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1. Asymptotic Series
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Perturbation theory must fail

Divergence of Perturbation Theory in Quantum Electrodynamics

F. J. Dyson
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

(Received November 5, 1951)

* If observable F(a)is analytic in a, then a> 0 and a <0 would be similar at small a

-0 ©0-—--0

a>0 repulsive a<0 attractive

Very different!

o0
Perturbation series F(a)= Z ana™

n=0

have zero radius of convergence



ex. 1: Quark pole mass

Beneke, Eur. Phys. J. Spec. Top., 2021

Quark pole masses known to 4-loops in QCD
my = 163.643 + 7.531 +1.606 + 0.494 + 0.194
mp = 4.200 + 0.400 + 0.199 + 0.145 + 0.135  mpuse — mgs() = 5 Y (260" a2
me = 1.280 + 0.211 + 0.202 + 0.282 + 0.510 n
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ex. 2: Non-global logs

MDS and Zhu arXiv:1403.4949

Series for leading non-global log in hemisphere mass distribution known to 5+ loops

oD =12 @ s T e (_W2C(3) . 17§(5)) 5y

24 12 34560 360 480
=1 —0.411233512L* + 0.10017141L° + 0.0028185501L* + 0.0037694522L° + .. .
bigger
* Exact result known numerically (resummed)
10 1.02
| 5-loop
0.8} [3-100p 101}
0.6
_ gt ool
gnnlD) | 1 gni(L)
i 2-loop
02} 0.99
ool resummed 0,980'0 2-0
0 1 2 3 4 5 ' '

* Poorconvergences suggests asymptotic series



ex. 3: Hydrogen molecule H,”

» R=oo, energyis that of isolated Hydrogen atoms

ration R ‘ ‘

* Compute energies as a seriesin1/R
(calculationis in Landau and Lifshitz)

1 k
E,~ (—) k!
R
k /
* coefficients grow factorially
* series has zero radius of convergence

1. Why do the coefficients grow factorially?

Electronis in a 3D double-well potential

2. Why does perturbation theory work at all?




Two toy models

Anharmonic oscillator Double well

Viz)=—

]' 2
135 7%

\ o0 —i i—iz2+iz4
.. . 1N Z(g): dze 9(4 2 4 )
Exact partition function Expand around minimum —c0
= a0y n sl (L2 Exact partition
b _ 12,94 ZN(Q):Z/ dze 2 =1 —56 [_1 3a + 11 3a .
Z(Q):/ die ® s n=o v —® ”-(4 ) AN 1\ 89 function
—0o0
I‘(Zn—|— ) .
L 1 1 1 —“Z g ~ \/‘EZ 4"n/
— eﬁicl(—) n
V29 7\ 8¢
Z \/_ asymptotic series

non-alternating sign
asymptotic series ( g sign)

(alternating sign)



1. Why factorial growth?
o= [Tase by 2

— 00

* Partition function of a OD quantum-mechanical system with action S(z)= lz? + 9.4
« Compute with Feynman diagrams e 4

propagator =1 %) C@O @ é @O
symmetry
>< interaction=-g factor @ %j) D @ @3

\ * Sum of diagrams at order n is (-4g)"n!
Z(O) = (_ l * Eachdiagramis <1 (symmetry factor)
= (—g) |
7o 8 = There must be at least n! diagrams at order n
00 /1' 1 [ _lp27 g, g Factorial growth because
Zo(g)= | dee T =yam ) %7 (_Ez ):_§ : n
oo 0J—co ' there are n! diagrams at order g




perturbation theory

2. Why does Optimal truncation

work?

Minimized when

What is the right answer?

0 1
nam) ag ATg™ n) _ ~
g (A"g™n!) =~ A"g" nlln(nAg)=0 ) " g

1
QED: Ofe"‘ﬁ optimaltruncationis 137 terms

QCD C(Chag~3 x0.118 = 0.33 optimal truncation is 3 terms (NNLO)!

 Optimal trunction says there is a smallest term

* Explains why perturbation theory seems to work




Anharmonic oscillator

smooth function
Compute exact answer

- Z(Q):/ dze =% T3% = eSglCl(_)

- V2g 1

0.015¢

0.010
b e 1_2 n . .
ZN(g):Z/ dze”7* %(224) Z(g) - Zn(g) Optimal trunction:
0 J —o0 L N=4/g = 20
N 1 I
- 1"(2n+5) 0.005
=Z {9 v
n=0
5 —(—4) nlg 0.000:
~S ﬁ

asymptotic series
(alternating sign)

3. Can we reconstruct the exact answer from the series?



2. Borel transform

62
ns i
borel ) transform’ "borel” -(=z"-)}2’
x-i‘ 11‘ (2) 2N & “Borel transform gx "(o) 2
“T 43\ 3 .
on2-(x-52-0) S~ o U;@ :




Borel transform

Given a formal series Z(g) = Z ang"™ its Borel transform is defined as B(t) — Z %t”

n!
n
1 [ _t 1 [~ —ta,,, .
Inverse Borel transform 7 . e gB(t)zg : e gﬁt =ang"  reproduces the original series
Typical asymptotic series
i~ 0 1 pole att=1/A
Z(g)=) |A%™n! . Bt)=Y  (At)"=
=2 (0= (At =g .~

If Zis defined from an action

A = coefficient of factorial growth

= semiclassical pesuodparticle
= jnstanton

_5 _t e o
Z(g)Z/dze g :/dte singularity in Borel transform

* B(t) has poles where S’(z) =0
* Poles are semi-classical objects: instantons



Ad* theory

Euclidean path integral There is a non-trivial solution to equations of motion

Z()\) :prgbe_fd4x[%¢u¢+%¢4] \/gR

dp(T) =

R?+ x,xt
1 1 1
—xJd*z| 3600+
:N,quf’e At ] Fubini-Lipatov instanton
~/ — N 2
Z (8%2 ) A™n! * Instanton actionis S, = S[%] — 8%
n=>0
asymptotic series » Consider one direction through field space ¢(z) = 2 ¢y ()
) Spf1 _ 2,1 _4
——Y — _|__
Z(A)=N'(-- -)/dze A (22 7 )
Asymptotic behavior associated with paths
+ + +...
B(z) = 261(2) L
between classical solutions ¢$=0 and ¢=¢, 00 1\"
=N"(--- (—) A\
% (4



Another source of factorial growth

Bubble chains in the photon propagatorin QED .
each bubble gives \

> °°dk2 e\ |
D(Q)= Z :2) 50%111( ;2 )]
mtegrat
over p \ integral over k gives n!
—Bo \"
/dk2 k2 (Boa In k2)" = (TO) amn)!
* Renormalon =factorial growth associated with UV-divergent bubble chains Pole in Borel transform at
* Pole in Borel transform at t= n/B, for some integer n t — _ﬁi
0

4. Are renormalons also semi-classical objects?

* Does some field configuration have action S = n/f,?




3. Can we

reconstruct the BO rel resummation

exact answer
from the series?

The original function can be reconstructed via Borel resummation

1 [ _t 1 [° __a * reprodues the original series
B(t)zz Anyn = e B(t)=— e Tt”—ang'”' " . ifseriesis convergent
- n! 9Jo 9Jo n: reproduces original function
e.g. anhamonic oscillator Borel transform
0o 1(1 > I‘(l—i—Qn)

_ 1 (5= +5) Bi(t) = Vot(—t)" = 24/ V1 + 4t — 1
20= 7= |t 0= 2 s gV H =2V

‘ \ Borel resummation

1 L 1 N 1 L 1
— e 89K | — - . (2?’L—|— ) o0 _t - - 8g = =
V2grm 2(89) _Z e 1/ e 92\/ 1+4t —1 1/2971-6 K ( g) Z(9)
0

exactresult N
~Vg E (—4g)"n! . . . .
— Borel resummation reconstructs Z(g) exactly from its asymptotic series!

asymptotic series 3b. Will Borel resummation always work?




Failure mode #1

Two functions have same
asymptotic series

~ :
1 >~

Which will Borel resummation give?

series has no
access to terms like this



Faillure mode

e.g. double well Boreltransform
= ” ze_%(%_%zz+iZ4)=£e_%l - 1) 1 )] ' 3 nt L +2n
[ 2 I—z(Sg 4 (89 BlfsV] = " n,1(1 \/2 21—
n=0
< L(2n+3)
=) V2gg" ol )  complexfort>1
n=0 * integral over 0<t< o ambiguous
o0
~ N, | deform contour
@z;) (49) e = lateral Borel resummation
n=
— o difference between deformations is

non-alternating
series

branch point at t=)4

What does Borel resummation do if

B(t) has singularities?

t*

l] e 7B(t) — lf e 9B(t)=2mie 9 B(t¥)
g Cy g -
t*

Ambiguity ~ e 9

Borel resummation of a real series
of a real function is complex!



Trans-series

Series in quantum mechanics and quantum field theory are believed to be trans-series

St Sb
_ a.. g a,b_n — an, g
Z(g)=) Inge 7| > 3’y ) Inge 7 fu(g)
a,Sp n resummation @ ,Sp
* eachtermcan be complex
* imaginary parts cancel inthe sum
Examples known to have trans series Examples believed to be trans-series
* enel‘gies in dOUble Well pOtential ° quark pole masses
i energies Of H2+ mOleCUle e e+e-event Sha peS

* correlation functions in 2D O(N) model, Gross-Neveu model « anyobservable in QCD



Trans-series example #1

e.g. Energy levels of H,+

Damburget al. PRL52 13 (1984)

E(R)~ JENMQR)Nt+eRnIaM(QR)~N

+e~ 2RI 3 dM(2R) "N +1ogR terms] +ie~R/" 3 M (R) "N+, .,

* asymptotic series /

* Borelresummation is complex. Imagninary part cancels against



Trans-series example #2

~ \
' //'\.:}}«—\ \\.‘ . /60 n ‘ 1
J JI/' =pD= ==« \-/5‘7'\ " o = — O{n’n! —_— Im .D = :|:?,1T6 Boes
]J' l[ \.‘.‘ l \~-‘é}'_\. / ’1 2

Borel
M \/riummation

: C Cy -
Operator Product Expansion Jydy ~ (quqf/ — q29uV) [CO + Q_iTr wa + Q_i¢¢. . ]
: e

Q,’(Q) — Q2 9
bolnZz S (QITr G2, |0) m At = ¢ m (@R

1
= A2:e O‘(Q)ﬁOQQ J' \

2

QT [€0) ~ (qugy — nguu)[(- o+ iwe_m) T Coe = @s 4 . }

eBOa Borel ambiguities suggest operators of dimension 2n
Operator contributions cancel imaginary parts from Borel resummation

Why are operator expectation values complex?



Unanswered questions so far

. Why does Borel resummation ever work?
. When does Borel resummation reproduce a function?
. What cancels the imaginary part when Borel transformation is ambiguous?

|s there a semi-classical interpretation of renormalons?



3. Saddle points




Saddle point approximation

S(=z)

Considera 1D Laplace integral Z(g) = /dze_ g

* We can expand around any point z* where S’(z) =0
* rescale z— /g%

_ 8% _sMeEn=2 SN * expand petrubativelyin g
Z(g)=e /dze g 2 g 3

n
_S(z*) o 22 3
—e s @/dze_s (2 )T%(\/gsm(z*)%_l_”_)

If S”’(z*) > 0, integrate along real z
If S”’(z*) < 0, must integrate along imaginary z

_58(&)

For a multidimensional Laplace integral Z(g)z/d'”’ze g
C

* Canexpand around any point where S’(z*) = 0 = saddle point
* Saddle point approximation requires integrating along direction where Re[S(z)] increases fastest

steepest ascent contours
= Lefshetz thimbles



Double well-example

041 115 1y
1 S(z)—4 52+ 12

T T T

3 saddle
points

intersection of thimbles
called a Stokes point

z*=-1orz*=1
* S(z)increases
inreal z direction full complex steepest ascent trajectories

S%=0 are called Lefshetz thimbles —|

* S(z) decreases forrealz
* S(z)increases forimaginary z

Key to why Borel
Theorem resummation works
in physics

The Borel resummation of the saddle point expansion around z* gives
= the integral over the thimble passing through z*




Picard-Lefshetz theory

Any contour can be decomposed into a sum over thimbles (uphill paths)

C:Z TLjCj R = C_,+C,
/

n; = (K;,C)
!

intersection numbers between contour C and

Lefshetz anti-thimbles (downhill paths) .

2. Ifintegration contour C = athimble
then Borel resummation will reconstruct f(g)



Anharmonic oscillator

Extrema at

* Steepestascent contour passing through z=0 saddleis Co={z € R}

2 = * Integral along C =R is already along a thimble

0 7 1

) y

N/
Borel transform

= 1 g 1  _t /
Z(g):/ dZe_;22+Zz4: 1 egglci(i) — lf e 92\/,/1_'_41;_1
0

Just need a single contour (R)

g

Borel resummation

We get the right answer from Borel resummation because thimble = original integration contour v/



Double well-example

04, g 1T, 1, s original
i Z2)=——=2°+—=2 ] . .
; (2) 4 2 4 integration
03¢ contour
F 3 saddle C
0.2; points / —1 C1 \ /
| —-—0--#---0- :
0.1 \
oo- @& @ N\ Co
-15 -10 -05 0.0 ’/01.5/1.0 1.5
z=1 saddle z=0 saddle
BlfV) =N ¢mta 22 T2 o o\/T— 4t £ ie. > 1
/2] nZ:(:) nIT (2 +n) \/ / i€ B[fg(o)](t) — 2\/1 — 2/t +ieh (t _ 1) Y
branch of y corresponds to which Borel resummation Integral along thimble
imaginary direction contour takes 0 _Lfoo ~50. 1— I NER s —=5
f (g)—g : dte 92,/1 2\/f:tz£—:|:\/§e KZ(8g = Codze

Borel resummation

1 [ _t n R 1 .
fl(g):E/ dte 9\/2—2\/1—4t:|:zs:2z—ge SQK%(—S—:E’LS) =/dze_s(z) Integral along thimble v
0 C1

9

somat 0+ 100+ 1°0) <52 3] Lot



Summary of Picard-Lefshetz theory

_5®
Path integrals are Laplace integrals Z(g):/d”ze 9
C

Perturbation theory comes from expanding around some z* where S’(z*) =0

Resulting series  Z(g) = Z ang™ are asymptotic
Any contour contour C can be decomposed into thimbles
Borel resummation of the expansion around z* gives the integral along the thimble passing through z*

If the original contour C is a thimble,

* [fthe original contour C is not a thimble
* then Borelresummation gives Z(g)

then Z(g) is the sum of Borel resummations of
expansions around multiple saddles



Questions so far

1. Why does Borel resummation ever work?
* Because series come from saddle point expansions

2. When does Borel resummation reproduce a function?
* |[fthe integration contouris a thimble

3. What cancels the imaginary part when Borel transformation is ambiguous?
* Integration along other contours

4. |s there a semi-classical interpretation of renormalons?



The Borel-action correspondence

I@EL-ACT:ON commwmﬁo
AZ25'2 0

3 MATH - _ \g3 2
A2TX A, peTions- 2 N
— MAYESING! ~ ( S

[/ math




Borel action correspondence

* We know: non-pertubative action S(z) — series a,g" — Borel transform B(t) This can
* We want: perturbative series a,g" — Boreltransform B(t) = non-perturbative action S(z) pe done!

0 f(g)zé/(Jwe_%B(t):[Jme_%B’(t) = lf(g)z%[)ooe_%B"(t)
integration by parts [ fs] B[f( '

actlon function S(z)

1 1 S(z) = Borel variable t
e Ef(g) :E/dze_ g /dze 9/dt5(t—5(z
L fS:| (t) = /—Z dz §(t — S(2)) = z

z;|8(z)

dz

dsS

B= ) |l

domains

dB(S)
a5 2 2

domains domains

S=t Borel function B(t) = action variable z

 given B(t) can now invert tofind S(z)



Borel action correspondence

1. Action function S(z) = Borel variable t

2. Borel function B(t) = action variable z

3. Stationary points of action = branch points of Borel transform

Solve S(z) =t

two solutions

—_—
=

- _ &
zp = +/V/1+4t—1

Borel transform

B(t) :2\/m— 1




Borel action correspondence

1. Action function S(z) = Borel variable t
2. Borel function B(t) = action variable z

3. Stationary points of action = branch points of Borel transform branch point att = % cancels

Solve S(z) =

t 1
* t>%:two solutions B(t):_Q\/m@(Z—t>+2\/m

o4,

0.3

1T Sy
E " e t<Y:four solutions
)

e=ky\l+2vE 2

Sup, = |

oot © N :

~15-10X05 0.0 05 10 15 E
2 i

-2; _
Borel transform of pert. series around saddle point 00 05 10 15 20
t
B[f{M] = Zt nrr \/2 2\/1 4t £ i€

branch pointat= ' .
* indicates saddle pointatS= Stpkes p9|nt. M

<

 indicates new domain emerges )y > thimbles intersect




Multidimensional version

1d version
d

GBI = [ dse-s@) - ¥

z;|S(z;)=t

1
S'(zi)

multidimensional version

d . B 1
CBlf(g)] = [ @z ate- S(z:f'»gI i ) o5

integrate in t l

B(t) = fd“z ot — S(2)).
Borel transfo
B(t) = coordinate volume with action S <t T~ (SSRGS IO

= cumulant density of states in field space
=sublevel sets for Morse function S(z =volume of fields with action less thant

crltlcal points of
t) indicate toplogy
change




5. Instantons and Renormalons




Multidimensional version

How are singularities of B(t) encoded in S(2)? O / "z 0t — S(2)).

B(t) finite (branch point)

B = . -Bfinite j§ Seddle atinfinity M Saddle not at infinity
B(t) =00 z =0 B(t) =0 z =finite
e.g. B(t)=—-In(t*—1) * requires n>1

S(z) has a local extremum
* e.g.doublewell

e action becomes unbounded at finite z
Borel action correspondence

= S(z)=t=t*—e"*
B(t)= \/2—2\/1 — 4t +ie. flat direction at infinity

* e.g. 1ddouble-well
* Fubiniinstanton
in Adp*

o 747_L—A.7_A47L7L_4-4
T 0.0

* eg. BPST instanton ° renormalons
-anti-instanton pairin QCD



Double well in quantum mechanics

Tr[e_HT] :N/Dxe—éfdt(%jfz—FV(m))

Saddles at infinity

« Saddle points satisfy &= V'(z)

* Ballrolling down inverted potential

« Boundary conditions x(0)=x(T) = -1 M

instanton 1
-anti-instanton
a . ]
> pair
to
P > S[x]=2S,
\ S[x]=0 ]
f X(t)=-1
0 10 20 30 40

BPST instantons in Yang Mills theory
* Need instanton-anti-instanton pair to have 0
toplogical charge

* exactsolutions only at a=c
* mapsdirectly to double well

Babansky and Balitsky, PRL 85 (20) 2000

*INSTANTNTON PAIR ANTI-INSTANTON PAIR

i v oo il e MR R 0 b

double instanton has two moduli t, a

zp(t) =zt —to+ ) —z;(t —to — @)

Slzg =251(1 —e™ %) S(CI)I

action exactly independent of t,
(on acircle) a
action independent of a at a = o




Saddles at infinity

* aisaquasi-collective coordiante S(a)=281(1—e™?)

Z(9) =foceS£’m] = (---)/daezjf[lea] S(a)I

/!
* integral over ais divergent —
) . a
e a=o js not a maximum but a saddle
* additional saddlesat a=occtnmui
Behtesh et al, integralsalong thimble gives

S(th) = 25[(1 — e_o‘) 30 arXiv1803.11533

a=oo saddle
=Stokes point

vacuum

saddle 27 agrees with

trans-series for double well
(computed using exact WKB)

many Zinn-Justin papers
e.g. Zinn-Justin and Jentsschura
quant-ph/0501136




B= o at z finite

Example

S(t, p) =§+k‘p— 20tp

Z(g)=/ dt[ dpe*“? diverges
0 0

Cdpe-Sto . L ift<
[dpe e 1T 213 ift<k/2p

0 —_

/

Borel singularity at t=k/23

Equations of motion

k
203
1 1
S =——-2 = pr=——

_/

.

S(t,p) increases in the p direction only if t <k/2B
* Integral over pis convergent if ift <k/2p
* Integral overris divergent if ift > k/2p

saddle point
is not at infinity

renormalon!



Renormalon saddles

operator of scale-invariant action

dimension k \ / (e.g. QCD or Ad?)

($(0)F f Doe T g g)k

/ translation collective coordinate

1. Choose a basis ¢(x, R, x° Z (-T — Zo dilatation collective coordinate
n=0 N
2. Integrate out UV modes (n>N) at 1-loop x(z)= Z an®Pn(z)
n=0

¢k /d4m0/ R5+k/dNa”e (g( ) zﬁl’uR)S[x]F(a'n\)[X(%)]k

R dependence flxed H depgndence fixed Everything else from 1-loop integrals
by dimensional analysis by RG invariance
3. Change to dimensionless p /PZIHMR t
@ 1 dR —klnpR _ k/ —kp St =+ 2k _ﬁt
B RF = R (,uR)k f wuk [ dpe (t, p) g P P

4. Integrate over X, / TS /
(@4) = [ Ve, F(an) f dpe” Tt 200 )00 ke [t [ape(5m20) =423



Renormalon saddles

Generic QFT QCD
<¢k> —fdt fdpe_(g(ia)_zﬁop)t_kpg(t) leading operator in OPE 2
) 2 ~ A — o s (@B
N ) (QTr GW|Q)NA4_6 (@7 ()4
V dimension k=4
nontrivial saddle at )
t*:i p*:; q :(_2/60) (]{n{n,'
20 9(1) Bo 2 2
leading renormalon Borel pole at %= —
k=4| l P inn 8 i Bo
— JrOOR SO e S
/80 H 2 AQCD

correct location  scale associated with renormalon is exactly Aqcp



trivial saddle

* starts onboundary

* bendscomplexatrenormalon

* deformed to two half-imaginary semi-planes

* ReSincreases around renormalon
in one real and one imaginary direction

R-thimble imaginary

instanton in double well -

\
\ fim instantons mediate tunneling in QM and QFT

do renormalons mediate tunneling in QCD?
— is there a “dilute renormalon gas”?

Rez
_v/\

instanton thimble
trivial saddle is imaginary
thimble bends
complex at instanton

I Rez
E—

trivial saddle I

true vacuum



Conclusions R

Perturbation theory generically gives asymptotic series

f(g)N E Ann!gn 0o 2 4 6 né 10 12 14
n=0 ONE WEIRD .

[ ]
mic,afGeV]

Series cannot be summed, but may be Borel resummed

Growth associated with instantons and renormalons

associated with associated with
tunneling running coupling

* New hope for connecting perturbative and non-perturbative physics in quantum field theory!
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