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Why do we care?

1. BSM searches:
Backgrounds mostly gluon jets

New physics mostly quark jets
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2. SM searches
Gluonic backgrounds to e.g. hadronic top decays

3. Improve Monte Carlos
Gluon jet modeling limits accuracy of current simulations

4. Test precision QCD
5. For the challenge: can we do it?



Quark/Glue basics

Probability of quark radiating: Probability of quark radiating:

87 (87

P(q —qg) = ﬁ(){(...) P(g — gg) = Q_;CA(”')
CF:§:1.3 Cu=3

* Gluons around twice as likely to radiate than quarks
Gluon jets are fatter

Gluon jets are more massive

Gluon jets have more particles



Example distributions

Jet mass Charged particle count Jet broadening
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We looked at 10,000 variables

Integrated/differential
“Jet Shape”
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Properties of
Covariance tensor
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Combination of Eigenvalues
Eigenvalues: a >0
Quadratic Moment: ¢ = va? + b2
Determinant: det =a-b
Ratio: p=b/a
Eccentricity: € = +va? — b?
Planar Flow: pf = %
Orientation: 6

http://jets.physics.harvard.edu/qvg
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We looked at 10,000 variables

The best two variables in Pythia are:

Charged particle count
* Better spatial and energy resolution works better

e e.g. particles > calorimeter clusters > subjets

and

@ Linear radial moment (girth) _ 1 Z i ‘T“
e Similar to jet broadening g jet P77
Pr 1€jet

* Many variables have similar performance



Quark and gluon jet substructure

S Cut
o = —

Significance Improvement
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Top 5 combined with BDT
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jet shape W(0.1)

best group of 5
charged mult & girth
charged mult * girth
charged mult R=0.5
subjet mult Rg,1,=0.1
girth R=0.5

optimal kernel at 80%
1st subjet R=0.5
avg kr of Reur=0.1
mass/Pt R=0.3
decluster k7 Rgu=0.1

|pull| R=0.3
planar flow R=0.3
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Quark Jet Acceptance

100 GeV jets, Pythia



ATLAS 7 TeV

e ATLAS developed procedure to disentangle quark and gluon jets
* Used relatively pure samples (dijets for gluon, y + jet for quark)
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ATLAS 8 TeV

Track width
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Data appears to be between Pythia and Herwig



Monte Carlos can be improved...

Les Houches study (2016)

Quark, hadron-level
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Monte Carlo’s all seem to agree on quarks

* Promising sign for future progress
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Gluon, hadron-level
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Deep learning

Traditional approach Machine learning approach

Think about physics Think about observations

v

Guess some motivated observables

Q Run simulations <

Combine best variables

* Boosted Decision Trees Computer learns discrimination
* Neural Networks

Y

Final multivariate discriminant

Q Test on data < ”




Neural networks

Traditional (shallow) neural networks
Useful for multivariate analysis

Hidden Layer

Handful of Inputs

(sigmoid)

Deep networks

1.0f ' ‘
Activation function 08y /
inspired by biology 081

f(y)
o o o
S .

-4 -2 0 2 4

* Many inputs
* Many hidden layers
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Recent advances allowing Deep Learning

* |n algorithms:
— New activation functions to avoid issues such as saturation

— New model regularizations

* Dropout: Randomly selected fraction p of units are ignored during
each weight-update.

— Network architecture adapted to application
* Drastically fewer elements to optimize

* |In computing:
— Faster computing capabilities
* Graphics Processing Units (GPUs)

— Easier Usability
* Keras Deep Learning Python Library
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Activation Functions

— e

( \ . e .
+ 'Sigmoid e Tanh Rectified Linear Unit
| (ReLU)
— = tanh
1) , 1+exp(-y) f() = tanh() | f(y) =max(0,y)
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* Sigmoid and Tanh can saturate, whereby the gradient becomes vanishingly small for
inputs far from zero, making training difficult.

* ReLUs avoid this saturation problem and have an easily computable gradient.
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How to link up units?

dense layer

Dense (Fully Connected) Layer

— Each unit is linked to every unit in the
previous layer.

Convolutional Layer

— Each unit is linked to an n x n patch of the
previous layer.

— Units are downsampled to n/2 x n/2
patches with a max-pooling layer.

— Can handle multiple channels.
E.g. RGB images.

convolutional layer

max-pooling
15



Applications to Image Recognition

C2: f.map
12x14 82 f
: f.map
' . 6x7 N1

14 Neurons

Input 32x36 r N2
“ ' - : 1 Neuron

\ Output
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Jet Images Cogan et al. arXiv:1407.5675

Treat energy deposits as image

Application to boosted W tagging
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Boosted W’s and jet images

de Olivera et al. arXiv:1511.05190 Baldi et al. arXiv:1603.09349
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Deep learning for Q vs G

NN inputs
preprocess
> >
* Center
* Crop
e Normalize
* Zero

* Standardize

We use 3 “colors”

Find anti-k; R=0.4 jets

Extract square grid around jet center * Red = p; of charged particles
Pixelate into An x A¢p = 0.024 x 0.024 cells * Green = p; of neutral particles
* Produces 33x33 image * Blue = charged particle multiplicity
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Deep NN architecture

convolutional layer

max-pooling

\ 7

Convolution layers apply 8x8 pixel filters to images
* 4xA4 filters used for for 2" and 3™ conv. layers
* We use 64 independent filters in each layer

Max-pooling reduces layer size by 4

Final layer is densely connected to all final filters

dense layer

e quark jet

=lia
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Works really well — especially considering we don’t put in any physics!
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Significance Improvement

Results

200 GeV Jets from Pythia
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Works really well — especially considering we don’t put in any physics!
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Comparing Pythia and Herwig

* Discrimination worse in Herwig

* Gluon and quark jets are more similar
* Consistent with previous studies

Network performance

independent
of MC used to train

* |ndicates robustness
1 * May work on data

1.0 — "*ft,—j'\ T I I
\
0.8 i
c
i)
o 0.6}
[7)
o
°
c 04} .
o
=
O
— Pythia CNN on Pythia Color Images
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Quark Jet Efficiency
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Is it learning physics?

Add in observables
CPM = charged particle multiplicity
Ny:= a useful discriminant (minimum number of pixels with 95% of jet p;) [Pumplin 1991]
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Except at very high py,
no benefit from adding observables

May indicate that NN has
“learned” physics
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Conclusions

Quark and gluon jets can be distinguished by radiation patterns
* Pythia and Herwig have significant differences, particularly for gluons
* Improved parton showers (e.g. vincia) look promising

Traditional variables
* Two types: shape (mass, girth, n-jettiness) and count (# particles, # subjets)
* Marginal gains from exploiting correlations of >2 variables using BDTs

Deep learning approach
* Use image-recognition technology to avoid thinking
* Does better than traditional approach!
* Relies heavily on simulations, but
* Performance independent of Pythia or Herwig training
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« Complementary to MCs
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Cross Section in pb

Data: where are the quark and gluon jets?

200 GeV Quark Purity (zoom) 200 GeV Gluon Purity
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Photon + jet samples
* Jet closer to photon likely quark

b + 2 jet: high purity low s
* Onejetis b otheris gluon
Dijet: high cross section, low purity
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Multivariate approach

M3

* We can think about and visualize single variables

* Two variables are harder ‘ . l

* Multidimensional distributions are not well-suited for visualization.

* There are things that computers are just better at.

e Multivariate approaches let you figure out how well you could possibly do

S EFFICIENCY
Save you the trouble or looking
for good variables (project killer)
FRAMING

See if simple variables POWER
can do as well (establishes the goal) Sometimes they are really necessary (e.g. b tagging)



Multivariate methods

Lots of methods

* Boosted Decision Trees

* Artificial Neural Networks

* Fischer Discriminants

* Rectangular cut optimization
* Projective Likelihood Estimator >
* H-matrix discriminant

* Predictive learning/Rule ensemble
* Support Vector Machines

* K-nearest neighbor

Useful in many
areas of science

_/

For particle physics, Boosted Decision Trees are best suited for combining variables

I SN

understand Train fast Nearly optimal
efficiencies
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Are they correlated?

Quark Gluon Likelihood: ¢/(q + g)
4 a= .4:* -- 1
E 50 F f 9
E .8
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Cut here

* Not completely
 (Can get more discrimination from 2D cuts
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Pythia vs Herwig

Charged Track Count (n)
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Quark and gluon tagging: results

Single
variables

Pairs of
variables

3,4,5
variables

Gluon Efficiency % at 50 GeV 200 GeV
50% Quark Acceptance Particles Tracks Particles Tracks
P8 |H+4| P8 |H++| P8 |H++| P8 | H4++
2-Point Moment =1/5 8.7 1 17.8%| 13.7%| 22.8%|| 83 | 15.9 | 13.2 | 19.6
1-Subjettiness f=1/2 9.3 | 185 | 142 | 229 || 7.6 | 16.2 | 12.3 | 19.4*
2-Subjettiness f=1/2 9.2 | 186 | 13.9 | 23.6 || 6.8 | 15.7"| 9.8 | 18.7
3-Subjettiness f=1 9.1 | 19.3 | 146 | 244 || 59" | 16.7 | 86" | 19.5
Radial Moment =1 (Girth) 10.3 | 20.5 | 16.1 | 24.9 || 11.2 | 18.9 | 15.3 | 21.9
Angularity a = +1 10.3 | 20.0 | 15.8 | 24.5 || 12.0 | 19.3 | 14.0 | 21.6
Det of Covariance Matrix 11.2 | 21.2 | 181 | 27.0 || 94 | 20.9 | 13.5 | 24.6
Track Spread: 4/< p2T >/pjTet 16.5 | 25.3 | 16.5 | 25.3 || 9.3 | 20.1 | 9.3 | 20.1
Track Count 1771264 | 17.7 | 26.4 || 89 | 21.0 | 89 | 21.0
Decluster with kr, AR 15.8 | 24.5 | 20.1 | 284 || 13.9 | 20.1 | 16.9 | 234
Jet m/pp for R=0.3 subjet 13.1 | 256.9 | 16.3 | 27.7 || 11.9 | 24.2 | 14.8 | 26.2
Planar Flow 28.7 | 344 | 28.7 | 34.4 || 39.6 | 42.9 | 39.6 | 42.9
Pull Magnitude 37.0 | 39.0 | 32,9 | 35.6 || 30.6 | 30.2 | 29.6 | 30.6
Track Count & Girth 9.9 | 20.1 | 134 | 23.2 || 7.1 | 17.3 | 7.7 | 18.7
R=0.3 m/pr & R=0.7 2-Point 5=1/5 7.9 | 177 | 12.2% 22.1 || 5.7 |144*| 85 | 17.9
1-Subj f=1/2 & R=0.7 2-Point f=1/5 | 85 | 17.3*| 12.9 | 22.1 || 6.0 | 14.6 | 8.6 | 17.7
Girth & R=0.7 2-Point =1/10 12.6 | 21.9 | 126 | 21.9"|| 9.2 | 180 | 9.2 | 18.0
1-Subj f=1/2 & 3-Subj =1 8.9 | 18.0 | 14.0 | 23.2 || 5.6 | 15.0 | 84 | 184
Best Group of 3 7.5 | 17.0 | 11.0 | 209 || 4.7 | 140 | 6.9 | 16.6
Best Group of 4 7.1 | 16.7 | 10.6 | 20.5 || 4.5 | 13.7 | 6.2 | 16.3
Best Group of 5 6.9 | 16.4 | 104 | 20.0 || 4.3 | 13.3 | 6.1 | 15.9
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