards, the hard curve is concave downward. The extrema of the corresponding
curves indicate the scales ⟨p⟩ that dominate these contributions after integrating over the
PDF. It is then natural to define our default values for µ as the positions of the extrema.
That there are different extrema for the different components proves that multiple scales are
relevant. These scales are conflated in the fixed-order calculation. The left plot in Figure 3
shows the fixed-order scale dependence. In this case, there is monotonic µ dependence, with
no natural extremum.

To find the scales numerically we extract these extrema from the curves. Using a number of
different machine center-of-mass energies (we tried 2, 7, 14, and 100 TeV), pp and p̄p collisions,
and various boson masses, we determine a reasonable approximation to these points is given
by the following functional forms
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Figure 3: Scale sensitivities. These plots show the effect of adding part of the fixed-order NLO
calculation to the LO calculation. The left panel shows what happens if all the µ-dependent
terms at NLO are added together. There is a slow monotonic logarithmic µ dependence,
with no natural extremum. In contrast, when the hard, jet, or soft contributions are added
separately, there are natural extrema. These extrema indicate the average value of momenta
⟨p⟩ appearing in the logarithms. That there are different extrema for the different components
proves that multiple scales are relevant. The plots are for W+ bosons, but the qualitative
features are the same for all bosons.

these degrees of freedom, appearing in the large logarithms. After integrating over the PDFs,
the perturbative correction will then have the form

∆σ
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= αs(µ)(c2L

2 + c1L+ c0) , (28)

with L = ln µ
⟨p⟩ . If µ is chosen either much lower or much higher than ⟨p⟩, the perturbative

corrections will become large. Since we do not have an analytic expression for the distribution,
due to the necessity of convoluting with PDFs, we determine ⟨p⟩ numerically by computing the
individual corrections to the cross section as a function of µ. The result is shown in the right
plot of Figure 3. It has the expected form (28) and we see that while the jet and soft scales
are concave upwards, the hard curve is concave downward. The extrema of the corresponding
curves indicate the scales ⟨p⟩ that dominate these contributions after integrating over the
PDF. It is then natural to define our default values for µ as the positions of the extrema.
That there are different extrema for the different components proves that multiple scales are
relevant. These scales are conflated in the fixed-order calculation. The left plot in Figure 3
shows the fixed-order scale dependence. In this case, there is monotonic µ dependence, with
no natural extremum.

To find the scales numerically we extract these extrema from the curves. Using a number of
different machine center-of-mass energies (we tried 2, 7, 14, and 100 TeV), pp and p̄p collisions,
and various boson masses, we determine a reasonable approximation to these points is given
by the following functional forms
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P P

High pT  
W boson 

EFTs reveal the relevant scales: 

Soft scale 

Individual variation show extrema 
    (natural µhard, µjet, µsoft scales, like Q) 

When put together µhard=µjet=µsoft=µ  gives NLO 

No natural µ at NLO (or NnLO). Cannot set all scales equal.  

Becher, Lorentzen and MDS, Phys.Rev. D 86 (2012)  

~ jet mass 

~ out of jet energy 

~ pT 
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•  Have many scale variations 
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the endpoint region, one finds

R(τ) =

∫ τ

0

dτ ′ 1

σ0

dσ

dτ ′
= 1 +

2αs

3π

[
−2 ln2 τ − 3 ln τ + . . .

]
. (3)

Double logarithmic terms of the form αn
s ln2n τ arise from regions of phase space where the

quarks or gluons are soft or collinear. For small enough τ , higher order terms are just as
important as lower order ones and the standard perturbative expansion breaks down. Re-
summation refers to summing a series of contributions of the form αn

s lnm τ for the integral
R(τ) or αn

s (lnm−1 τ)/τ for the differential distribution. Leading logarithmic (LL) accuracy is
achieved by summing the tower of logarithms with m = 2n, next-to-leading logarithmic accu-
racy (NLL) also sums the terms with m = 2n − 1. Resummation at NkLL accuracy, provides
all logarithmic terms with 2n ≥ m ≥ 2n − 2k + 1, as detailed in Section 2.

The first resummation of event shapes was done by Catani, Trentadue, Turnock and Web-
ber (CTTW) in [12]. Their approach was to define jet functions JC(p2) as the probability
for finding a jet of invariant mass p2 in the event. These can be calculated to NLL by sum-
ming probabilities for successive emissions using the Alterelli-Parisi splitting functions. Each
term in the series that is resummed corresponds to an additional semi-classical radiation. The
splitting functions only account for collinear emissions; to include soft emission, it is common
either to impose some kind of angular ordering constraint to simulate soft coherence effects, or
to use more sophisticated probability functions, such as Catani-Seymour dipoles [13]. Except
for [14], none of these approaches has led to a resummation for event shapes beyond NLL.

The approach to resummation of event shapes [15] based on Soft-Collinear Effective The-
ory (SCET) [16, 17, 18] contrasts sharply with the semi-classical CTTW treatment. The
most important conceptual difference is that effective field theory works with amplitudes, at
the operator level, instead of probabilities at the level of a differential cross-section. Conse-
quently, the resummation comes not from the exponentially decreasing probability for multiple
emissions, but from a solution to renormalization group (RG) equations.

The starting point for the effective field theory approach is the factorization formula for
thrust in the 2-jet region,

1

σ0

dσ2

dτ
= H(Q2, µ)

∫
dp2

Ldp2
Rdk J(p2

L, µ) J(p2
R, µ) ST (k, µ)δ(τ −

p2
L + p2

R

Q2
−

k

Q
) , (4)

where H(Q2, µ) is the hard function, J(p2, µ) the jet function, and ST (k, µ) is the soft function
for thrust. Q refers to the center-of-mass energy of the collision, µ is an arbitrary renormaliza-
tion scale, and the born-level cross section σ0 appears for normalization. A similar factorization
formula was derived to study top quark jets in [19], and then transformed into this form to
study event shapes in [15]. Factorization properties of event shape variables were also studied
in [20, 21]. The expression (4) is valid to all orders in perturbation theory up to terms which
are power suppressed in the two-jet region τ → 0,

dσ

dτ
=

dσ2

dτ

[
1 + O(τ)

]
. (5)

The key to the factorization theorem is that near maximum thrust, τ reduces to the sum

2

•  Compute each to fixed-order at its natural scale 

The function AΓ(ν, µ) is defined as AH(ν, µ), but with γH replaced by Γcusp. The solutions of
the RG equations for the jet and soft function given below involve functions AJ(ν, µ), AS(ν, µ)
which are obtained from (11) by substituting γJ , γS for γH . It is straightforward to expand
S(ν, µ) and AH(ν, µ) perturbatively in αs(ν) and αs(µ) given the expansions of Γcusp(α) and
γH(α). The explicit expansions can be found in [24].

In SCET the jet function is given by the imaginary part of the collinear quark propagator,

J(p2, µ) =
1

(n̄ · p)

1

π
Im

[
i

∫
d4x e−ipx⟨0|T

{
χ̄n(x)

n̄/

2
χn(0)

}
|0⟩
]

= δ(p2) + O(αs) (12)

and thus vanishes for p2 < 0. The jet function was calculated at one loop in [33] and at two
loops in [23]. To evaluate the function perturbatively, it is convenient to rewrite the collinear
quark propagator in terms of QCD fields. One finds that the jet function is obtained from
the quark propagator in light-cone gauge. The jet function satisfies a RG equation which is
non-local in p2 [23],

dJ(p2, µ)

d lnµ
=

[
−2Γcusp ln

p2

µ2
− 2γJ

]
J(p2, µ) + 2Γcusp

∫ p2

0

dq2J(p2, µ) − J(q2, µ)

p2 − q2
. (13)

From the divergent part of the form factor at three loops [32] and the NNLO Altarelli-Parisi
splitting functions [34] the jet anomalous dimension γJ was derived at three loops in [24] and
is given in Appendix A. Although the RG equation is non-local in p2, it is local in µ and can
be solved using Laplace transform techniques. The result is [24]

J(p2, µ) = exp [−4S(µj , µ) + 2AJ(µj, µ)] j̃(∂ηj
, µj)

1

p2

(
p2

µ2
j

)ηj e−γEηj

Γ(ηj)
, (14)

where ηj = 2AΓ(µj , µ). The function j̃(L, µ) is the Laplace transform of the jet function. Its
definition and explicit form are given in Appendix B. To any given order in perturbation
theory, j̃(L, µ) is a polynomial in the variable L so that the derivatives with respect to ηj in
(14) can be performed explicitly.

The thrust soft function is defined as a matrix element of Wilson lines along the directions
of the energetic quarks,

ST (k) =
∑

X

∣∣〈X|Y †
nYn̄|0

〉∣∣2 δ(k − n · pXn − n̄ · pXn̄) , (15)

where

Yn = P exp

(
ig

∫ 0

−∞

dt n · As(tn)

)
. (16)

This Wilson line describes the Eikonal interactions of soft gluons with the fast moving quark,
and pXn (pXn̄) is the sum of the momenta of the soft particles in the n-hemisphere (n̄-
hemisphere). The variable k measures the change in the invariant mass due to soft emissions
from the two jets. At the leading power, the mass in the n-hemisphere is given by

M2
n = (pn + pXn)2 ≈ p2

n + Q (n · pXn) , (17)

5

order Γcusp γH/J/S H , j̃, s̃T β
fixed-order logarithmic

matching accuracy

1storder 2-loop 1-loop tree 2-loop – NLL

2ndorder 3-loop 2-loop 1-loop 3-loop LO NNLL

3rdorder 4-loop 3-loop 2-loop 4-loop NLO N3LL

4thorder 4-loop 3-loop 3-loop 4-loop NNLO N3LL

Table 1: Definition of orders in perturbation theory

× H(Q2, µh)

[
j̃
(

ln
µsQ

µ2
j

+ ∂η, µj

)]2

s̃T

(
∂η, µs

)1

τ

(
τQ

µs

)η e−γEη

Γ(η)
, (24)

with η = 4AΓ(µj, µs). From this final result we can read off the canonical relations among the
hard, jet, and soft matching scales and the physical scales Q and p ∼

√
τQ:

µh = Q , µj =
√

τQ , µs = τQ . (25)

Note that the arbitrary reference scale µ has dropped out completely.
For the αs fits, we need the differential thrust distribution integrated over each bin. The

integral of the thrust distribution can be evaluated analytically, since the derivatives with
respect to η in (24) commute with the integration over τ . The resulting expression is

R2(τ) =

∫ τ

0

1

σ0

dσ2

dτ ′
dτ ′ = exp [4S(µh, µj) + 4S(µs, µj) − 2AH(µh, µs) + 4AJ(µj, µs)]

×
(

Q2

µ2
h

)−2AΓ(µh,µj)

H(Q2, µh)

[
j̃(ln

µsQ

µ2
j

+ ∂η, µj)

]2

s̃T (∂η, µs)

[(
τQ

µs

)η e−γEη

Γ(η + 1)

]
. (26)

Note that the integral is performed for fixed µj and µs, that is, before setting them to their
canonical τ -dependent values. In this way, large logarithms are removed in the observable of
interest, not for some intermediate expression.

Different definitions of logarithmic accuracy are commonly used in the literature. Before
proceeding further, we now show which logarithms are included at a given order in our calcu-
lation. We use renormalization-group improved perturbation theory, in which logarithms of
scales are eliminated in favor of coupling constants at different scales which are counted as
small parameters of the same order

ln
µ

ν
=

∫ αs(µ)

αs(ν)

dα

β(α)
=

2π

β0

(
1

αs(µ)
−

1

αs(ν)

)
+ . . . . (27)

The expansion of the Sudakov exponent (10) then takes the form

S(ν, µ) =
1

αs(ν)
f1(r) + f2(r) + αs(ν)f3(r) + αs(ν)2f4(r) + . . . (28)

7

e.g. 

1.  Central values for scale choices are not arbitrary 
2.  Multiple different scales are relevant to minimize all logs 

Thrust distribution: SCET 

ln
µs

µ
= ln

Q

µ
+ ln ⌧ln

µj

µ
= ln

Q

µ
+

1

2
ln ⌧ln

µh

µ
= ln

Q

µ



Scale setting 
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•  Fixed order calculations have one scale µ to choose 
•  Choice only clear for completely inclusive cross sections 
•  pT vetos, jet energy cuts, triggers, etc. introduce new scales 

Many reasonable 
scale choices:  µ =

q
p2T +m2

W

µ = HT

µ = max{mW , Ejet}
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Figure 6: Scale variations at next-to-leading order. The blue southeast stripes show the scale
variation of the NLO calculation (called NNLO in fewz) with µ = µf = µr = MW , as in the
atlas paper. The red northeast stripes show the prediction using µf = µr =

√
M2

W + p2T and
the black vertical stripes have µf and µr set to the scales in Eq. (29). Bands correspond to
varying µ = µf = µr by factors of two from these default scales.

leading-order PDF sets which have a larger value of αs, instead of the NNLO PDFs we use
throughout. The increase in the cross section from NLL to N2LL is mostly due to the one-loop
constants in the soft and hard functions, as can be seen from the right panel of Figure 3. We
have checked how much of a shift the known two-loop jet and soft function constants induce
and find that it is below a per cent.

4 Comparison with LHC data

We are now ready to compare to LHC data. We discuss separately the two processes we study,
direct photon and W production. For numerical work we use the NNLO MSTW 2008 PDF set
and its associated αs(MZ) = 0.1171 [45]. We also use MW = 80.399 GeV, αe.m. = 127.916−1,
sin2 θW = 0.2226, Vud = 0.97425, Vus = 0.22543, Vub = 0.00354, Vcd = 0.22529, Vcs = 0.97342
and Vcb = 0.04128.

4.1 Direct photon

For direct photon production, to be consistent with the comparison to Tevatron data in [18],
we use the scale choices from that paper

µh = pT ,

14

Pick one and vary by a factor of 2 or 4 or 100 

Differences between 
parameterizations 
are larger than the 
individual variations 

Example: Inclusive W production, differential in pT of the W 



N3LLp+NNLO matched predictions
Becher, MN, Rothen ’13
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Figure 11: Resummed and matched results for the jet-veto cross section for Higgs production
at the LHC. The green bands show our best predictions at N3LLp+NNLO, while the red bands
show for comparison the results obtained at NNLL+NLO. The uncertainty band is obtained
by simultaneously varying pvetoT /2 < µ < 2pvetoT and the coefficient dveto3 (R) according to the
estimate (66).

formally of O(α3
s). Note that only the virtual part of the corrections cancel in the efficiency

ϵ(pvetoT ), since the real-emission corrections to the two cross sections are obviously quite dif-
ferent. The virtual corrections encoded in CS(−m2

H , µ) are indeed responsible for the bad
perturbative behavior of the cross section, and they can be avoided by choosing a time-like
value µ2 = −m2

H for the matching scale [23, 45], as we do in our analysis. By now the virtual
corrections to Higgs production are known to three-loop accuracy [46–48], and the result con-
firms that the higher-order corrections to |CS(−m2

H , µ)|2 are negligibly small for a time-like
scale choice. Even for the standard choice µ2 = +m2

H , the three-loop corrections are only
about 4%. The part which suffers from these large corrections is thus known very precisely,
with sub-percent accuracy. The uncertainty on the fixed-order total cross section is larger, of
order 10%, because the real-emission corrections are not as well known as the virtual part.
Dividing by the total cross section therefore increases the uncertainty on the prediction and
should better be avoided.

To compare our results to those of BMSZ, we have divided our prediction for σ(pvetoT ) by
the central value of the resummed total cross section σtot = 19.66+2.8%+7.8%

−0.8%−7.5% pb obtained in [49],
which is a state-of-the-art calculation using the same resummed expression for CS(−m2

H , µ)
as we do. The first uncertainty is due to scale variations, whereas the second one is the 90%
C.L. error due to the combined PDF and αs variations. For comparison, we note that the
LHC Higgs Cross Section Working Group adopts the value σtot = 19.52+7.2%+7.5%

−7.8%−6.9% pb [50]. Our
results are shown by the green bands in Figure 12. Note that we do not include an additional

31

• Lower bands show the pTveto/mH power corrections (small!) 

• Seizable uncertainty at very small R due to large lnnR terms 
(experiments use R~0.4)

M. Neubert (PRISMA Cluster) Higgs cross section with a jet veto

Higgs cross section with pT veto 
March 30, 2017 Matthew Schwartz 

Becher, Neubert, Rothen 

Banfi, Salam, Monni, Zanderighi 

Stewart, Tackmann, Walsh, Zuberi 
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FIG. 7: The 0-jet cross section for R = 0.4 and mH = 125GeV. On the left we show the NLLpT , NLL′
pT+NLO, and

NNLL′
pT+NNLO predictions. A good convergence and reduction of uncertainties at successively higher orders is observed. On

the right we compare our best prediction at NNLL′
pT+NNLO to the fixed NNLO prediction. The lower plots show the relative

uncertainty in percent for each prediction. On the lower left the lighter inside bands show the contribution from ∆resum only,
while the darker outer bands show the total uncertainty from adding ∆resum and ∆µ in quadrature.

ues for σ0(pcutT , R) with both theoretical uncertainties:

σ0(25GeV, 0.4) = 12.67± 1.22pert ± 0.46clust pb ,

σ0(30GeV, 0.5) = 13.85± 0.87pert ± 0.24clust pb . (74)

It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.

Fixed-order predictions

Smaller scale uncertainty than σtot, due to accidental cancellation:   

• large positive corrections to σtot from analytic continuation of scalar 
form factor  Ahrens, Becher, MN, Yang ’09


• large negative corrections from collinear logs 

Equivalent schemes give quite different predictions, hence scale-variation 
bands do not reflect true uncertainties!
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ϵ(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables

2

sweet spot?

(see also: Stewart, Tackmann ’10)M. Neubert (PRISMA Cluster) Higgs cross section with a jet veto

From M. Nebuert 

•  NNLO has cancellation which underestimates uncertainty  (Anastasiou, Dissertori, Stockli) 
•  Resumming logs of mH/pTveto changes cross section by 10-20% vs NNLO. 
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FIG. 2. Comparison of NNLO, NLL+NNLO and NNLL+NNLO results for jet-veto efficiencies for Higgs (left) and Z-boson
(right) production at the 8 TeV LHC. The Higgs plot includes the result from a POWHEG (revision 1683) [20, 40] plus Pythia
(6.426) [17, 41] simulation in which the Higgs-boson pt distribution was reweighted to match the NNLL+NNLO prediction
from HqT 2.0 [7] as in [21]. The lower panels show results normalised to the central NNLL+NNLO efficiencies.

Our central predictions have µR = µF = Q = M/2 and
scheme a matching, with MSTW2008NNLO PDFs [54].
We use the anti-kt [29] jet-algorithm with R = 0.5, as
implemented in FastJet [55]. For the Higgs case we use
the large mtop approximation and ignore bb̄ fusion and
b’s in the gg → H loops (corrections beyond this approx-
imation have a relevant impact [16, 56]). To determine
uncertainties we vary µR and µF by a factor of two in
either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintain-
ing central µR,F values, we also vary Q by a factor of
two and change to matching schemes b and c. Our final
uncertainty band is the envelope of these variations. In
the fixed-order results, the band is just the envelope of
µR,F variations.

The results for the jet-veto efficiency in Higgs and Z-
boson production are shown in Fig. 2 for 8 TeV LHC
collisions. Compared to pure NNLO results, the cen-
tral value is slightly higher and for Higgs production, the
uncertainties reduced, especially for lower pt,veto values.
Compared to NNLO+NLL results [21], the central values
are higher, sometimes close to edge of the NNLO+NLL
bands; since the NNLO+NLL results used the same ap-
proach for estimating the uncertainties, this suggests that
the approach is not unduly conservative. In the Higgs
case, the NNLO+NNLL uncertainty band is not particu-
larly smaller than the NNLO+NLL one. This should not
be a surprise, since [21] highlighted the existence of pos-
sible substantial corrections beyond NNLL and beyond
NNLO. For the Higgs case, we also show a prediction
from POWHEG [20, 40] interfaced to Pythia 6.4 [17] at
parton level (Perugia 2011 shower tune [41]), reweighted

to describe the NNLL+NNLO Higgs-boson pt distribu-
tion from HqT (v2.0) [7], as used by the LHC experi-
ments. Though reweighting fails to provide NNLO or
NNLL accuracy for the jet veto, for pt,veto scales of prac-
tical relevance, the result agrees well with our central
prediction. It is however harder to reliably estimate un-
certainties in reweighting approaches than in direct cal-
culations.
Finally, we provide central results and uncertainties

for the jet-veto efficiencies and 0-jet cross sections (in
pb) with cuts (in GeV) like those used by ATLAS and
CMS, and also for a larger R value:

R pt,veto ϵ(7 TeV) σ(7 TeV)
0-jet ϵ(8 TeV) σ(8 TeV)

0-jet

0.4 25 0.63+0.07
−0.05 9.6+1.3

−1.1 0.61+0.07
−0.06 12.0+1.6

−1.4

0.5 30 0.68+0.06
−0.05 10.4+1.2

−1.1 0.67+0.06
−0.05 13.0+1.5

−1.5

1.0 30 0.64+0.03
−0.05 9.8+0.8

−1.1 0.63+0.04
−0.05 12.2+1.1

−1.4

Interestingly, the R = 1 results have reduced upper un-
certainties, due perhaps to the smaller value of the NNLL
f(R) correction (a large f(R) introduces significant Q-
scale dependence). The above results are without a ra-
pidity cut on the jets; the rapidity cuts used by ATLAS
and CMS lead only to small, < 1%, differences [21].
For the 0-jet cross sections above, we used total

cross sections at 7 TeV and 8 TeV of 15.3+1.1
−1.2 pb and

19.5+1.4
−1.5 pb respectively [57, 58] (based on results in-

cluding [45–49]) and took their scale uncertainties to be
uncorrelated with those of the efficiencies. Symmetris-
ing uncertainties, we find correlation coefficients between

Fixed order (NNLO) Resummed (3 different groups) 


