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1. Asymptotic Series



Perturbation theory must fail

• If observable F(α) is analytic in α, then α > 0 and α < 0 would be similar at small α

e- e- e- e-

α>0 repulsive α<0 attractive

Perturbation series 

have zero radius of convergence

Very different!

Conclusion:



ex. 1:  Quark pole mass
Quark pole masses known to 4-loops in QCD Beneke, Eur. Phys. J. Spec. Top., 2021 

expected from 
inspired parameterization 

exact values starts to grow by n=2!



ex. 2: Non-global logs
Series for leading non-global log  in hemisphere mass distribution known to 5+ loops

MDS and Zhu arXiv:1403.4949

• Poor convergences suggests asymptotic series

bigger
• Exact result known numerically (resummed)



ex. 3: Hydrogen molecule H2
+

Electron is in a 3D double-well potential

separation R

• R=∞, energy is that of isolated Hydrogen atoms 

• Compute energies as a series in 1/R
(calculation is in Landau and Lifshitz)

• coefficients grow factorially
• series has zero radius of convergence 

2. Why does perturbation theory work at all?

1. Why do the coefficients grow factorially?



Two toy models

Expand around minimum

asymptotic series
(alternating sign)

≈

Anharmonic oscillator

asymptotic series
(non-alternating sign)

Double well

Exact partition function

≈

Exact partition
 function



1. Why factorial growth?

• Partition function of a 0D quantum-mechanical system with action 
• Compute with Feynman diagrams

propagator = 1

interaction = - g

=

symmetry
factor

• Sum of diagrams at order n is (-4g)nn!
• Each diagram is < 1 (symmetry factor)
⇒ There must be at least n! diagrams at order n

Factorial growth because
there are n! diagrams at order gn

=1

Anharmonic oscillator
≈



Optimal truncation

g=0.2

g=0.1

Minimized when

QED: optimal truncation is 137 terms

QCD: optimal truncation is 3 terms (NNLO)!

What is the right answer?

• Optimal trunction says there is a smallest term
• Explains why perturbation theory seems to work

2. Why does 
perturbation theory 
work?

A=1



Anharmonic oscillator

Expand around minimum

asymptotic series
(alternating sign)

smooth function

N

Compare expansion to exact result

g=0.05

≈

3. Can we reconstruct the exact answer from the series?  

Optimal trunction:
N=4/g = 20

Compute exact answer

off by a lot!



2. Borel transform



Borel transform
Given a formal series its Borel transform is defined as

Typical asymptotic series
pole at t=1/A

If Z is defined from an action

• B(t) has poles where S’(z) =0
• Poles are semi-classical objects: instantons 

A = coefficient of factorial growth 
    = singularity in Borel transform 
    = semiclassical pesuodparticle 
    = instanton

Inverse Borel transform reproduces the original series



λφ4 theory
Euclidean path integral There is a non-trivial solution to equations of motion 

asymptotic series

• Instanton action is

+ + + ...

Fubini-Lipatov instanton

Asymptotic behavior associated with paths

between classical solutions φ=0 and φ=φb

• Consider one direction through field space



Another source of factorial growth
Bubble chains in the photon propagator in QED 

p
=

Q

each bubble gives

integrate 
over p

D(Q )=

integral over k gives n!

• Renormalon = factorial growth associated with UV-divergent bubble chains
• Pole in Borel transform at t= n/β0 for some integer n

4. Are renormalons also semi-classical objects?
• Does some field configuration have action S = n/β0?

Pole in Borel transform at



Borel resummation
The original function can be reconstructed via Borel resummation

• reprodues the original series
• if series is convergent
              reproduces original function

e.g. anhamonic oscillator

asymptotic series

Borel transform

= =

Borel resummation reconstructs Z(g) exactly from its asymptotic series!

3b. Will Borel resummation always work?

Borel resummation

3. Can we 
reconstruct the 
exact answer 
from the series?  

exact result



Failure mode #1

Which will Borel resummation give?

Two functions have same
asymptotic series

series has no
access to terms like this



e.g. double well

non-alternating 
series

Borel transform

• complex for t> ¼
• integral over 0<t< ∞ ambiguous

What does Borel resummation do if
B(t) has singularities?

Failure mode #2

branch point at t=¼ 

deform contour 
    = lateral Borel resummation

difference between deformations is

Ambiguity  

Borel resummation of a real series 
of a real function is complex!



Trans-series
Series in quantum mechanics and quantum field theory are believed to be trans-series

Borel 
resummation

• each term can be complex
• imaginary parts cancel in the sum

Examples known to have trans series
• energies in double well potential
• energies of H2+ molecule
• correlation functions in 2D O(N) model, Gross-Neveu model

Examples believed to be trans-series
• quark pole masses
• e+e- event shapes
• any observable  in QCD



Trans-series example #1

e.g. Energy levels of H2+

Damburg et al. PRL 52 13 (1984)

• asymptotic series
• Borel resummation is complex. Imagninary part cancels against



= D =
Borel 

resummation

Operator Product Expansion

⇒

⇒

• e-n/β0 α Borel ambiguities suggest operators of dimension 2n
• Operator contributions cancel imaginary parts from Borel resummation

Trans-series example #2

Why are operator expectation values complex?



Unanswered questions so far

1. Why does Borel resummation ever work? 

2. When does Borel resummation reproduce a function?

3. What cancels the imaginary part when Borel transformation is ambiguous?

4. Is there a semi-classical interpretation of renormalons?



3. Saddle points



Saddle point approximation
Consider a 1D Laplace integral

• We can expand around any point z* where S’(z) = 0
• rescale
• expand petrubatively in g

• Can expand around any point where S’(z*) = 0 = saddle point
• Saddle point approximation requires integrating along direction where Re[S(z)] increases fastest

If S’’(z*) > 0, integrate along real z
If S’’(z*) < 0, must integrate along imaginary z

For a multidimensional Laplace integral

steepest ascent contours 
= Lefshetz thimbles



Double well-example

3 saddle
 points

z*=-1 or z*=1
• S(z) increases 
in real z direction 

• S(z) decreases for real z 
• S(z) increases for imaginary z

full complex steepest ascent trajectories 
are called Lefshetz thimbles

intersection of thimbles
called a Stokes point

z*=0

Re S(z)

Re z Im z

Theorem
The Borel resummation of the saddle point expansion around z* gives  

= the integral over the thimble passing through z*

Key to why Borel 
resummation works 
in physics



Picard-Lefshetz theory
Any contour can be decomposed into a sum over thimbles (uphill paths)

intersection numbers between contour C and
Lefshetz anti-thimbles (downhill paths) black lines

2. If integration contour C = a thimble
then Borel resummation will reconstruct f(g)

1. Borel resummation gives integral along thimble

C_1 + C0 + C1



Anharmonic oscillator

- -

Extrema at

Real V(z)

Re z
Im z

• Steepest ascent contour passing through z=0 saddle is
• Integral along C = R is already along a thimble

Just need a single contour (R)

=

Borel resummation

Borel transform

We get the right answer from Borel resummation because thimble = original integration contour ✓



Double well-example

3 saddle
 points Re S(z)

Re z Im z

z=0 saddle

branch of √ corresponds to which
       imaginary direction contour takes  

Borel resummation

Integral along thimble= ✓

z=1 saddle

Borel resummation Integral along thimble

=

✓

Sum of ✓

original
integration 
contour

C_1

C0

C1



Summary of Picard-Lefshetz theory
• Path integrals are Laplace integrals

• Perturbation theory comes from expanding around some z* where S’(z*) = 0

• Resulting series                                          are asymptotic

• Any contour contour C can be decomposed into thimbles

• Borel resummation of the expansion around z* gives the integral along the thimble passing through z*

• If the original contour C is a thimble, 
• then Borel resummation gives Z(g)

• If the original contour C is not a thimble
then Z(g) is the sum of Borel resummations of 
expansions around multiple saddles



Questions so far

1. Why does Borel resummation ever work?
• Because series come from saddle point expansions

2. When does Borel resummation reproduce a function?
• If the integration contour is a thimble

3. What cancels the imaginary part when Borel transformation is ambiguous?
• Integration along other contours

4. Is there a semi-classical interpretation of renormalons?



The Borel-action correspondence



Borel action correspondence

integration by parts

• We know: non-pertubative action S(z) ➝  series  angn ➝ Borel transform B(t)
• We want: perturbative series  angn ➝ Borel transform B(t) ➝ non-perturbative action S(z)  

This can 
be done!

1

2

action function S(z)
= Borel variable t

Borel function B(t) = action variable zS=t
•  given B(t) can now invert to find  S(z)



Borel action correspondence

Solve S(z) = t

• two solutions

Borel transform

1. Action function S(z) = Borel variable t

3. Stationary points of action = branch points of Borel transform

2. Borel function B(t) = action variable z



Borel action correspondence
1. Action function S(z) = Borel variable t

3. Stationary points of action = branch points of Borel transform

2. Borel function B(t) = action variable z

Solve S(z) = t

• t > ¼: two solutions

• t < ¼: four solutions

branch point at t =  ¼ cancels 

Borel transform of pert. series around saddle point

branch point at =  ¼ 
• indicates saddle point at S =  ¼
• indicates new domain emerges 

Stokes point:
thimbles intersect



Multidimensional version

multidimensional version

1d version

=

integrate in t

B(t) = coordinate volume with action S <t
=sublevel sets for Morse function S(z)

critical points of
B(t) indicate toplogy
change

Borel transform 
      = cumulant density of states in field space
       = volume of fields with action less than t



5. Instantons and Renormalons



Multidimensional version

flat direction at infinity

1

How are singularities of B(t) encoded in S(z)?

B(t) finite (branch point)
⇒  z = B finite

S(z) has a local extremum
• e.g. double well

B(t)=

2 Saddle at infinity
B(t) =∞ z =∞

Borel action correspondence

⇒

3

• requires n>1
• action becomes unbounded at finite z

• e.g. BPST instanton
   -anti-instanton pair in QCD

• renormalons

• e.g.  1d double-well
• Fubini instanton

in λφ4

e.g. 

Saddle not at infinity
B(t) =∞ z =finite



Saddles at infinity
Double well in quantum mechanics

• Saddle points satisfy 

• Ball rolling down inverted potential
• Boundary conditions x(0)=x(T) = -1

x(t)=-1 

instanton
-anti-instanton
pair

S[x]=0

S[x]≈2SI

double instanton has two moduli t0,αα
t0

• action exactly independent of t0
 (on a circle)
• action independent of α at α = ∞

22
BPST instantons in Yang Mills theory
• Need instanton-anti-instanton pair to have 0 

toplogical charge 

α

• exact solutions  only at α=∞
• maps directly to double well

Babansky and Balitsky, PRL 85 (20) 2000

α

S(α)



Saddles at infinity
• α is a quasi-collective coordiante

Re(α)

Ιm(α)

ReS(α)

Behtesh et al. 
arXiv1803.11533

2

α

S(α)

• integral over α is divergent
• α=∞ is not a maximum but a saddle
• additional saddles at

vacuum
saddle

α=∞ saddle
=Stokes point

integral along thimble gives

agrees with
trans-series for double well
(computed using exact WKB)

many Zinn-Justin papers 
e.g. Zinn-Justin and Jentsschura
 quant-ph/0501136



B= ∞ at z finite 3

Example

ρ

τ
t

S(t,ρ)S(t,ρ)

S(t,ρ) increases in the ρ direction οnly if t < k/2β
• Integral over ρ is convergent if if t < k/2β
• Integral over r is divergent if if t > k/2βBorel singularity at t=k/2β

Equations of motion

renormalon!

saddle point
 is not at infinity

diverges

if t < k/2β



Renormalon saddles

1. Choose a basis

operator of 
dimension k

scale-invariant action
(e.g. QCD or λφ4)

translation collective coordinate

dilatation collective coordinate

2. Integrate out UV modes (n>N) at 1-loop

μ dependence fixed 
by RG invariance

R dependence fixed 
by dimensional analysis

3. Change to dimensionless ρ

Everything else from 1-loop integrals

t =S

arXiv:2410.07351
 Bhattachary, Cotler, Dersy, MDS

arXiv:1707.08124  
Andreassen, Frost, MDS

4. Integrate over x0



Renormalon saddles

leading renormalon Borel pole at

nontrivial saddle at

Generic QFT QCD

k=4

leading operator in OPE

dimension k=4

correct location scale associated with renormalon is exactly ΛQCD 



t
ρ

S(t,ρ)

• Re S increases around renormalon 
              in one real and one imaginary direction

Re z

Im z

instanton in double well

trivial saddle

S(z)

true vacuum

Re z

instanton thimble
 is imaginarytrivial saddle

 thimble bends
complex at instanton

R-thimble imaginary

t

trivial saddle 
• starts on boundary 
• bends complex at renormalon
• deformed to two half-imaginary semi-planes

Renormalon Thimbles

• instantons mediate tunneling in QM and QFT
• do renormalons mediate tunneling in QCD?
• is there a “dilute renormalon gas”?



Conclusions
• Perturbation theory generically gives asymptotic series

• Series cannot be summed, but may be Borel resummed

• Growth associated with instantons and renormalons

• Instantons and renormlaons can be unified

• New hope for connecting perturbative and non-perturbative physics in quantum field theory! 

t

associated with
tunneling

associated with
running coupling
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