

Renormalons, Instantons, and the Failure of Perturbation Theory

DESY

Hamburg, Germany

Jan 21, 2026

Matthew Schwartz

Harvard University

Based on

arXiv:2512.09042 “Asymptotic Behavior of Diagram Classes”,

Luen Clingerman, **MDS**

arXiv:2410.07351 “Renormalons as Saddle Points”,

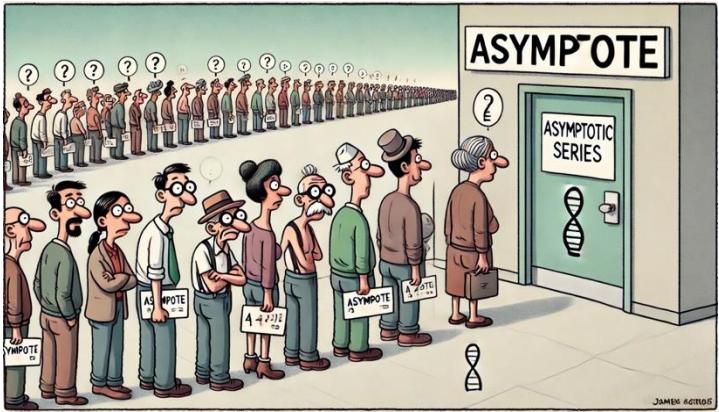
Arindam Bhattachary, Jordan Cotler, Aurelian Dersy, **MDS**

arXiv:2402.18633 “The Collective Coordinate Fix”,

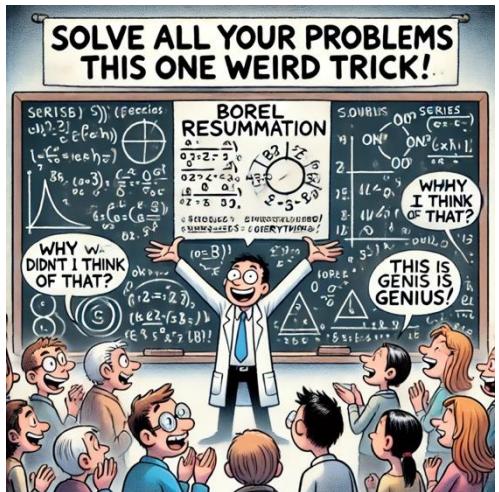
Arindam Bhattachary, Jordan Cotler, Aurelian Dersy, **MDS**

Outline

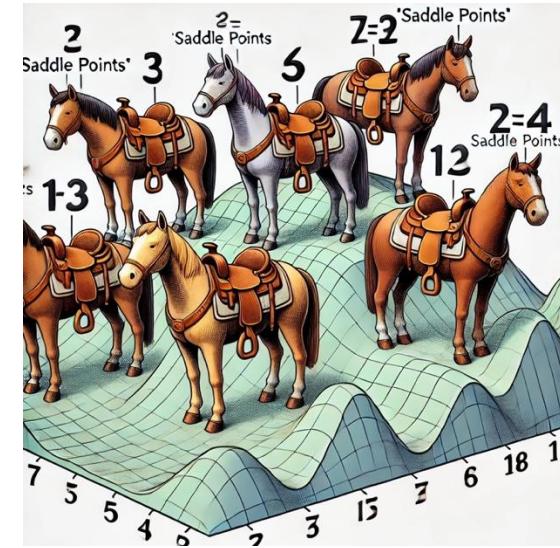
1. Asymptotic series



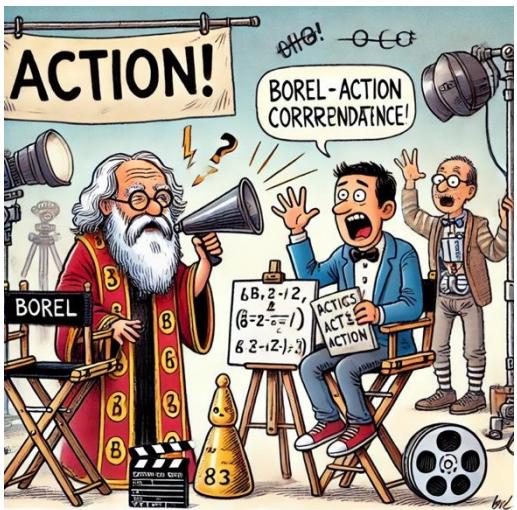
2. Borel resummation



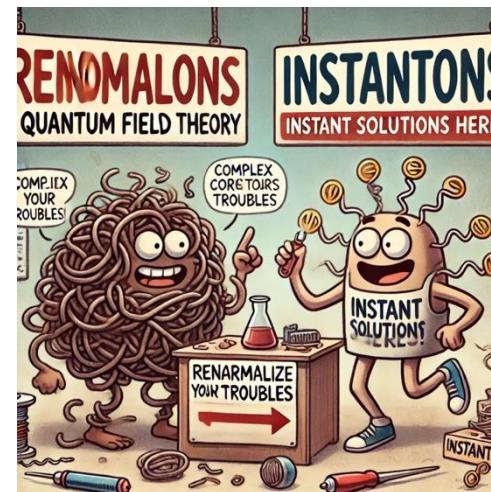
3. Saddle points



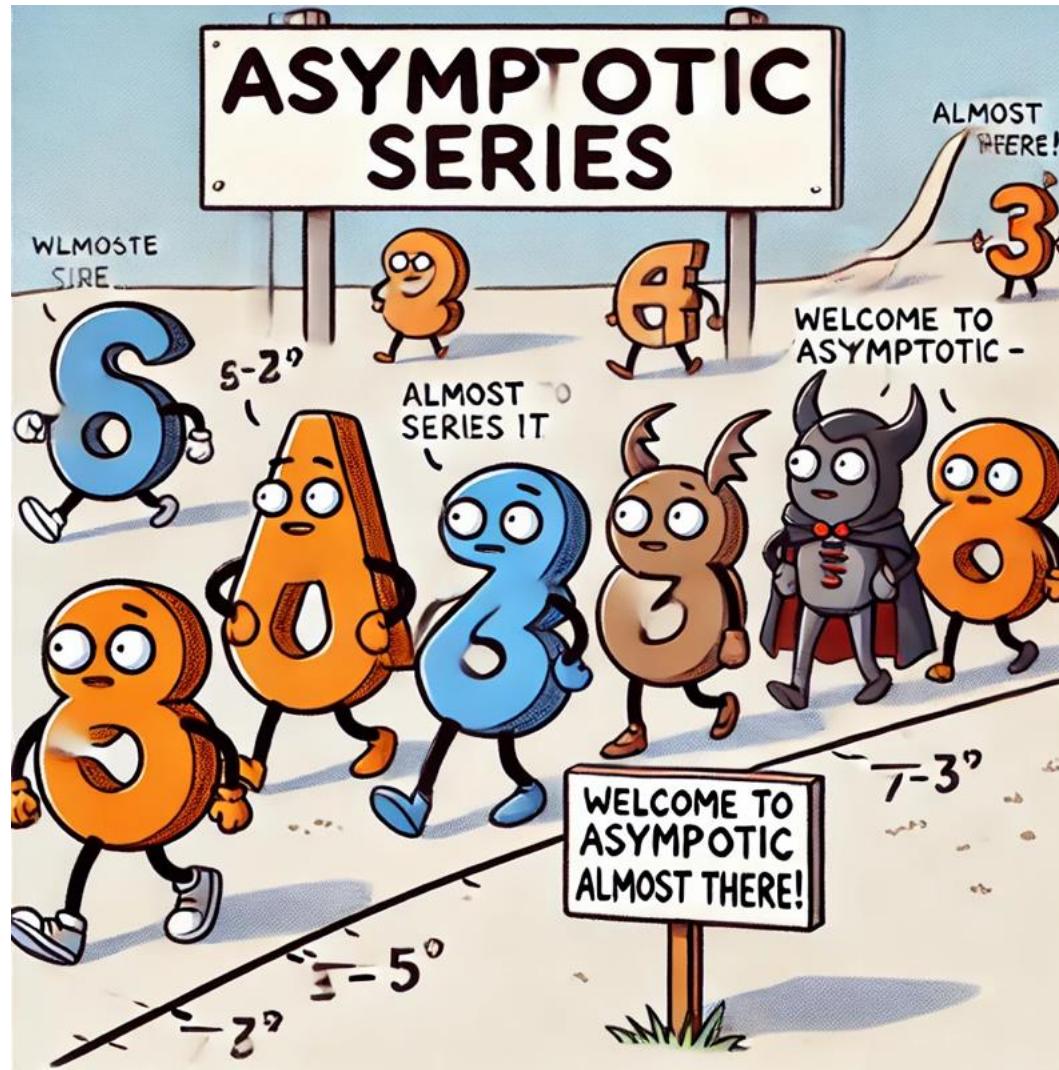
4. The Borel-Action Correspondence



5. Renormalons and instantons



1. Asymptotic Series



Perturbation theory **must** fail

Divergence of Perturbation Theory in Quantum Electrodynamics

F. J. DYSON

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

(Received November 5, 1951)

- If observable $F(\alpha)$ is analytic in α , then $\alpha > 0$ and $\alpha < 0$ would be similar at small α

Very different!

Conclusion:

Perturbation series $F(\alpha) = \sum_{n=0}^{\infty} a_n \alpha^n$

have zero radius of convergence

ex. 1: Quark pole mass

Quark pole masses known to 4-loops in QCD

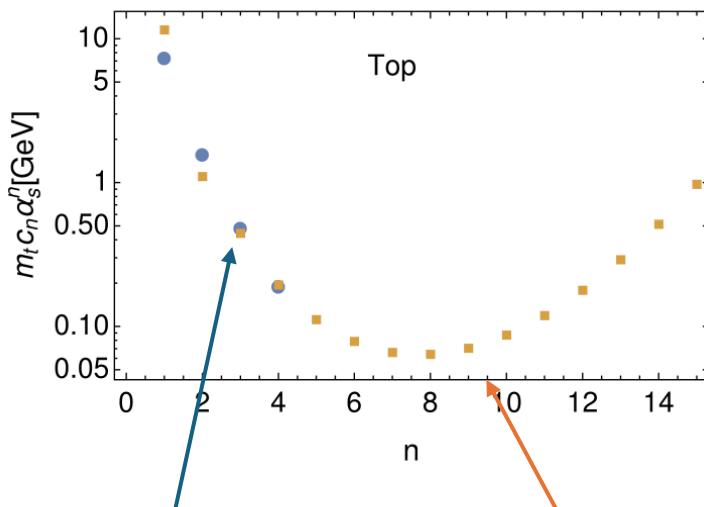
Beneke, Eur. Phys. J. Spec. Top., 2021

$$m_t = 163.643 + 7.531 + 1.606 + 0.494 + 0.194$$

$$m_b = 4.200 + 0.400 + 0.199 + 0.145 + \mathbf{0.135}$$

$$m_c = 1.280 + 0.211 + \mathbf{0.202} + 0.282 + 0.510$$

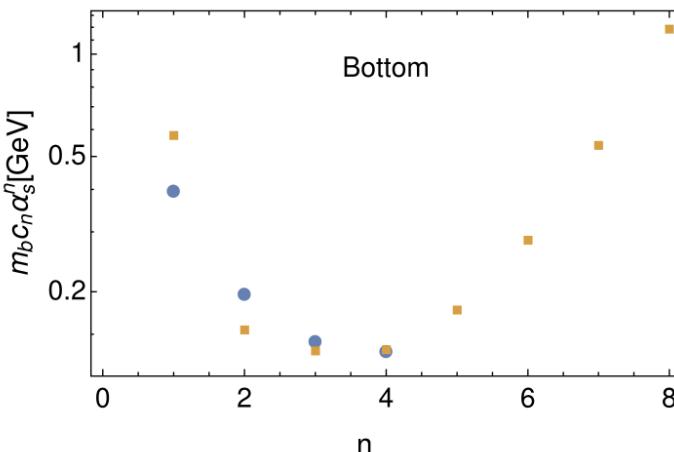
$$m_{\text{pole}} - m_{\overline{\text{MS}}}(\mu) = \frac{C_F e^{5/6}}{\pi} \mu \sum_n (-2\beta_0)^n n! \alpha_s^{n+1}.$$



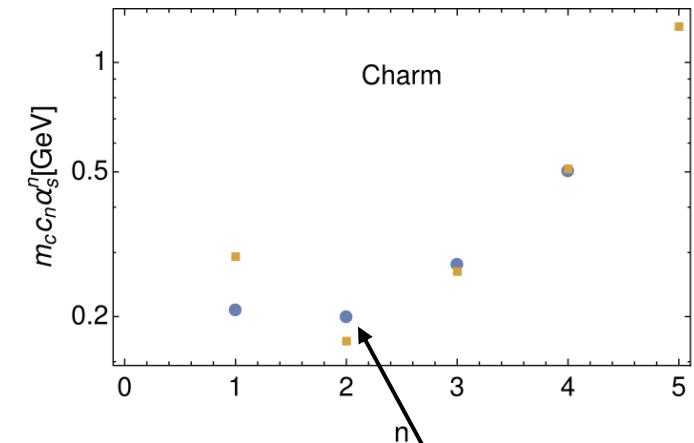
exact values

expected from
inspired parameterization

$$\begin{aligned} \tilde{c}_{n+1}^{(\text{as})} = & (-2\beta_0)^n \frac{\Gamma(n+1+b)}{\Gamma(1+b)} \left[1 + \frac{s_1}{n+b} \right. \\ & + \frac{s_2}{(n+b)(n+b-1)} \\ & \left. + \frac{s_3}{(n+b)(n+b-1)(n+b-2)} + \dots \right], \end{aligned}$$



Bottom



Charm

starts to grow by n=2!

ex. 2: Non-global logs

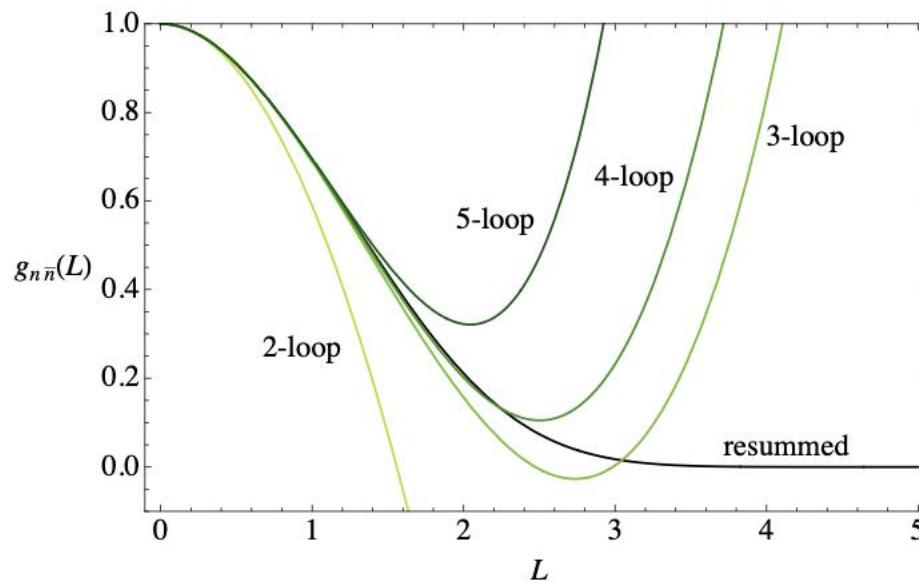
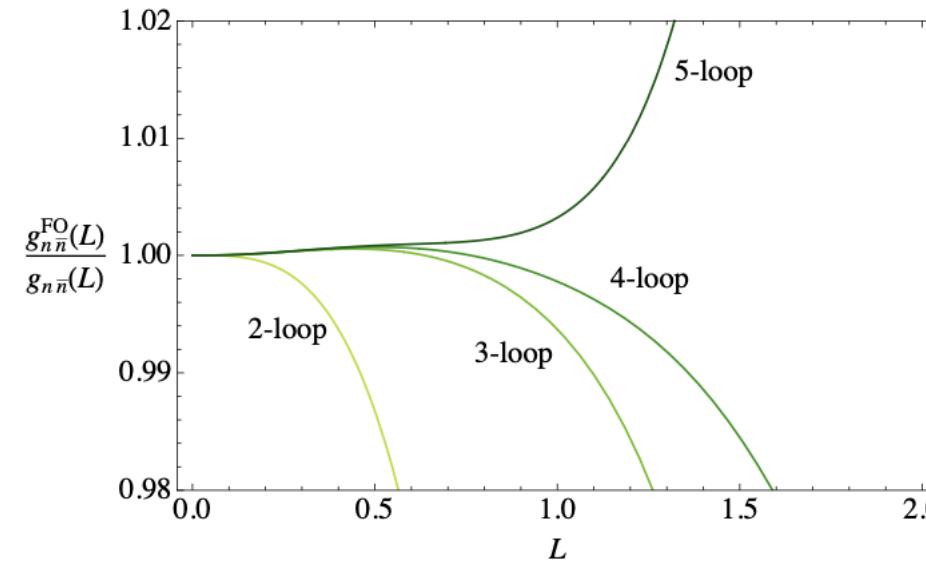
MDS and Zhu arXiv:1403.4949

Series for leading non-global log in hemisphere mass distribution known to 5+ loops

$$\begin{aligned}g_{n\bar{n}}(L) &= 1 - \frac{\pi^2}{24}L^2 + \frac{\zeta(3)}{12}L^3 + \frac{\pi^4}{34560}L^4 + \left(-\frac{\pi^2\zeta(3)}{360} + \frac{17\zeta(5)}{480}\right)L^5 + \dots \\&= 1 - 0.411233512L^2 + 0.10017141L^3 + 0.0028185501L^4 + 0.0037694522L^5 + \dots\end{aligned}$$

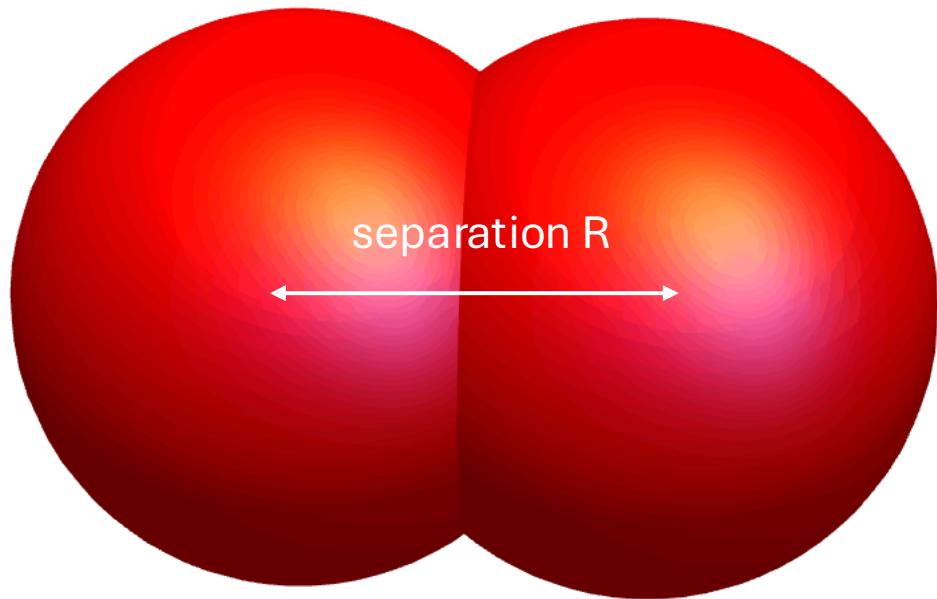
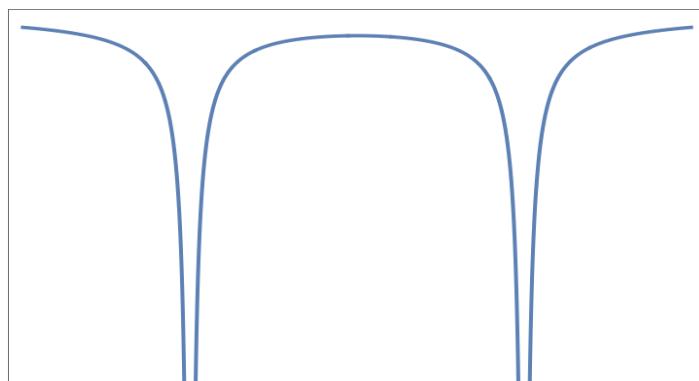
bigger

- Exact result known numerically (resummed)



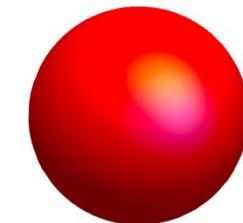
- Poor convergences suggests asymptotic series

ex. 3: Hydrogen molecule H_2^+



Electron is in a 3D double-well potential

- $R=\infty$, energy is that of isolated Hydrogen atoms



- Compute energies as a series in $1/R$
(calculation is in Landau and Lifshitz)

$$E_n \approx \sum_k \left(\frac{1}{R} \right)^k k!$$

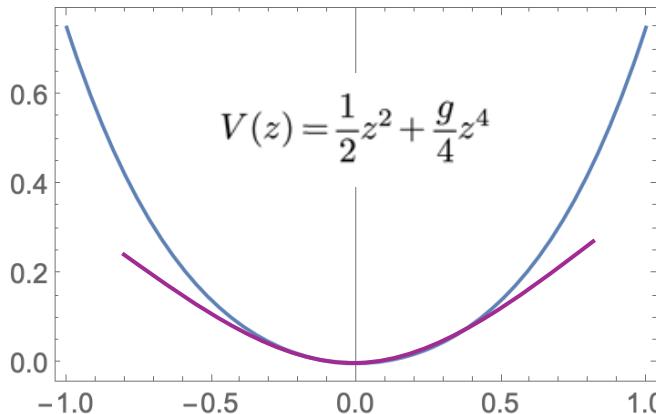
- coefficients grow factorially
- series has zero radius of convergence

1. Why do the coefficients grow factorially?

2. Why does perturbation theory work at all?

Two toy models

Anharmonic oscillator



Exact partition function

$$Z(g) = \int_{-\infty}^{\infty} dz e^{-\frac{1}{2}z^2 + \frac{g}{4}z^4}$$

$$= \frac{1}{\sqrt{2g}} e^{\frac{1}{8g}} \mathcal{K}_{\frac{1}{4}}\left(\frac{1}{8g}\right)$$

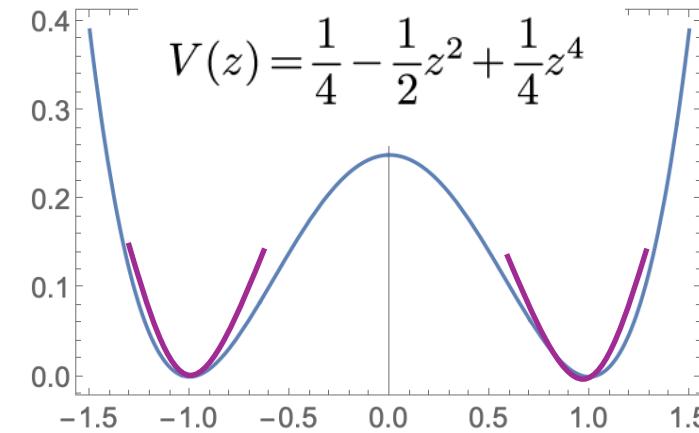
$$Z_N(g) = \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} dz e^{-\frac{1}{2}z^2} \frac{1}{n!} \left(\frac{g}{4}z^4\right)^n$$

$$= \sum_{n=0}^{\infty} (-g)^n \sqrt{2} \frac{\Gamma(2n + \frac{1}{2})}{n!}$$

$$\approx \sum_{n=0}^{\infty} \frac{1}{\sqrt{\pi}} (-4)^n n! g^n$$

asymptotic series
(alternating sign)

Double well



$$Z(g) = \int_{-\infty}^{\infty} dz e^{-\frac{1}{g}\left(\frac{1}{4} - \frac{1}{2}z^2 + \frac{1}{4}z^4\right)}$$

$$= \frac{\pi}{2} e^{-\frac{1}{8g}} \left[\mathcal{I}_{-\frac{1}{4}}\left(\frac{1}{8g}\right) + \mathcal{I}_{\frac{1}{4}}\left(\frac{1}{8g}\right) \right]$$

$$\approx \sqrt{g} \sum_n 4^n n!$$

asymptotic series
(non-alternating sign)

Expand around minimum

1. Why factorial growth?

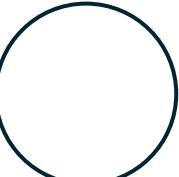
Anharmonic oscillator

$$Z(g) = \int_{-\infty}^{\infty} dz e^{-\frac{1}{2}z^2 - \frac{g}{4!}z^4} \approx \sum_{n=0} \frac{1}{\sqrt{\pi}} (-4)^n n! g^n$$

- Partition function of a 0D quantum-mechanical system with action $S(z) = \frac{1}{2}z^2 + \frac{g}{4}z^4$
- Compute with Feynman diagrams

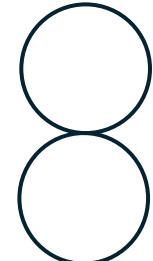
 propagator = 1

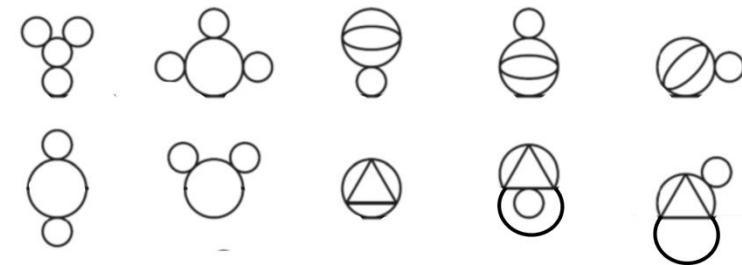
 interaction = - g

 $= 1 = \frac{Z(0)}{Z_0}$

$$Z_0(g) = \int_{-\infty}^{\infty} dz e^{-\frac{1}{2}z^2} = \sqrt{2\pi} \quad \frac{1}{Z_0} \int_{-\infty}^{\infty} dz e^{-\frac{1}{2}z^2} \left(-\frac{g}{4!} z^4 \right) = -\frac{g}{8}$$

symmetry
factor

 $= (-g) \times \frac{1}{8}$



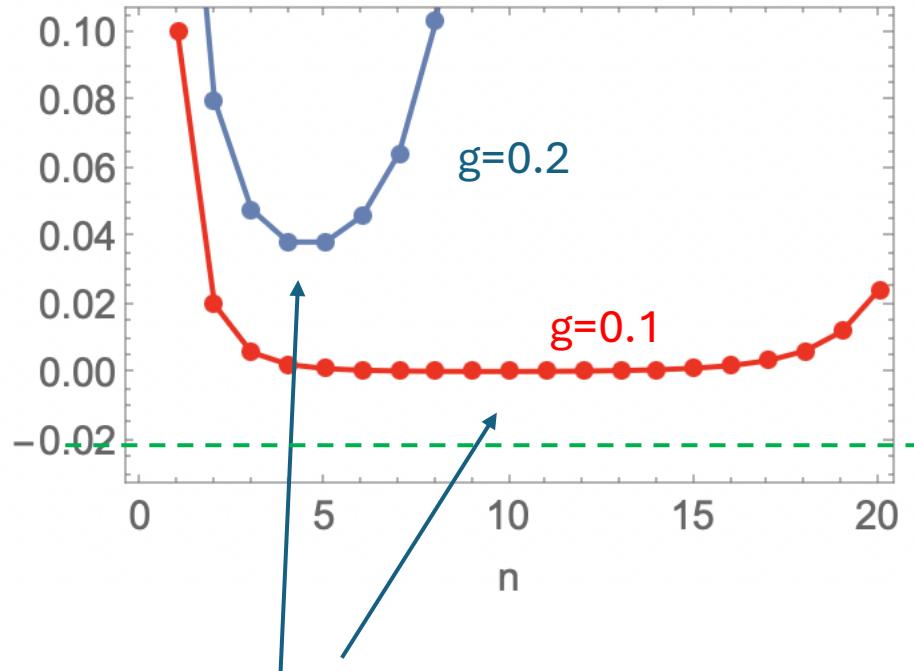
- Sum of diagrams at order n is $(-4g)^n n!$
- Each diagram is < 1 (symmetry factor)

\Rightarrow There must be at least $n!$ diagrams at order n

Factorial growth because
there are $n!$ diagrams at order g^n

2. Why does perturbation theory work?

$$Z(g) = \sum_n A^n g^n n! \xrightarrow{A=1}$$



Minimized when

$$\frac{\partial}{\partial n} (A^n g^n n!) \approx A^n g^n n! \ln(n A g) = 0 \quad \rightarrow \quad n \approx \frac{1}{A g}$$

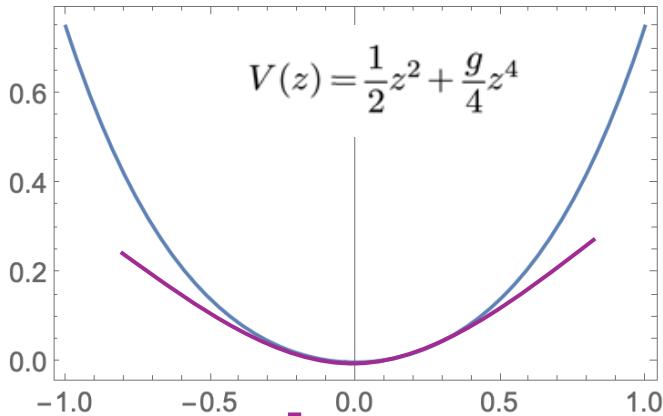
QED: $\alpha_e \sim \frac{1}{137}$ optimal truncation is 137 terms

QCD $C_A \alpha_s \sim 3 \times 0.118 \approx 0.33$ optimal truncation is 3 terms (NNLO)!

What is the right answer?

- Optimal truncation says there is a smallest term
- Explains why perturbation theory *seems* to work

Anharmonic oscillator



Expand around minimum

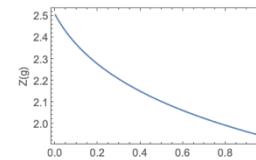
$$\begin{aligned} Z_N(g) &= \sum_{n=0}^N \int_{-\infty}^{\infty} dz e^{-\frac{1}{2}z^2} \frac{1}{n!} \left(\frac{g}{4} z^4 \right)^n \\ &= \sum_{n=0}^N (-g)^n \sqrt{2} \frac{\Gamma(2n + \frac{1}{2})}{n!} \\ &\approx \frac{1}{\sqrt{\pi}} (-4)^n n! g^n \end{aligned}$$

asymptotic series
(alternating sign)

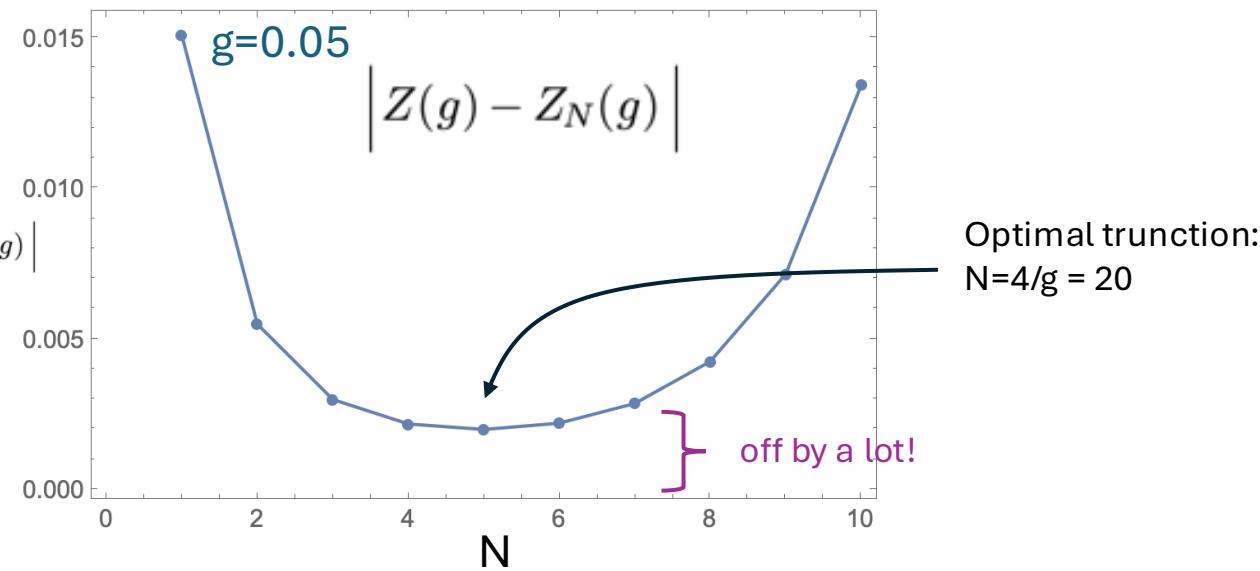
Compute exact answer

$$Z(g) = \int_{-\infty}^{\infty} dz e^{-\frac{1}{2}z^2 + \frac{g}{4}z^4} = \frac{1}{\sqrt{2g}} e^{\frac{1}{8g}} \mathcal{K}_{\frac{1}{4}} \left(\frac{1}{8g} \right)$$

smooth function

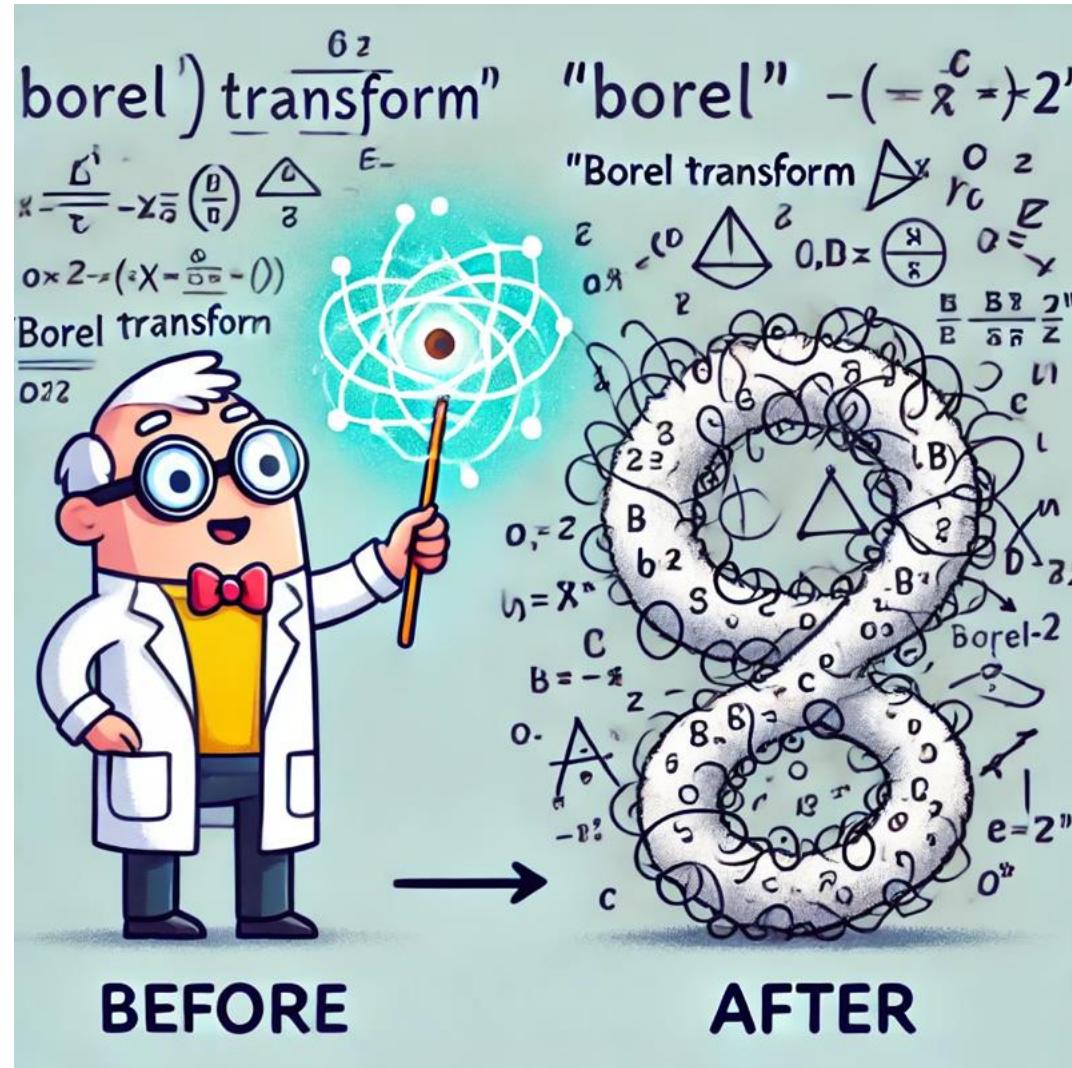


Compare expansion to exact result



3. Can we reconstruct the exact answer from the series?

2. Borel transform



Borel transform

Given a formal series $Z(g) = \sum_n a_n g^n$ its Borel transform is defined as $B(t) = \sum_n \frac{a_n}{n!} t^n$

Inverse Borel transform $\frac{1}{g} \int_0^\infty e^{-\frac{t}{g}} B(t) dt = \frac{1}{g} \int_0^\infty e^{-\frac{t}{g}} \frac{a_n}{n!} t^n dt = a_n g^n$ reproduces the original series

Typical asymptotic series

$$Z(g) = \sum_{n=0}^{\infty} A^n g^n n! \quad \longleftrightarrow \quad B(t) = \sum_{n=0}^{\infty} (At)^n = \frac{1}{1 - At}$$

pole at $t=1/A$

If Z is defined from an action

$$Z(g) = \int dz e^{-\frac{S(z)}{g}} = \int dt e^{-\frac{t}{g}} \frac{1}{|S'(z)|}$$

$$B(t) \propto \frac{1}{|S'(z)|}$$

A = coefficient of factorial growth
= singularity in Borel transform
= semiclassical pesudoparticle
= instanton

- $B(t)$ has poles where $S'(z) = 0$
- Poles are semi-classical objects: instantons

$\lambda\phi^4$ theory

Euclidean path integral

$$\begin{aligned} Z(\lambda) &= \mathcal{N} \int \mathcal{D}\phi e^{-\int d^4x \left[\frac{1}{2}\phi \square \phi + \frac{\lambda}{4}\phi^4 \right]} \\ &= \mathcal{N}' \int \mathcal{D}\phi e^{-\frac{1}{\lambda} \int d^4x \left[\frac{1}{2}\phi \square \phi + \frac{1}{4}\phi^4 \right]} \\ &\approx \sum_{n=0}^{\infty} \left(\frac{3}{8\pi^2} \right)^n \lambda^n n! \end{aligned}$$

asymptotic series

Asymptotic behavior associated with paths

$$\phi(x) = z\phi_b(x)$$

between classical solutions $\phi=0$ and $\phi=\phi_b$

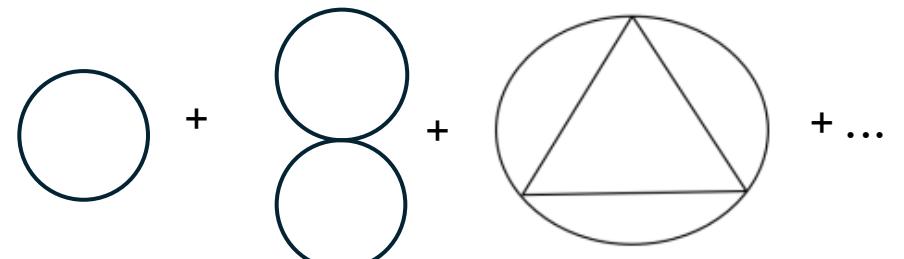
There is a non-trivial solution to equations of motion

$$\phi_b(x) = \frac{\sqrt{8}R}{R^2 + x_\mu x^\mu}$$

Fubini-Lipatov instanton

- Instanton action is $S_b = S[\phi_b] = \frac{8\pi^2}{3}$
- Consider one direction through field space $\phi(x) = z\phi_b(x)$

$$Z(\lambda) = \mathcal{N}'(\dots) \int dz e^{-\frac{S_b}{\lambda} \left(\frac{1}{2}z^2 + \frac{1}{4}z^4 \right)}$$



$$= \mathcal{N}'(\dots) \sum_{n=0}^{\infty} \left(\frac{1}{S_b} \right)^n \lambda^n n!$$

Another source of factorial growth

Bubble chains in the photon propagator in QED

$$D(Q) = \sum_{n=0}^{\infty} \alpha_s \int_0^{\infty} \frac{d\hat{k}^2}{\hat{k}^2} F(\hat{k}^2) \left[\beta_0 \alpha_s \ln \left(\frac{k^2 e^{-\frac{5}{3}}}{\mu^2} \right) \right]^n$$

each bubble gives

integrate over p

integral over k gives $n!$

- **Renormalon** = factorial growth associated with UV-divergent bubble chains
- Pole in Borel transform at $t = n/\beta_0$ for some integer n

Pole in Borel transform at
 $t = -\frac{2}{\beta_0}$

4. Are renormalons also semi-classical objects?

- Does some field configuration have action $S = n/\beta_0$?

3. Can we reconstruct the exact answer from the series?

Borel resummation

The original function can be reconstructed via **Borel resummation**

$$B(t) = \sum_n \frac{a_n}{n!} t^n$$

$$\frac{1}{g} \int_0^\infty e^{-\frac{t}{g}} B(t) dt = \frac{1}{g} \int_0^\infty e^{-\frac{t}{g}} \frac{a_n}{n!} t^n dt = a_n g^n$$

- reproduces the original series
- if series is convergent reproduces original function

e.g. anharmonic oscillator

$$Z(g) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty dz e^{-\frac{1}{g}(\frac{1}{2}z^2 + \frac{1}{4}z^4)}$$

$$= \frac{1}{\sqrt{2g\pi}} e^{-\frac{1}{8g}} \mathcal{K}_{\frac{1}{4}}\left(\frac{1}{8g}\right)$$

exact result

$$= \sum_{n=0}^N (-g)^n \sqrt{2} \frac{\Gamma(2n + \frac{1}{2})}{n!}$$

$$\approx \sqrt{g} \sum_{n=0}^{\infty} (-4g)^n n!$$

asymptotic series

Borel transform

$$B_1(t) = \sum_{n=0}^{\infty} \frac{\Gamma(\frac{1}{2} + 2n)}{\Gamma(n + \frac{3}{2}) n!} \sqrt{2t} (-t)^n = 2\sqrt{\sqrt{1+4t} - 1}$$

Borel resummation

$$\frac{1}{g} \int_0^\infty e^{-\frac{t}{g}} 2\sqrt{\sqrt{1+4t} - 1} dt = \frac{1}{\sqrt{2g\pi}} e^{-\frac{1}{8g}} \mathcal{K}_{\frac{1}{4}}\left(\frac{1}{8g}\right) = Z(g)$$

Borel resummation reconstructs $Z(g)$ exactly from its asymptotic series!

3b. Will Borel resummation always work?

Failure mode #1

$$e^{-\frac{1}{8g}} \mathcal{K}_{\frac{1}{4}}\left(\frac{1}{8g}\right) = \sum_n \frac{\Gamma(2n + \frac{1}{2})}{n!} g^n$$
$$e^{-\frac{6}{g}} + e^{-\frac{1}{8g}} \mathcal{K}_{\frac{1}{4}}\left(\frac{1}{8g}\right) = \sum_n \frac{\Gamma(2n + \frac{1}{2})}{n!} g^n$$

Two functions have same asymptotic series

Which will Borel resummation give?

series has no
access to terms like this

Failure mode #2

e.g. double well

$$Z(g) = \int_{-\infty}^{\infty} dz e^{-\frac{1}{g}(\frac{1}{4} - \frac{1}{2}z^2 + \frac{1}{4}z^4)} = \frac{\pi}{2} e^{-\frac{1}{8g}} \left[\mathcal{I}_{-\frac{1}{4}}\left(\frac{1}{8g}\right) + \mathcal{I}_{\frac{1}{4}}\left(\frac{1}{8g}\right) \right]$$

$$= \sum_{n=0}^{\infty} \sqrt{2g} g^n \frac{\Gamma(2n + \frac{1}{2})}{n!}$$

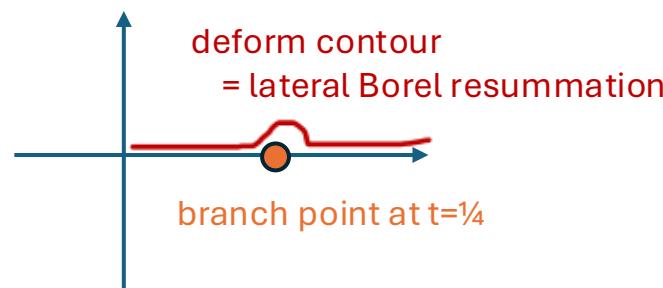
$$\approx \sqrt{g} \sum_{n=0}^{\infty} (4g)^n n!$$

non-alternating
series

Borel transform

$$\mathcal{B}[f_2^{(1)}] = \sum_{n=0}^{\infty} t^{n+\frac{1}{2}} \frac{\Gamma(\frac{1}{2} + 2n)}{n! \Gamma(\frac{3}{2} + n)} = \sqrt{2 - 2\sqrt{1 - 4t}}$$

- complex for $t > \frac{1}{4}$
- integral over $0 < t < \infty$ ambiguous



difference between deformations is

$$\frac{1}{g} \int_{C_+} e^{-\frac{t}{g}} B(t) - \frac{1}{g} \int_{C_-} e^{-\frac{t}{g}} B(t) = 2\pi i e^{-\frac{t^*}{g}} B(t^*)$$

$$\text{Ambiguity} \sim i e^{-\frac{t^*}{g}}$$

What does Borel resummation do if
 $B(t)$ has singularities?

Borel resummation of a *real series*
of a *real function* is complex!

Trans-series

Series in quantum mechanics and quantum field theory are believed to be **trans-series**

$$Z(g) = \sum_{a, S_b} \ln^a g e^{-\frac{S_b}{g}} \left[\sum_n c_n^{a,b} g^n \right] \xrightarrow{\text{Borel resummation}} \sum_{a, S_b} \ln^a g e^{-\frac{S_b}{g}} f_n(g)$$

- each term can be complex
- imaginary parts cancel in the sum

Examples known to have trans series

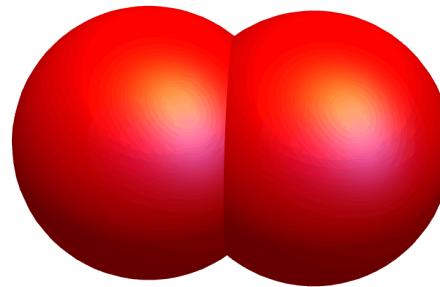
- energies in double well potential
- energies of H_2^+ molecule
- correlation functions in 2D $\text{O}(N)$ model, Gross-Neveu model

Examples believed to be trans-series

- quark pole masses
- e^+e^- event shapes
- any observable in QCD

Trans-series example #1

e.g. Energy levels of H_2^+



Damburg et al. PRL 52 13 (1984)

$$E(R) \sim \sum E^{(N)} (2R)^{-N} + e^{-R/n} \sum a^{(N)} (2R)^{-N} + e^{-2R/n} [\sum d^{(N)} (2R)^{-N} + \log R \text{ terms}] \pm ie^{-2R/n} \sum c^{(N)} (2R)^{-N} + \dots,$$

- asymptotic series
- Borel resummation is complex. Imaginary part cancels against

Trans-series example #2

$$J_\mu J_\nu = D = \text{Diagram with a circle and internal lines labeled } q, k \text{ and } n \text{ loops} = \left(\frac{-\beta_0}{2} \right)^n \alpha^n n! \xrightarrow{\text{Borel resummation}} \text{Im } D = \pm i\pi e^{-\frac{1}{\beta_0 \alpha_s}}$$

Operator Product Expansion $J_\mu J_\nu \sim (q_\mu q_\nu - q^2 g_{\mu\nu}) \left[C_0 + \frac{C_2}{Q^4} \text{Tr } G_{\mu\nu}^2 + \frac{C_4}{Q^4} \bar{\psi} \psi \dots \right]$

$$\alpha(Q) = \frac{1}{\beta_0 \ln \frac{Q^2}{\Lambda^2}} \Rightarrow \langle \Omega | \text{Tr } G_{\mu\nu}^2 | \Omega \rangle \approx \Lambda^4 = e^{-\frac{2}{\alpha_s(Q) \beta_0}} Q^4$$

$$\Rightarrow \Lambda^2 = e^{-\frac{1}{\alpha(Q) \beta_0}} Q^2$$

$$\langle \Omega | J_\mu J_\nu | \Omega \rangle \sim (q_\mu q_\nu - q^2 g_{\mu\nu}) \left[\left(\dots + i\pi e^{-\frac{2}{\alpha_s \beta_0}} \right) + C_2 e^{-\frac{2}{\alpha_s(Q) \beta_0}} + \dots \right]$$

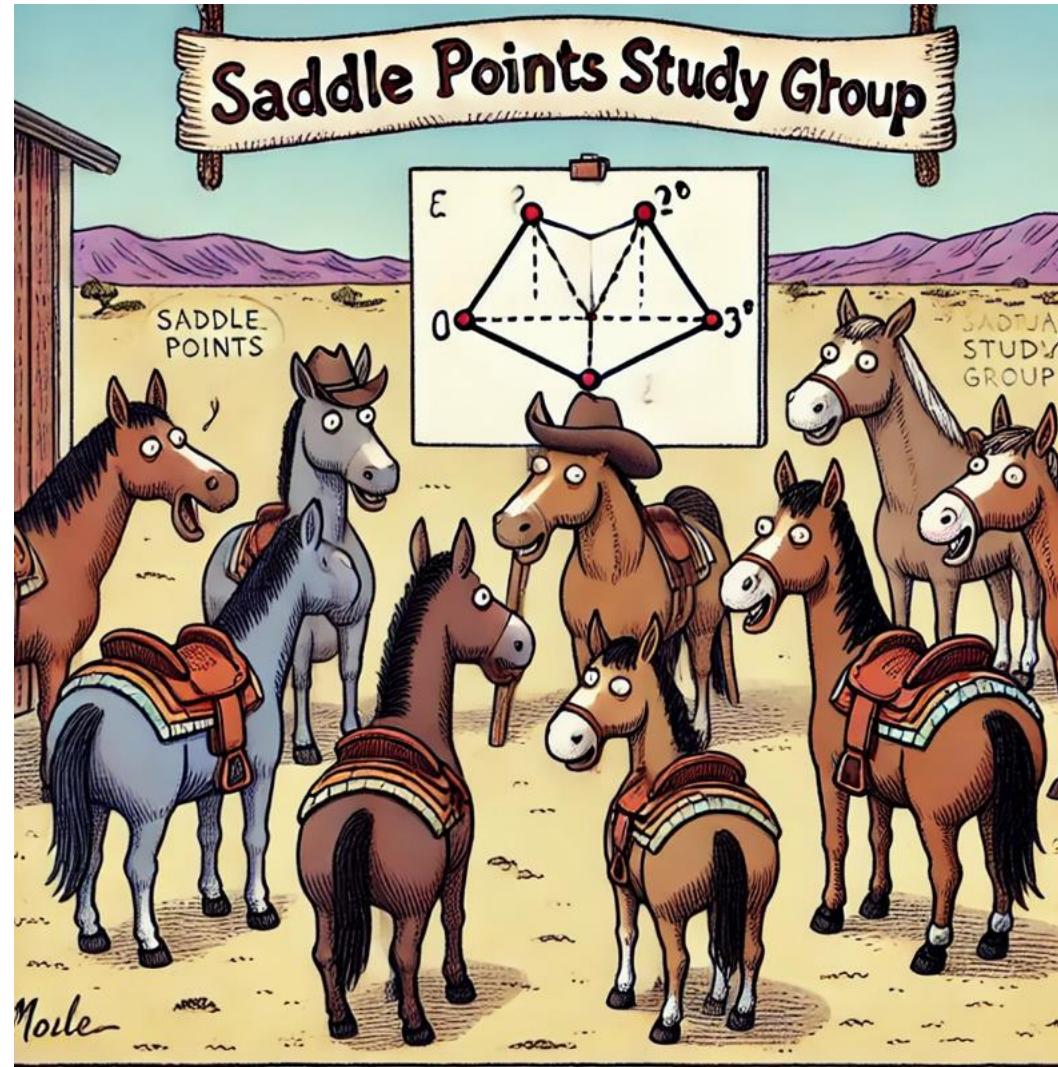
- $e^{-n/\beta_0 \alpha}$ Borel ambiguities suggest operators of dimension $2n$
- Operator contributions cancel imaginary parts from Borel resummation

Why are operator expectation values complex?

Unanswered questions so far

1. Why does Borel resummation ever work?
2. When does Borel resummation reproduce a function?
3. What cancels the imaginary part when Borel transformation is ambiguous?
4. Is there a semi-classical interpretation of renormalons?

3. Saddle points



Saddle point approximation

Consider a 1D Laplace integral $Z(g) = \int dz e^{-\frac{S(z)}{g}}$

- We can expand around any point z^* where $S'(z) = 0$

$$\begin{aligned} Z(g) &= e^{-\frac{S(z^*)}{g}} \int dz e^{-\frac{S''(z^*)}{g} \frac{z^2}{2} - \frac{S'''(z^*)}{g} \frac{z^3}{3!} + \dots} \\ &= e^{-\frac{S(z^*)}{g}} \sqrt{g} \int dz e^{-S''(z^*) \frac{z^2}{2}} \frac{1}{n!} \left(\sqrt{g} S'''(z^*) \frac{z^3}{3!} + \dots \right)^n \end{aligned}$$

- rescale $z \rightarrow \sqrt{g}z$
- expand perturbatively in g

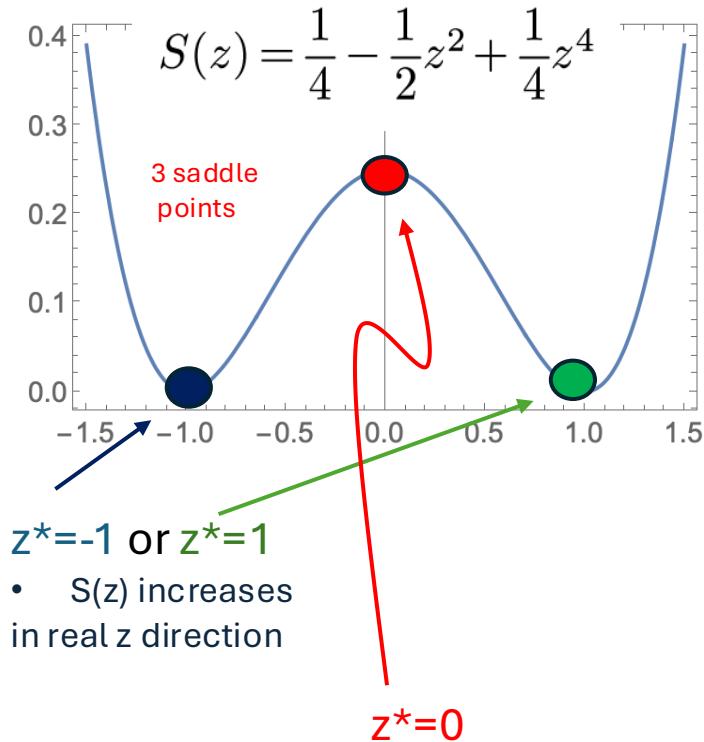
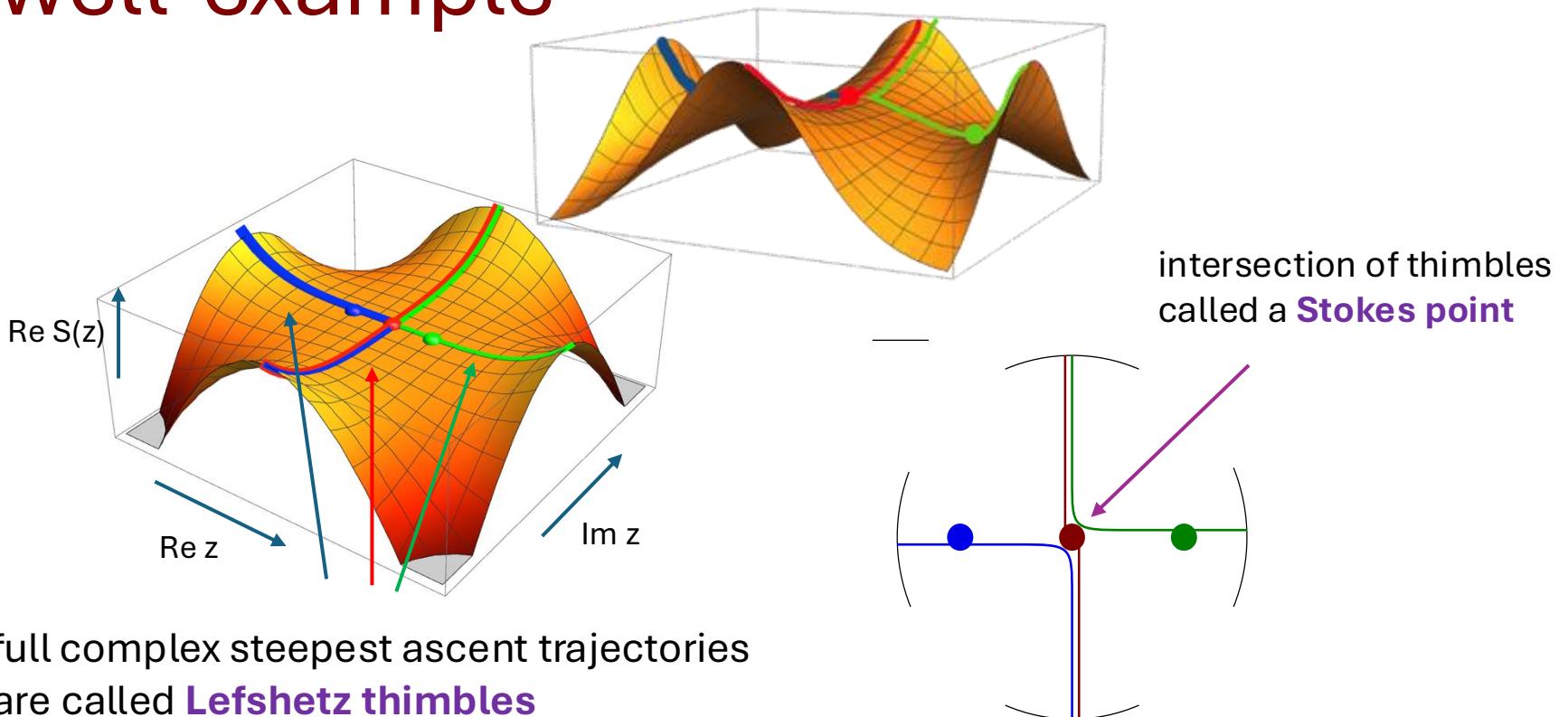
If $S''(z^*) > 0$, integrate along *real* z

If $S''(z^*) < 0$, must integrate along *imaginary* z

For a multidimensional Laplace integral $Z(g) = \int_{\mathcal{C}} d^n z e^{-\frac{S(\vec{z})}{g}}$

- Can expand around any point where $S'(z^*) = 0$ = **saddle point**
- Saddle point approximation requires integrating along direction where $\text{Re}[S(z)]$ **increases fastest**
steepest ascent contours
= Lefshetz thimbles

Double well-example



Theorem
 The Borel resummation of the saddle point expansion around z^* gives
 = the integral over the thimble passing through z^*

Key to why Borel resummation works in physics

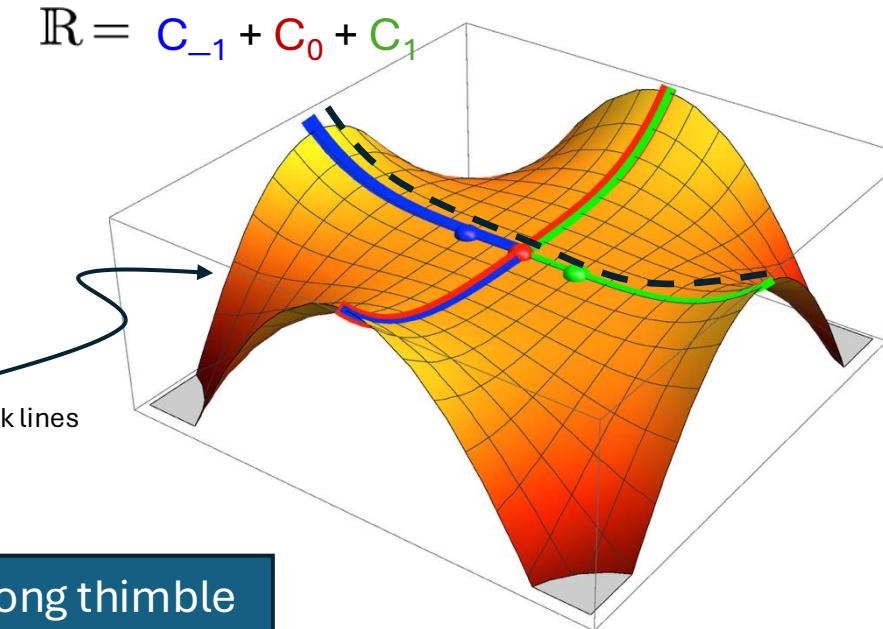
Picard-Lefshetz theory

Any contour can be decomposed into a sum over **thimbles** (uphill paths)

$$\mathcal{C} = \sum n_j \mathcal{C}_j$$

$$n_j = \langle \mathcal{K}_j, \mathcal{C} \rangle$$

intersection numbers between contour \mathcal{C} and
Lefshetz **anti-thimbles** (downhill paths)

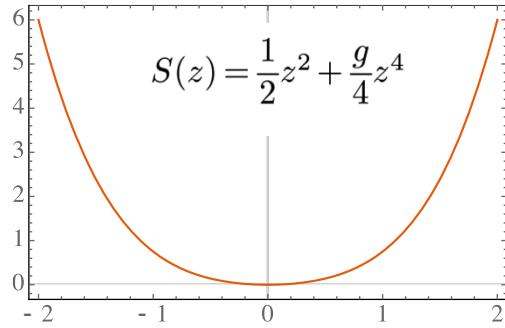


1. Borel resummation gives integral along thimble

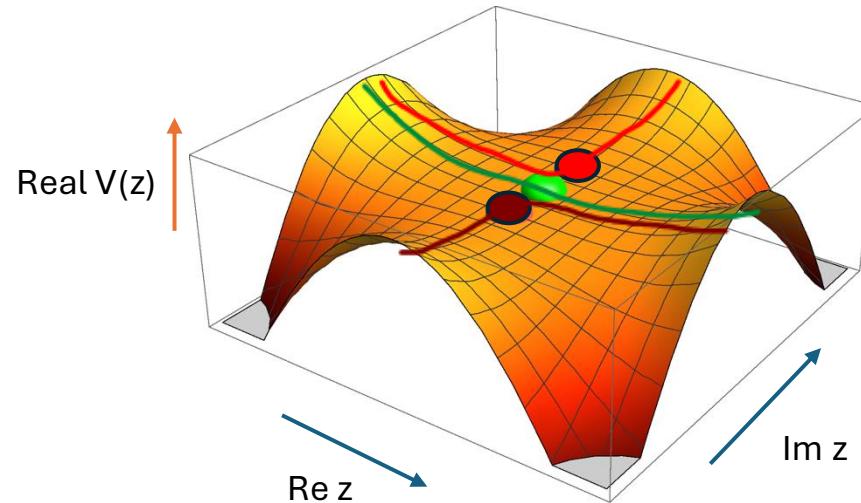
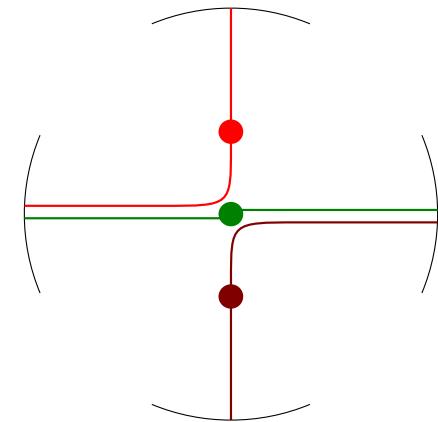
$$f(g) = \int_{\mathcal{C}} dz e^{-\frac{S(z)}{g}}$$

2. If integration contour \mathcal{C} = a thimble
then Borel resummation will reconstruct $f(g)$

Anharmonic oscillator



Extrema at
 $z = 0, \frac{i}{\sqrt{g}}, -\frac{i}{\sqrt{g}}$



- Steepest ascent contour passing through $z=0$ saddle is $\mathcal{C}_0 = \{z \in \mathbb{R}\}$
- Integral along $C = R$ is already along a thimble

Just need a single contour (R)

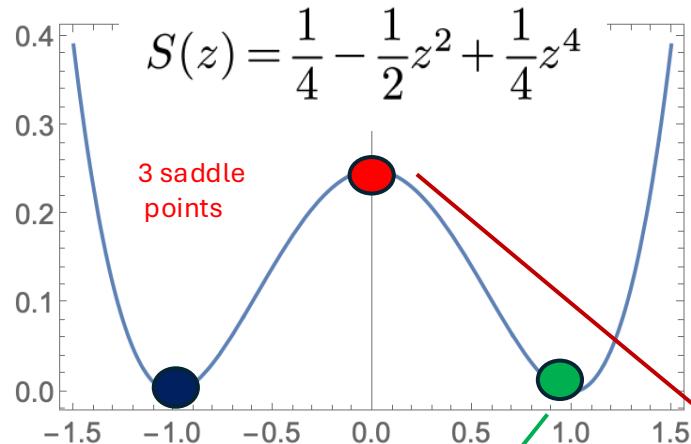
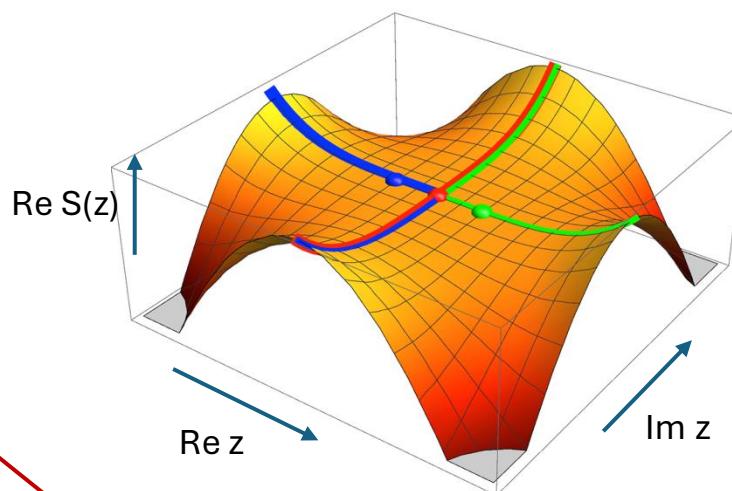
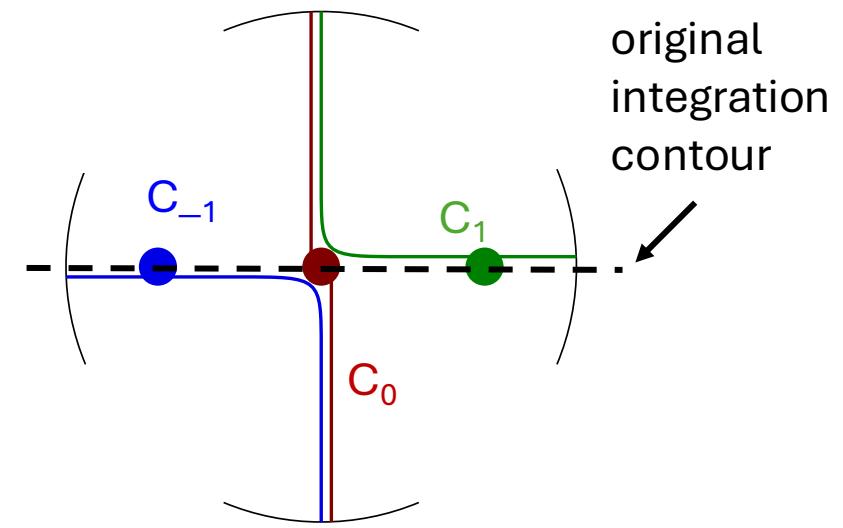
$$Z(g) = \int_{-\infty}^{\infty} dz e^{-\frac{1}{2}z^2 + \frac{g}{4}z^4} = \frac{1}{\sqrt{2g}} e^{\frac{1}{8g}} \mathcal{K}_{\frac{1}{4}}\left(\frac{1}{8g}\right) = \frac{1}{g} \int_0^{\infty} e^{-\frac{t}{g}} 2\sqrt{\sqrt{1+4t} - 1}$$

Borel resummation

Borel transform

We get the right answer from Borel resummation because thimble = original integration contour ✓

Double well-example



$$\mathcal{B}[f_2^{(1)}] = \sum_{n=0}^{\infty} t^{m+\frac{1}{2}} \frac{\Gamma(\frac{1}{2} + 2n)}{n! \Gamma(\frac{3}{2} + n)} = \sqrt{2 - 2\sqrt{1 - 4t} \pm i\epsilon}.$$

branch of $\sqrt{\cdot}$ corresponds to which
imaginary direction contour takes

Borel resummation

$$f^1(g) = \frac{1}{g} \int_0^{\infty} dt e^{-\frac{t}{g}} \sqrt{2 - 2\sqrt{1 - 4t} \pm i\epsilon} = \frac{i}{2g} e^{-\frac{1}{8g}} K_{\frac{1}{4}}\left(-\frac{1}{8g} \pm i\epsilon\right) = \int_{C_1} dz e^{-S(z)} \quad \text{Integral along thimble} \quad \checkmark$$

$$\mathcal{B}[f_2^{(0)}](t) = 2\sqrt{1 - 2\sqrt{t} \pm i\epsilon} \theta\left(t - \frac{1}{4}\right)$$

Borel resummation

$$f^0(g) = \frac{1}{g} \int_{\frac{1}{4}}^{\infty} dt e^{-\frac{t}{g}} 2\sqrt{1 - 2\sqrt{t} \pm i\epsilon} = \pm \frac{i}{\sqrt{2}} e^{-\frac{1}{8g}} K_{\frac{1}{4}}\left(\frac{1}{8g}\right) = \int_{C_0} dz e^{-\frac{S(z)}{g}}$$

Integral along thimble

$$\text{Sum of } f_2^0(g) + f_2^1(g) + f_2^{-1}(g) = \frac{\pi}{\sqrt{g}} e^{\frac{1}{8g}} \left[\mathcal{I}_{-\frac{1}{4}}\left(\frac{1}{8g}\right) + \mathcal{I}_{\frac{1}{4}}\left(\frac{1}{8g}\right) \right] = \int_{-\infty}^{\infty} dx e^{\frac{1}{2}x^2 - \frac{1}{4}gx^4} \quad \checkmark$$

Summary of Picard-Lefshetz theory

- Path integrals are Laplace integrals $Z(g) = \int_C d^n z e^{-\frac{S(\vec{z})}{g}}$
- Perturbation theory comes from **expanding around some z^*** where $S'(z^*) = 0$
- Resulting **series** $Z(g) = \sum_n a_n g^n$ are **asymptotic**
- Any contour contour C can be **decomposed into thimbles**
- Borel resummation of the **expansion around z^*** gives the integral along the thimble passing through z^*
- If the original contour **C is a thimble**,
 - then **Borel resummation gives $Z(g)$**
- If the original contour **C is not a thimble**
 - then $Z(g)$ is the **sum of Borel resummations** of expansions around multiple saddles

Questions so far

1. Why does Borel resummation ever work?

- Because series come from saddle point expansions

2. When does Borel resummation reproduce a function?

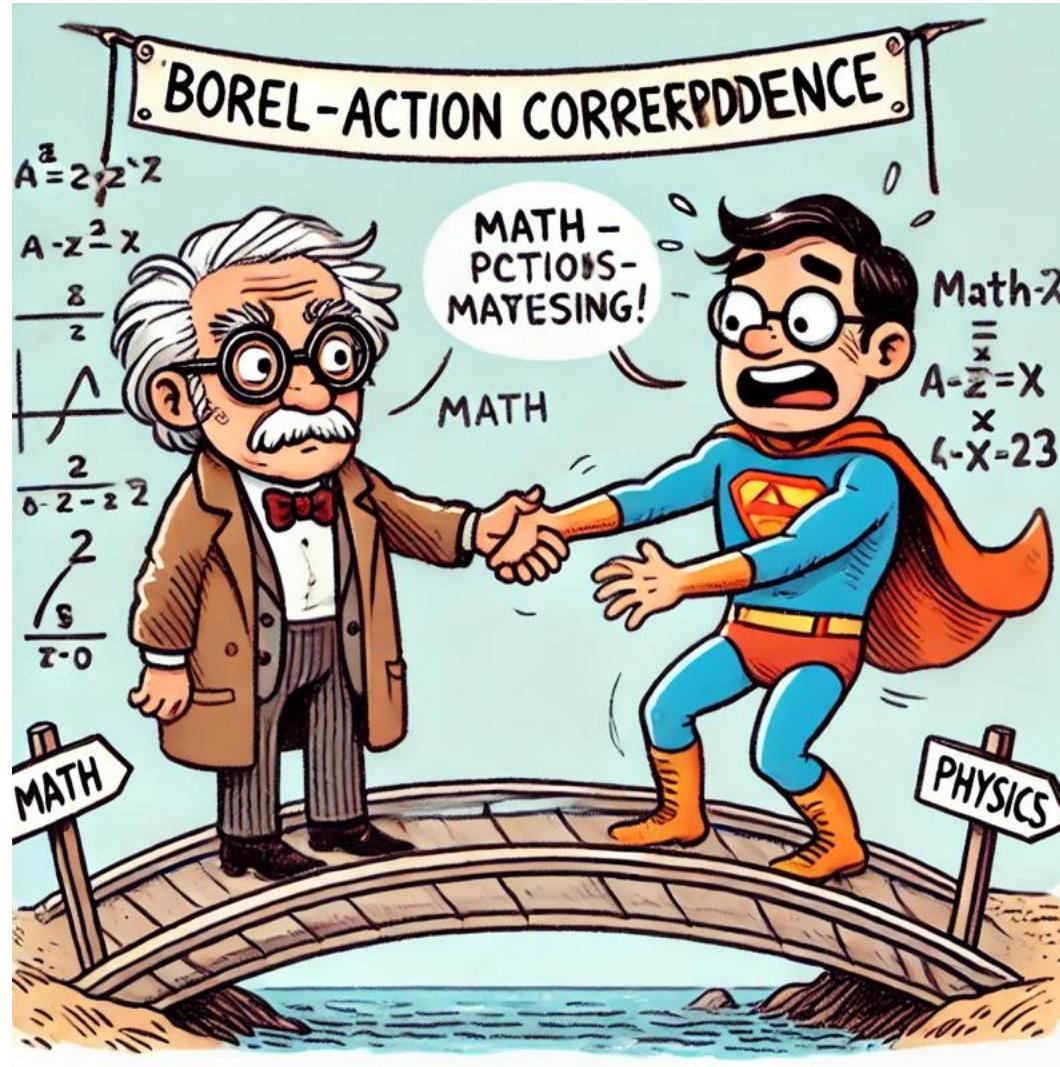
- If the integration contour is a thimble

3. What cancels the imaginary part when Borel transformation is ambiguous?

- Integration along other contours

4. Is there a semi-classical interpretation of renormalons?

The Borel-action correspondence



Borel action correspondence

- We know: non-perturbative action $S(z) \rightarrow$ series $a_n g^n \rightarrow$ Borel transform $B(t)$
- We want: perturbative series $a_n g^n \rightarrow$ Borel transform $B(t) \rightarrow$ non-perturbative action $S(z)$

This can
be done!

$$1 \quad f(g) = \frac{1}{g} \int_0^\infty e^{-\frac{t}{g}} B(t) = \int_0^\infty e^{-\frac{t}{g}} B'(t) \Rightarrow \frac{1}{g} f(g) = \frac{1}{g} \int_0^\infty e^{-\frac{t}{g}} B'(t)$$

integration by parts

$$\Rightarrow \mathcal{B} \left[\frac{1}{g} f_S \right] (t) = \frac{d}{dt} \mathcal{B}[f(g)]$$

$$2 \quad \frac{1}{g} f(g) = \frac{1}{g} \int dz e^{-\frac{S(z)}{g}} = \frac{1}{g} \int dz e^{-\frac{t}{g}} \int dt \delta(t - S(z))$$

action function $S(z)$
= Borel variable t

$$\Rightarrow \mathcal{B} \left[\frac{1}{g} f_S \right] (t) = \int_{-\infty}^\infty dz \delta(t - S(z)) = \sum_{z_i | S(z_i) = t} \left| \frac{1}{S'(z_i)} \right|$$

$$\Rightarrow \frac{dB(S)}{dS} = \sum_{\text{domains}} \frac{1}{\left| \frac{dS}{dz} \right|} = \sum_{\text{domains}} \left| \frac{dz}{dS} \right| \Rightarrow B = \sum_{\text{domains}} |z_i|$$

Borel function $B(t)$ = action variable z

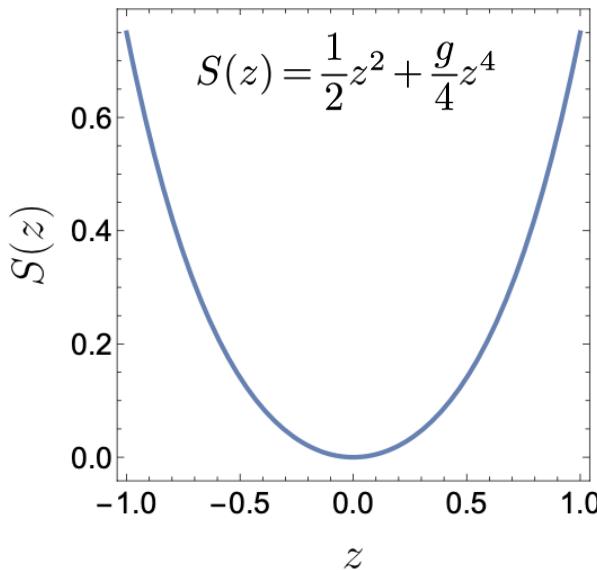
- given $B(t)$ can now invert to find $S(z)$

Borel action correspondence

1. Action function $S(z) =$ Borel variable t

2. Borel function $B(t) =$ action variable z

3. Stationary points of action = branch points of Borel transform



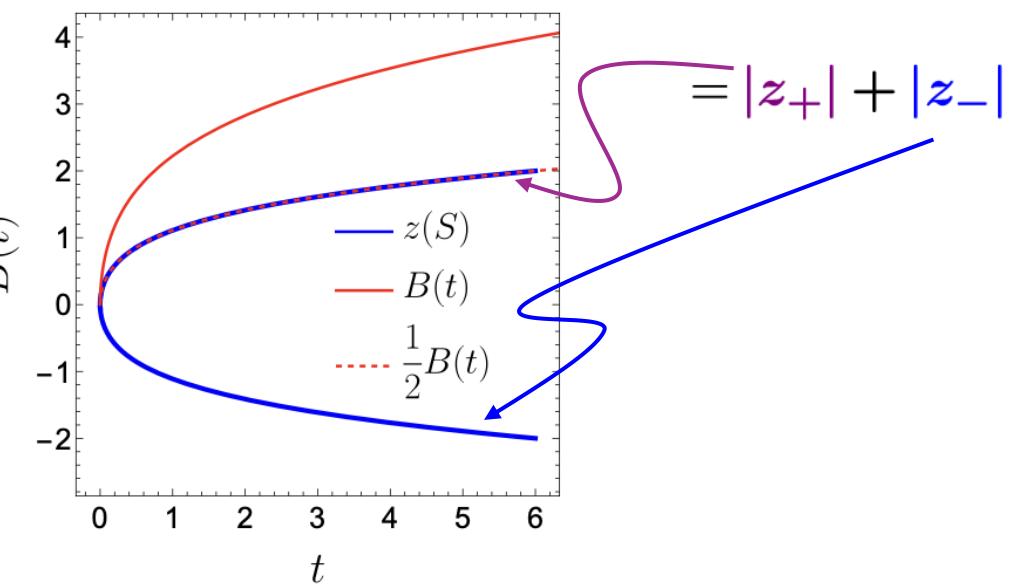
Solve $S(z) = t$

- two solutions

$$z_{\pm} = \pm \sqrt{\sqrt{1+4t} - 1}$$

Borel transform

$$B(t) = 2\sqrt{\sqrt{1+4t} - 1}$$

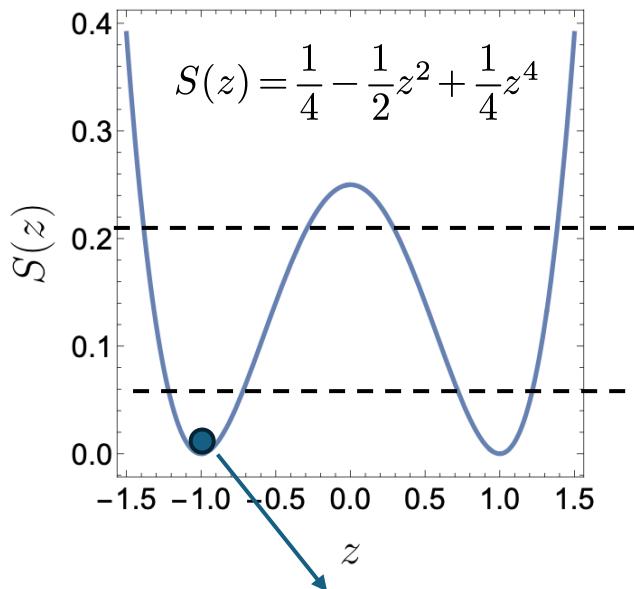


Borel action correspondence

1. Action function $S(z) = \text{Borel variable } t$

2. Borel function $B(t) = \text{action variable } z$

3. Stationary points of action = branch points of Borel transform



Borel transform of pert. series around saddle point

$$\mathcal{B}[f_2^{(1)}] = \sum_{n=0}^{\infty} t^{m+\frac{1}{2}} \frac{\Gamma(\frac{1}{2} + 2n)}{n! \Gamma(\frac{3}{2} + n)} = \sqrt{2 - 2\sqrt{1 - 4t} \pm i\epsilon}.$$

- indicates saddle point at $S = \frac{1}{4}$
- indicates new domain emerges

Solve $S(z) = t$

- $t > \frac{1}{4}$: two solutions

$$z = \pm \sqrt{1 + 2\sqrt{t}}$$

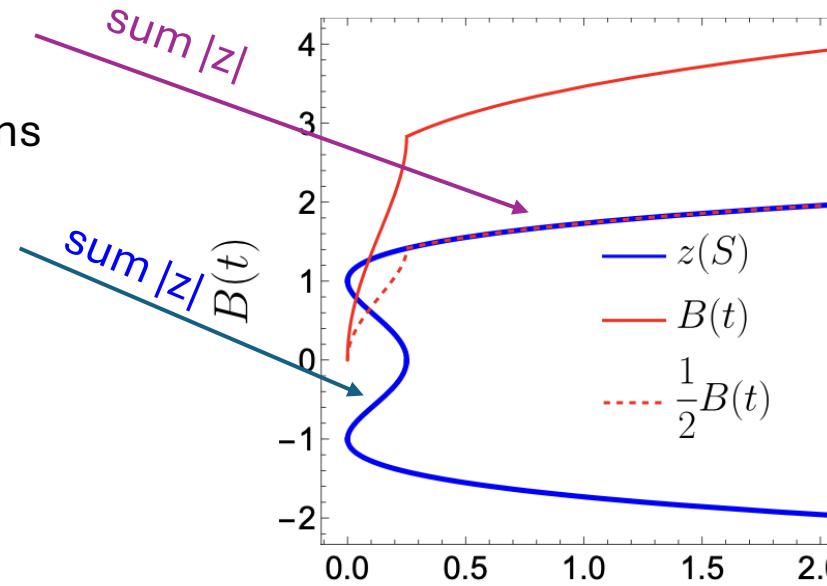
- $t < \frac{1}{4}$: four solutions

$$z = \pm \sqrt{1 + 2\sqrt{t}}$$

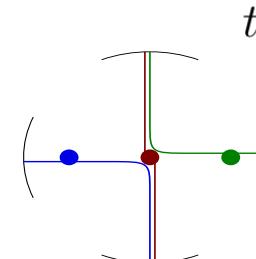
$$z = \pm \sqrt{1 - 2\sqrt{t}}$$

branch point at $t = \frac{1}{4}$ cancels

$$B(t) = -2\sqrt{1 - 2\sqrt{t}} \left(\frac{1}{4} - t \right) + 2\sqrt{1 + 2\sqrt{t}}$$



Stokes point:
thimbles intersect



Multidimensional version

1d version

$$\frac{d}{dt} \mathcal{B}[f(g)] = \int_{-\infty}^{\infty} dz \delta(t - S(z)) = \sum_{z_i | S(z_i) = t} \left| \frac{1}{S'(z_i)} \right|$$

multidimensional version

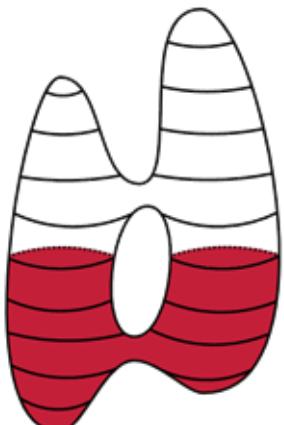
$$\frac{d}{dt} \mathcal{B}[f(g)] = \int d^n \vec{z} \delta(t - S(\vec{z})) = \int_{S(\vec{z})=t} d\sigma(\vec{z}) \frac{1}{|\nabla S(\vec{z})|}$$

integrate in t

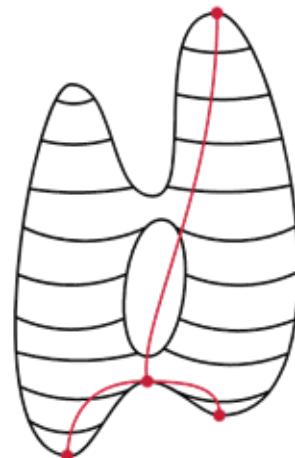
$$B(t) = \int d^n \vec{z} \Theta(t - S(\vec{z})).$$

$B(t)$ = coordinate volume with action $S < t$
= sublevel sets for **Morse** function $S(z)$

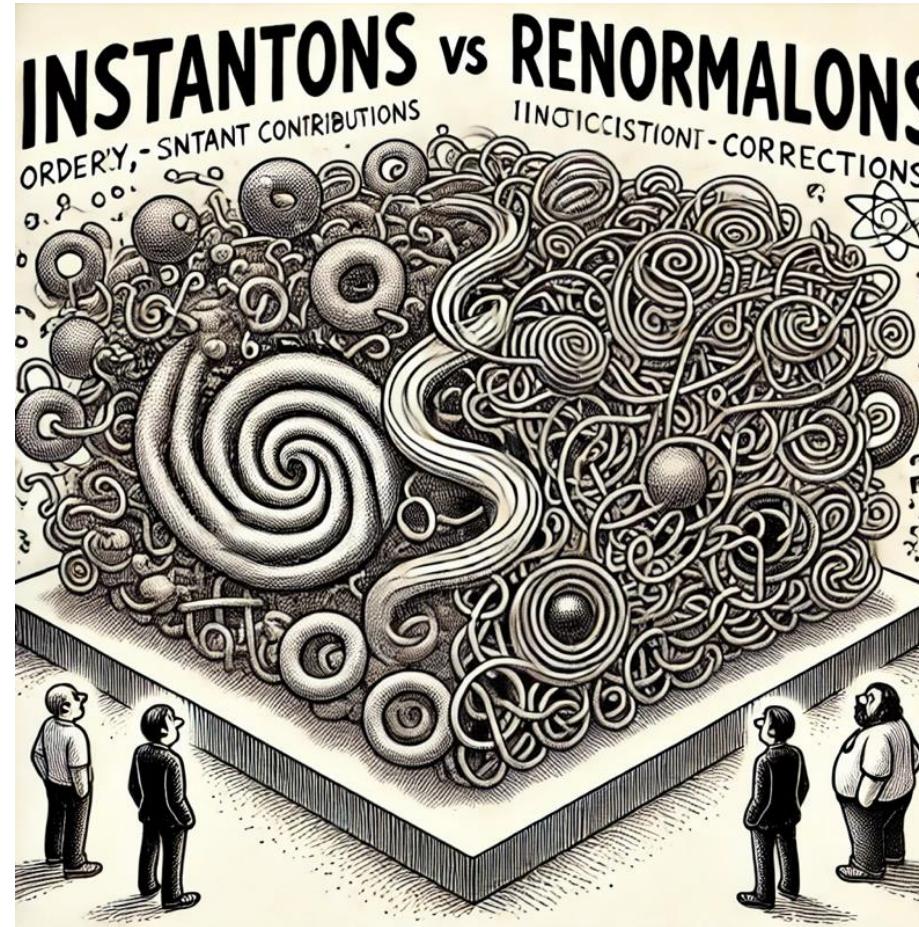
Borel transform
= cumulant density of states in field space
= volume of fields with action less than t



critical points of
 $B(t)$ indicate topology
change



5. Instantons and Renormalons

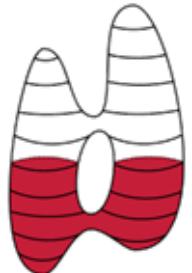


Multidimensional version

How are singularities of $B(t)$ encoded in $S(z)$?

$$B(t) = \int d^n \vec{z} \Theta(t - S(\vec{z})) .$$

1 $B(t)$ finite (branch point)
 $\Rightarrow z = B$ finite



$S(z)$ has a local extremum
• e.g. double well

$$B(t) = \sqrt{2 - 2\sqrt{1 - 4t \pm i\epsilon}} .$$

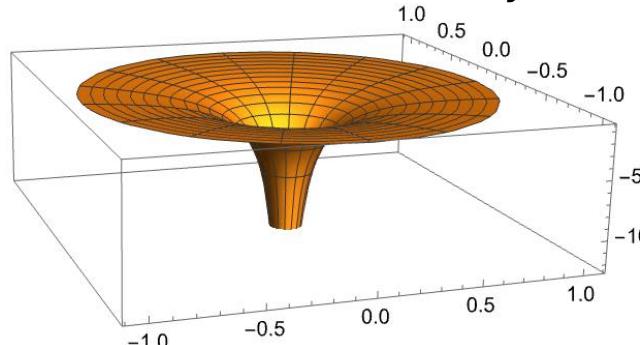
- e.g. 1d double-well
- Fubini instanton in $\lambda\phi^4$

2 **Saddle at infinity**
 $B(t) = \infty$ $z = \infty$

$$\text{e.g. } B(t) = -\ln(t^* - t)$$

Borel action correspondence
 $\Rightarrow S(z) = t = t^* - e^{-z}$

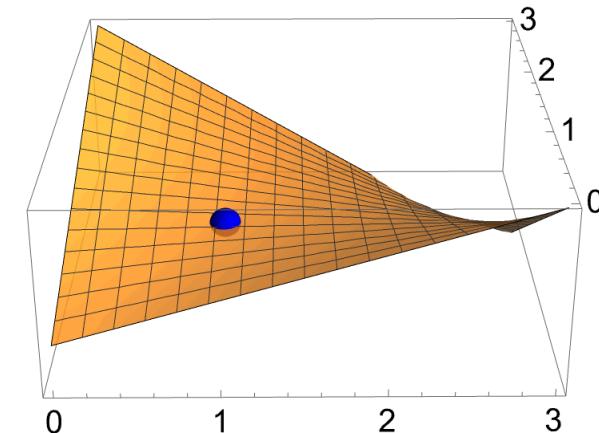
flat direction at infinity



- e.g. BPST instanton -anti-instanton pair in QCD

3 **Saddle not at infinity**
 $B(t) = \infty$ $z = \text{finite}$

- requires $n > 1$
- action becomes unbounded at finite z



- renormalons

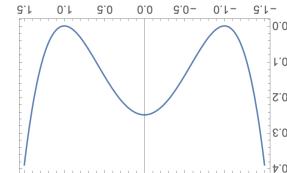
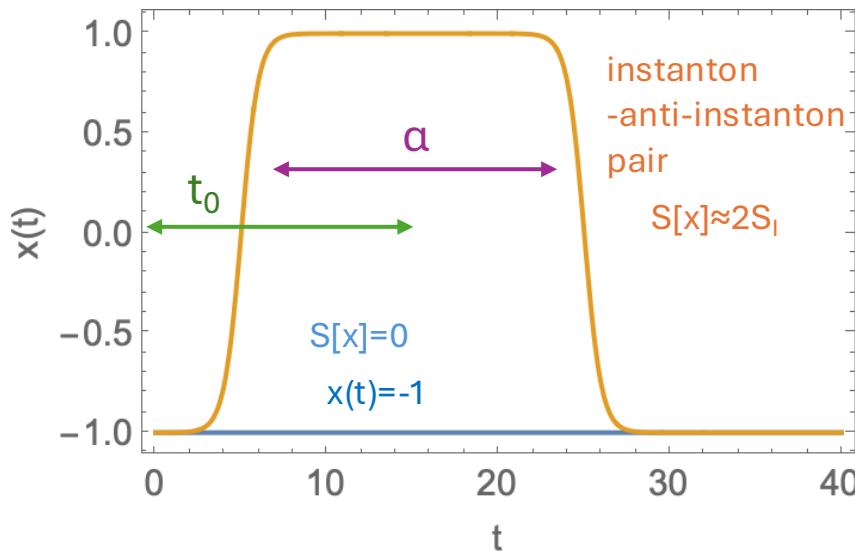
2

Saddles at infinity

Double well in quantum mechanics

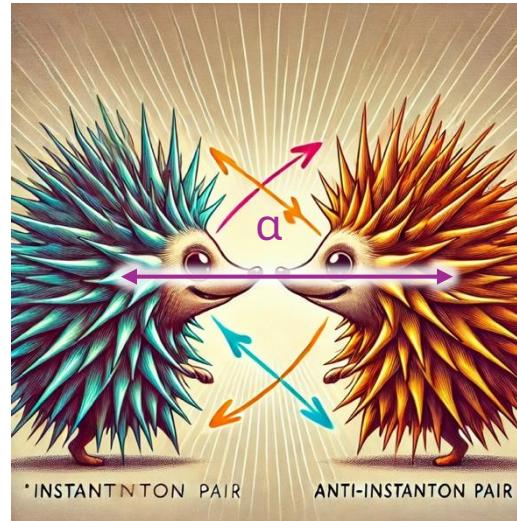
$$\text{Tr}[e^{-HT}] = \mathcal{N} \int \mathcal{D}x e^{-\frac{1}{g} \int dt \left(\frac{1}{2} \dot{x}^2 + V(x) \right)}$$

- Saddle points satisfy $\ddot{x} = V'(x)$
- Ball rolling down inverted potential
- Boundary conditions $x(0)=x(T) = -1$



BPST instantons in Yang Mills theory

- Need instanton-anti-instanton pair to have 0 topological charge



- exact solutions only at $a=\infty$
- maps directly to double well

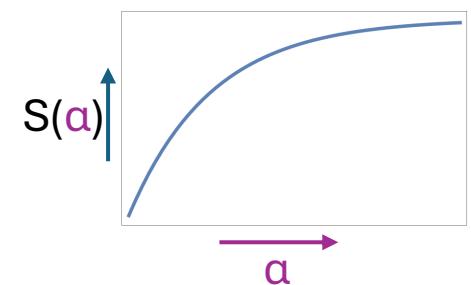
Babansky and Balitsky, PRL 85 (20) 2000

double instanton has two moduli t_0, a

$$x_{\text{II}}(t) = x_I(t - t_0 + \alpha) - x_I(t - t_0 - \alpha)$$

$$S[x_{\text{II}}] = 2S_I(1 - e^{-\alpha})$$

- action exactly independent of t_0 (on a circle)
- action independent of a at $a = \infty$



2

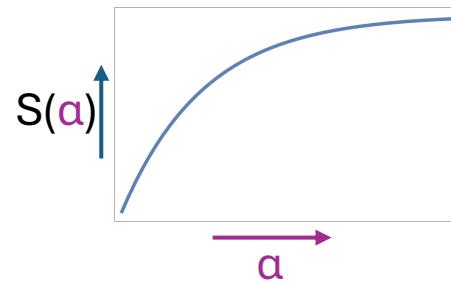
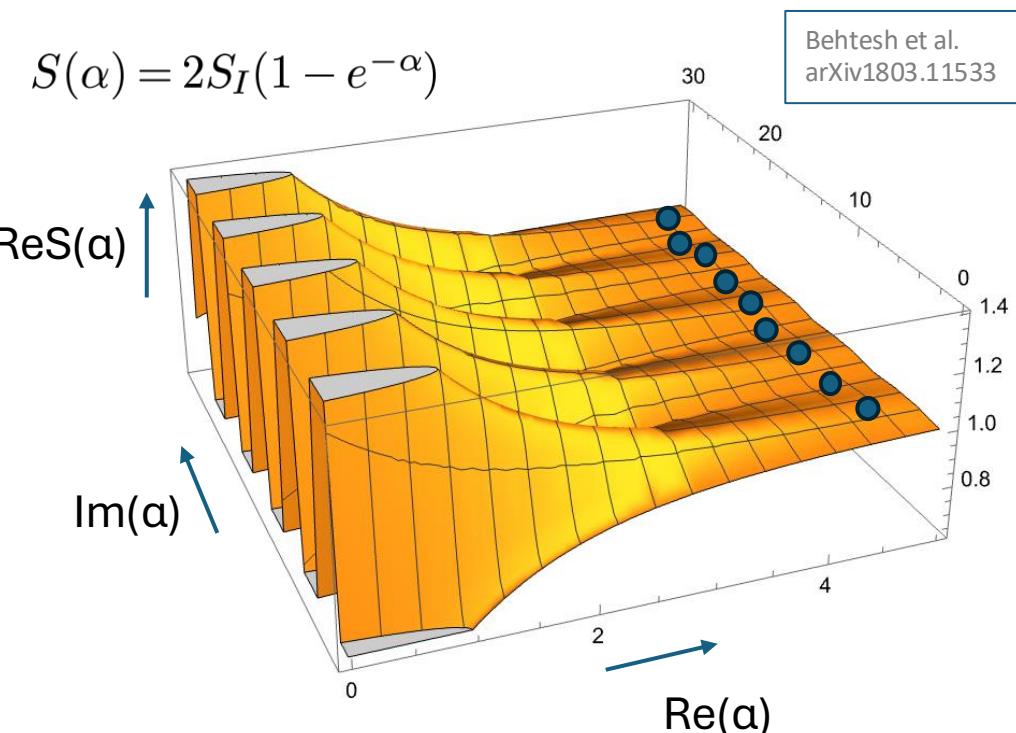
Saddles at infinity

- α is a quasi-collective coordinate

$$Z(g) = \int Dx e^{-\frac{S[x]}{g}} = (\dots) \int d\alpha e^{-\frac{2S_I}{g}[1-e^{-\alpha}]}$$

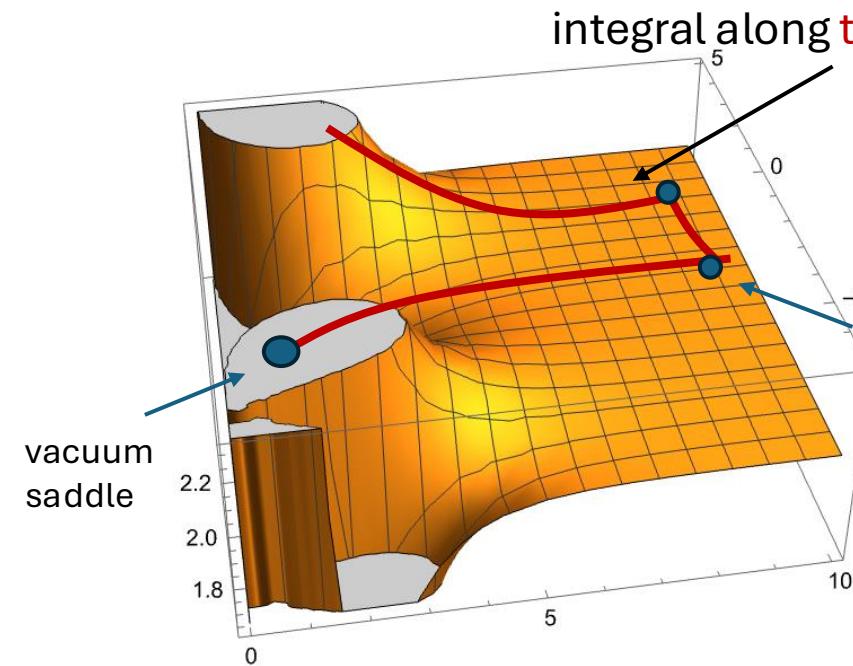
- integral over α is divergent
- $\alpha=\infty$ is not a maximum but a saddle
- additional saddles at $\alpha=\infty \pm n\pi i$

$$S(\alpha) = 2S_I(1 - e^{-\alpha})$$



integral along **thimble** gives

$$e^{-\frac{2S_I}{g}} E_1\left(-\frac{2S_I}{g} + i\varepsilon\right)$$



agrees with
trans-series for double well
(computed using exact WKB)

many Zinn-Justin papers
e.g. Zinn-Justin and Jentsschura
[quant-ph/0501136](https://arxiv.org/abs/quant-ph/0501136)

3

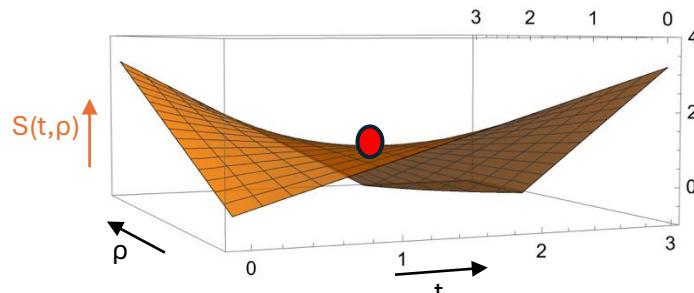
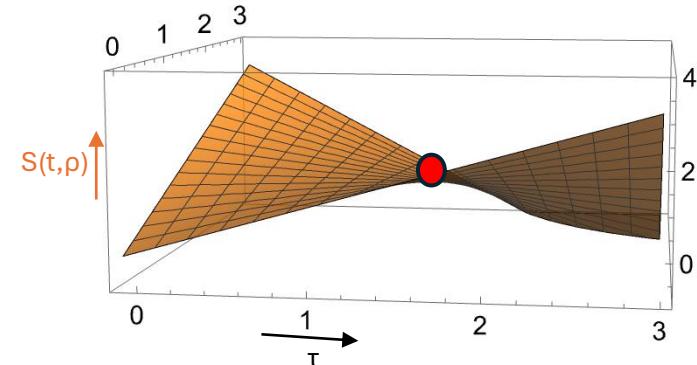
B= ∞ at z finite

Example

$$S(t, \rho) = \frac{t}{g} + k\rho - 2\beta t\rho$$

$$Z(g) = \int_0^\infty dt \int_0^\infty d\rho e^{-S(t, \rho)} \text{ diverges}$$

$$\int_0^\infty d\rho e^{-S(t, \rho)} = e^{-\frac{t}{g}} \frac{1}{k - 2t\beta} \quad \text{if } t < k/2\beta$$

Borel singularity at $t=k/2\beta$ 

$S(t, \rho)$ increases in the ρ direction only if $t < k/2\beta$

- Integral over ρ is convergent if $t < k/2\beta$
- Integral over ρ is divergent if $t > k/2\beta$

Equations of motion

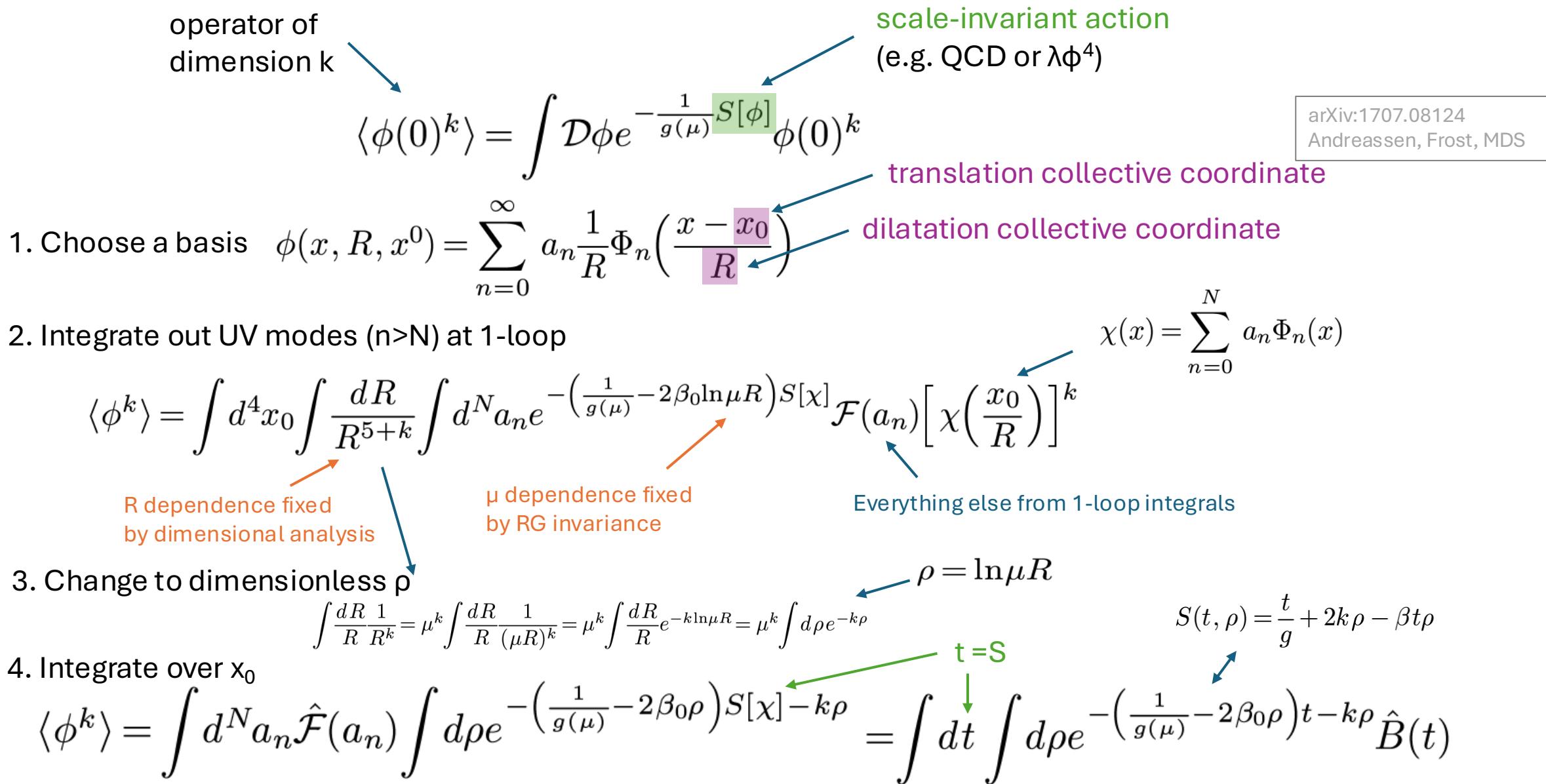
$$\partial_\rho S = k - 2t\beta \Rightarrow t^* = \frac{k}{2\beta}$$

$$\partial_t S = \frac{1}{g} - 2\beta\rho \Rightarrow \rho^* = \frac{1}{2g\beta}$$

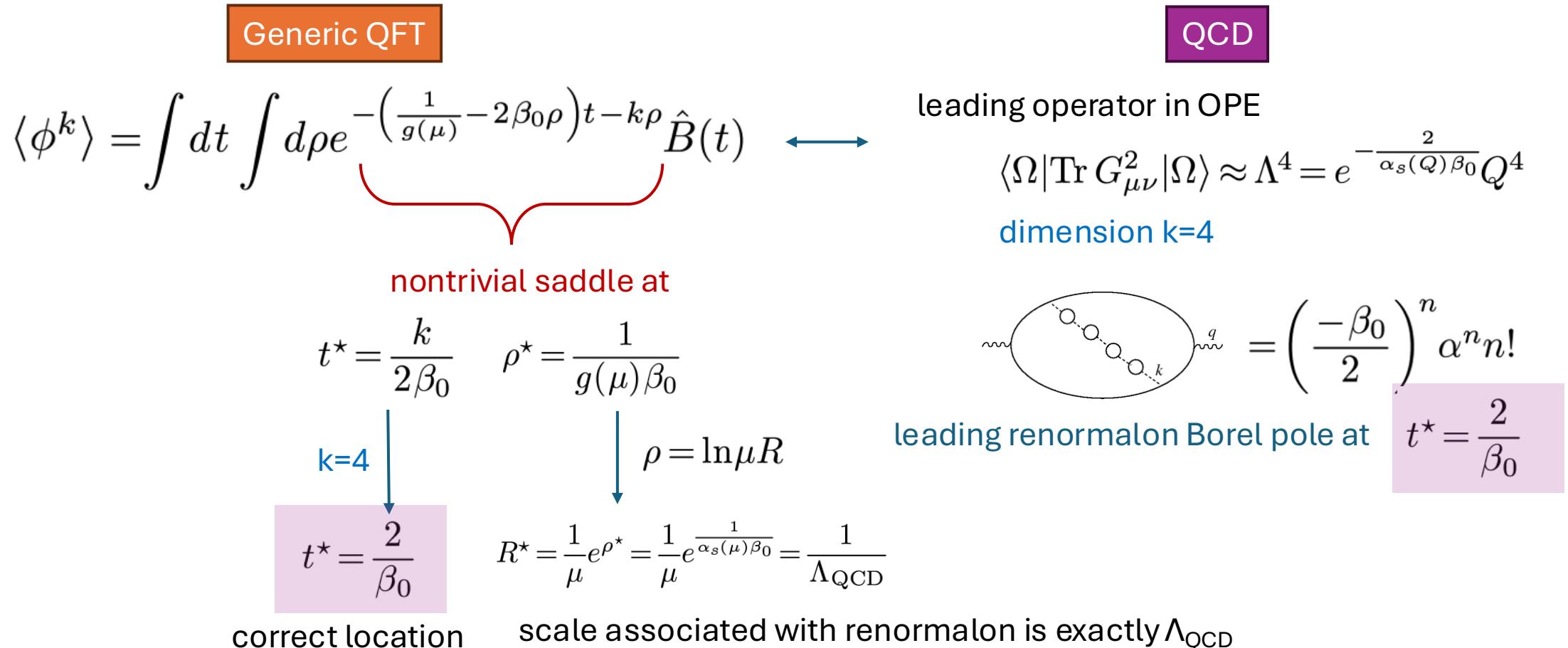
saddle point
is not at infinity
renormalon!

Renormalon saddles

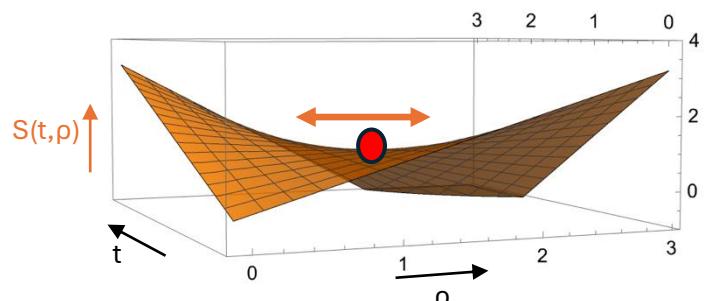
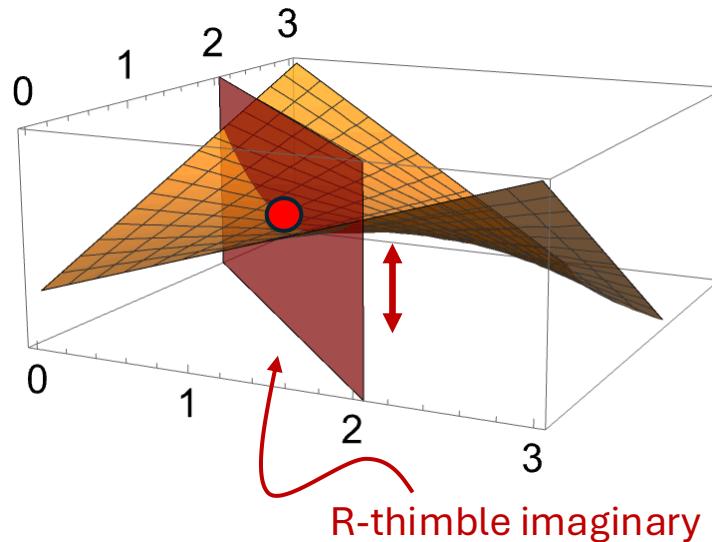
arXiv:2410.07351
Bhattachary, Cotler, Dersy, MDS



Renormalon saddles

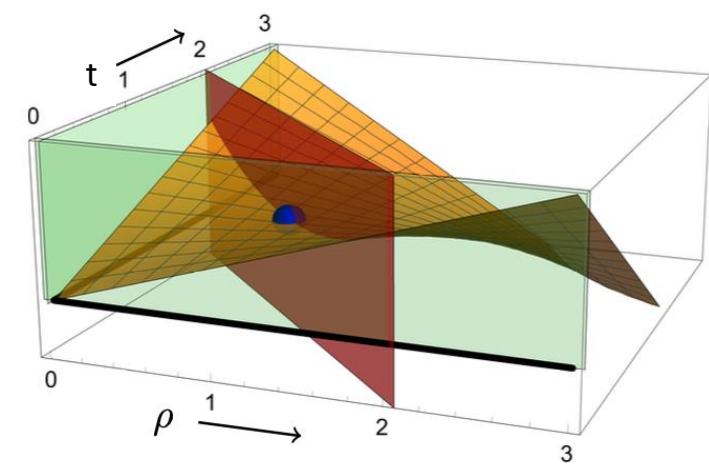


Renormalon Thimbles

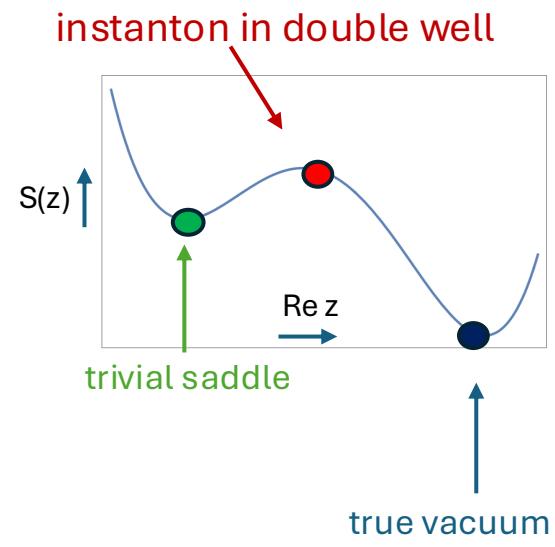
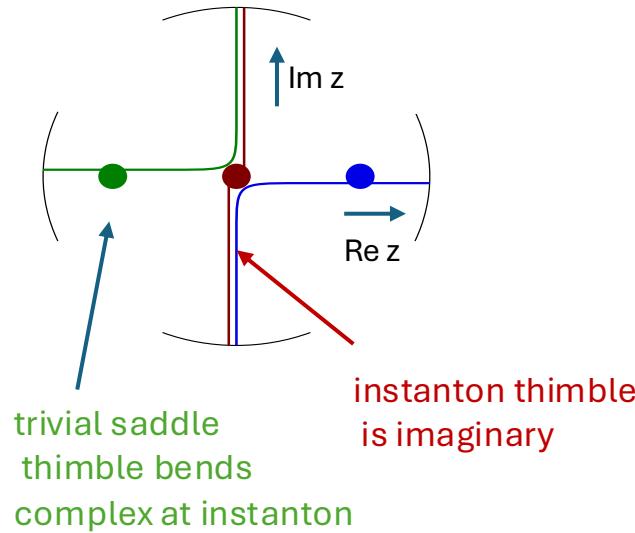


trivial saddle

- starts on boundary
- bends complex at renormalon
- deformed to two half-imaginary semi-planes



- $\text{Re } S$ increases around **renormalon** in **one real** and **one imaginary** direction



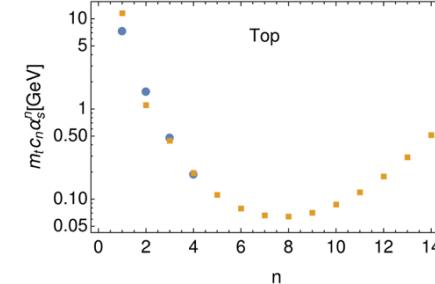
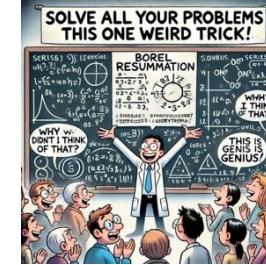
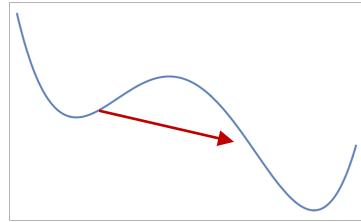
- instantons mediate tunneling in QM and QFT
- do renormalons mediate tunneling in QCD?
- is there a “dilute renormalon gas”?

Conclusions

- Perturbation theory generically gives asymptotic series

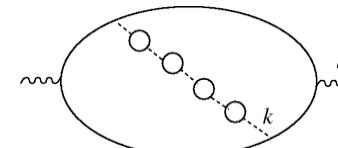
$$f(g) \sim \sum_{n=0}^{\infty} A^n n! g^n$$

- Series cannot be summed, but may be Borel resummed
- Growth associated with **instantons** and **renormalons**

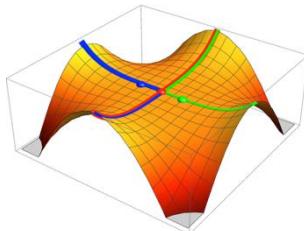
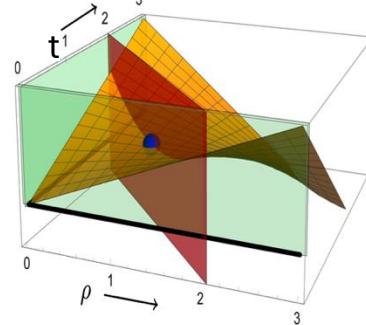
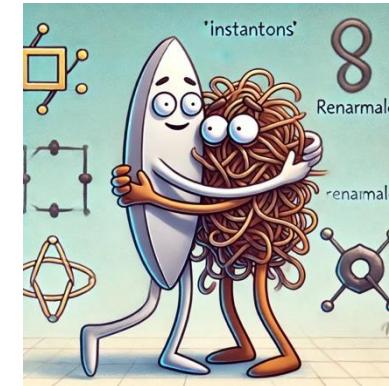


associated with
tunneling

associated with
running coupling



- Instantons and renormalons can be unified



- New hope for connecting perturbative and non-perturbative physics in quantum field theory!