

Quark and Gluon Jet Discrimination

Matthew Schwartz
Harvard University

Based on work with J. Gallicchio arXiv:1211.7038, 1106.3076, 1104.1175
and P. Komiske and E. Metodiev arXiv:1612.01551

See also ATLAS arXiv:1405.6583, ATLAS-CONF-2016-034

Larkoski et al. arXiv:1405.6583

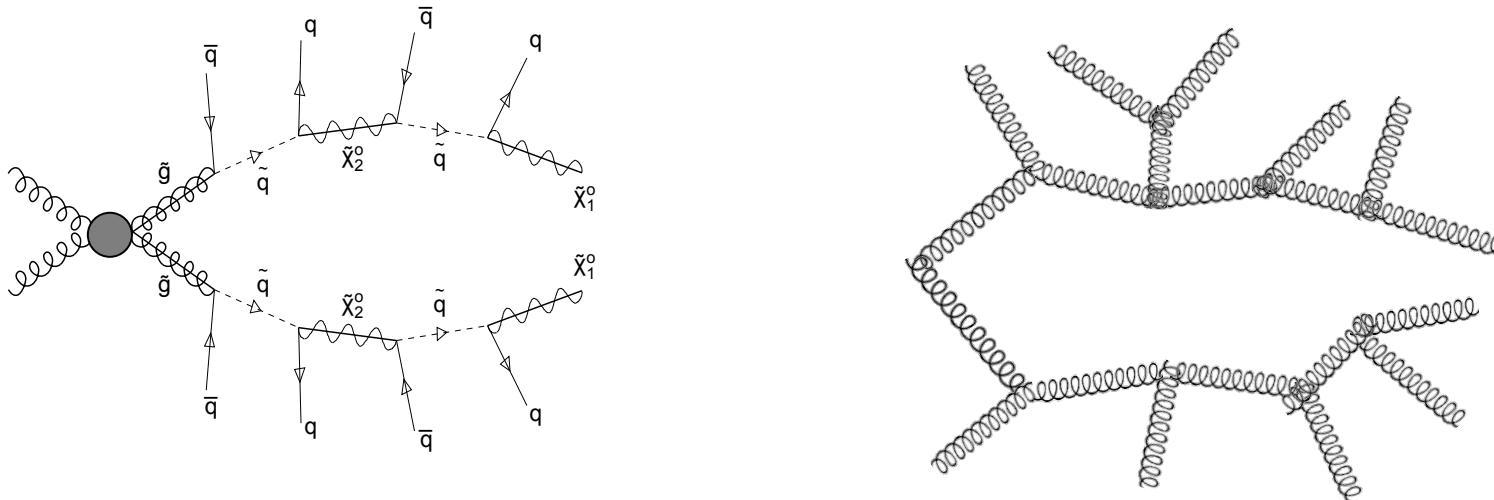
Schwartzman et al. arXiv:1407.5675, arXiv:1511.05190

Why do we care?

1. BSM searches:

New physics mostly **quark jets**

Backgrounds mostly **gluon jets**



2. SM searches

- Gluonic backgrounds to e.g. hadronic top decays

3. Improve Monte Carlos

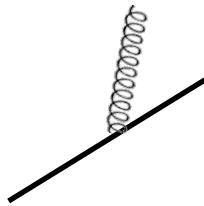
- Gluon jet modeling limits accuracy of current simulations

4. Test precision QCD

5. For the challenge: can we do it?

Quark/Glue basics

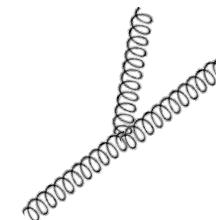
Probability of quark radiating:



$$P(q \rightarrow qg) = \frac{\alpha_s}{2\pi} C_F (\dots)$$

$$C_F = \frac{4}{3} = 1.3$$

Probability of quark radiating:



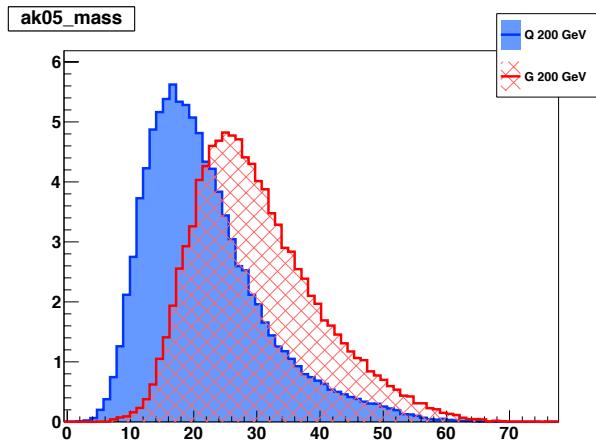
$$P(g \rightarrow gg) = \frac{\alpha_s}{2\pi} C_A (\dots)$$

$$C_A = 3$$

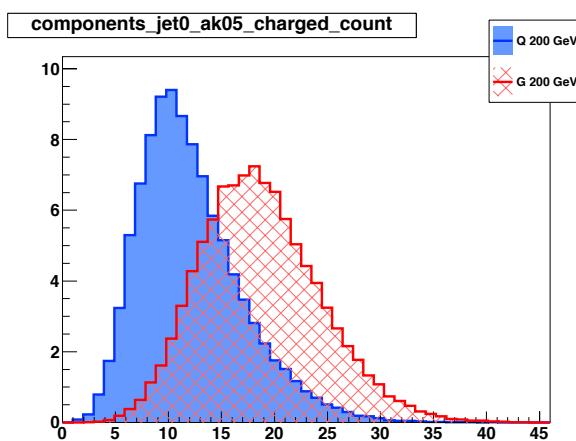
- Gluons around twice as likely to radiate than quarks
 - Gluon jets are fatter
 - Gluon jets are more massive
 - Gluon jets have more particles
 - ...

Example distributions

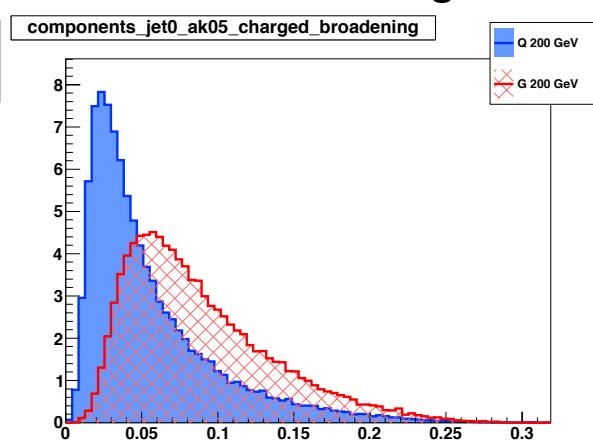
Jet mass



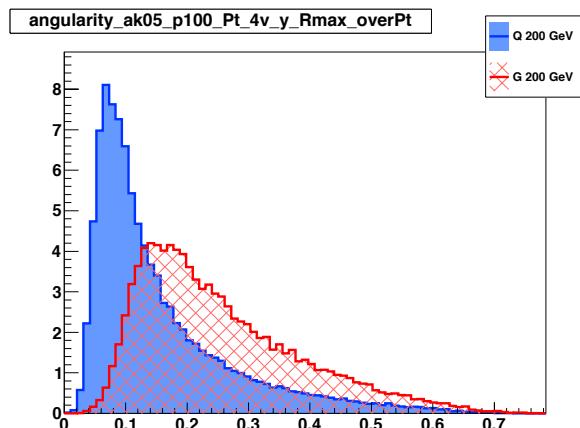
Charged particle count



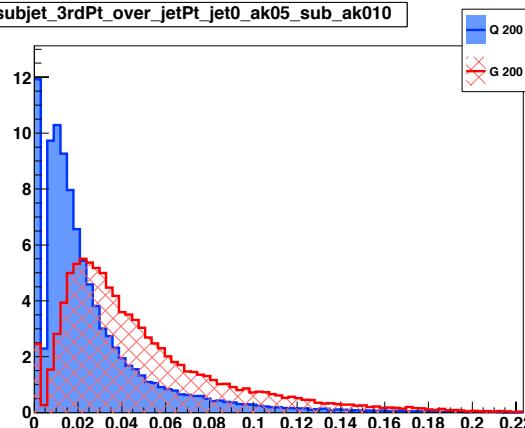
Jet broadening



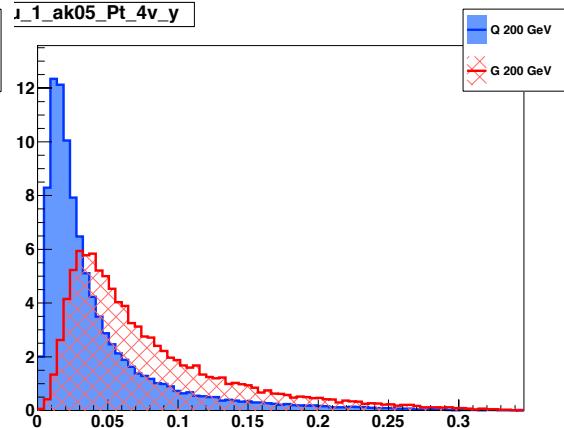
Jet angularity



P_T fraction of 3rd hardest subjet

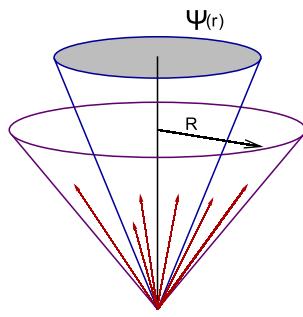


Moment of Hu

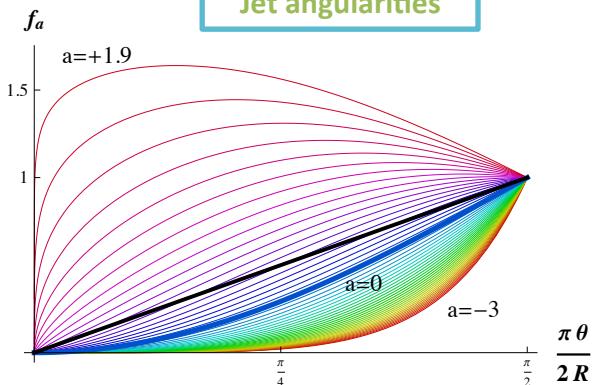


We looked at 10,000 variables

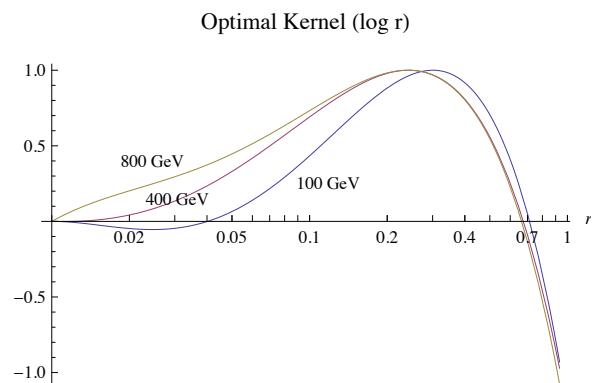
Integrated/differential
“Jet Shape”



Jet angularities

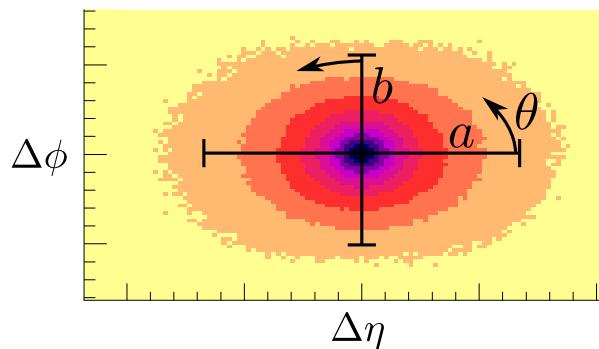


Iteratively optimized
radial profile



Properties of
Covariance tensor

$$C = \sum_{i \in \text{jet}} \frac{p_T^i}{p_T^{\text{jet}}} \begin{pmatrix} \Delta\eta_i \Delta\eta_i & \Delta\eta_i \Delta\phi_i \\ \Delta\phi_i \Delta\eta_i & \Delta\phi_i \Delta\phi_i \end{pmatrix}$$



Combination of Eigenvalues

Eigenvalues: $a > b$

Quadratic Moment: $g = \sqrt{a^2 + b^2}$

Determinant: $\det = a \cdot b$

Ratio: $\rho = b/a$

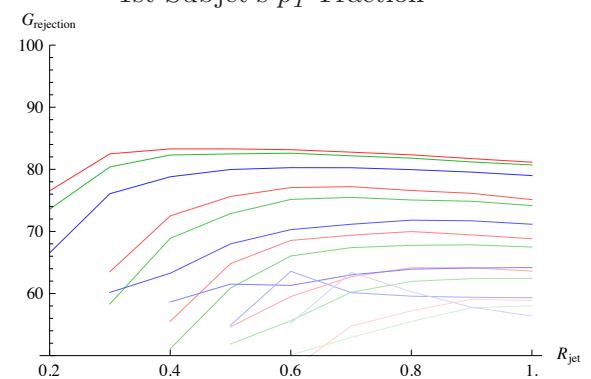
Eccentricity: $\epsilon = \sqrt{a^2 - b^2}$

Planar Flow: $pf = \frac{4ab}{(a+b)^2}$

Orientation: θ

Subjet counts
and properties

1st Subjet's p_T Fraction



We looked at 10,000 variables

The best two variables in Pythia are:

1

Charged particle count

- Better spatial and energy resolution works better
 - e.g. particles > calorimeter clusters > subjets

and

2

Linear radial moment (girth)

- Similar to jet broadening

$$g = \frac{1}{p_T^{\text{jet}}} \sum_{i \in \text{jet}} p_T^i |r_i|$$

- Many variables have similar performance

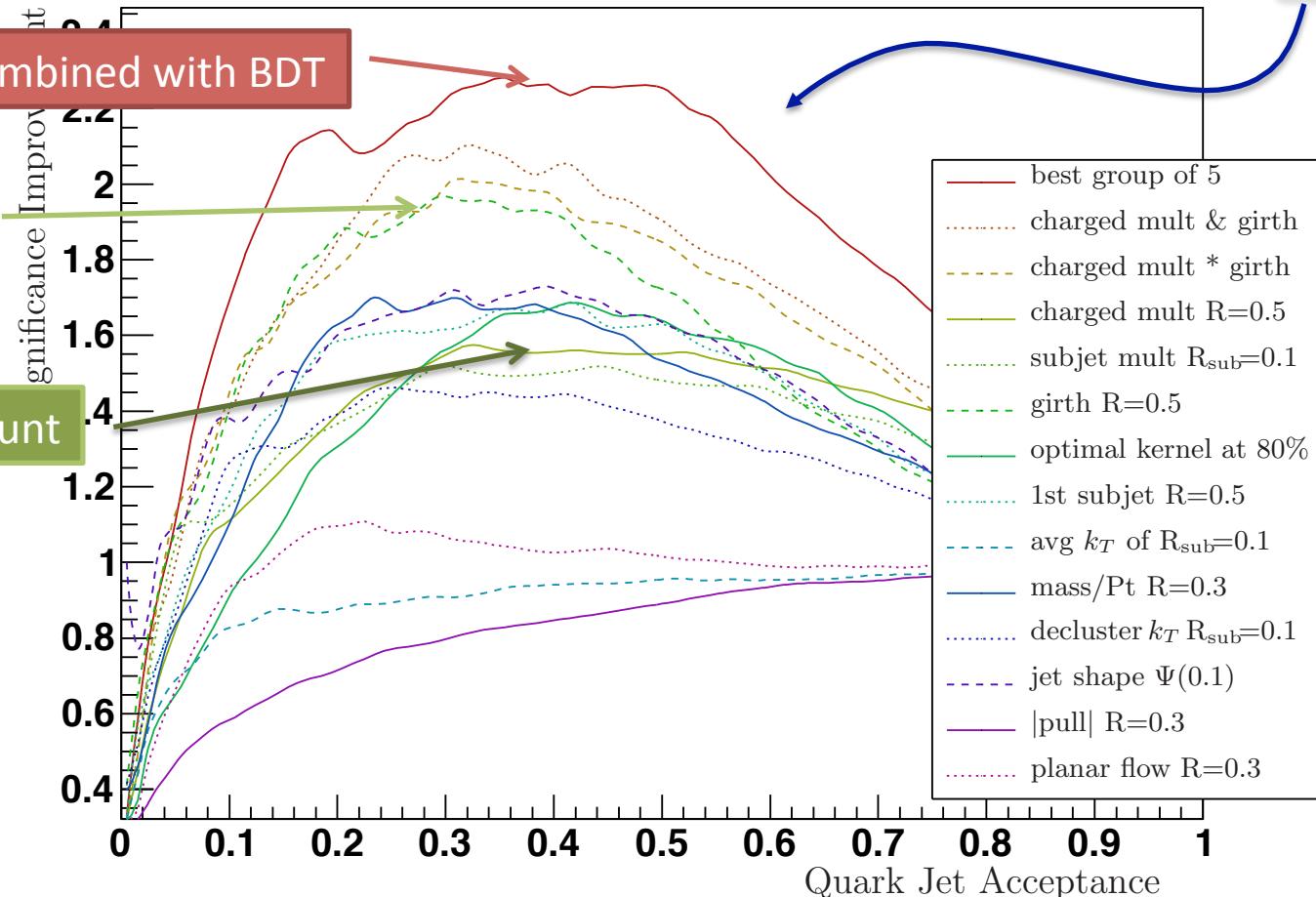
Quark and gluon jet substructure

Significance Improvement

$$\sigma = \frac{S}{\sqrt{B}}$$

Cut

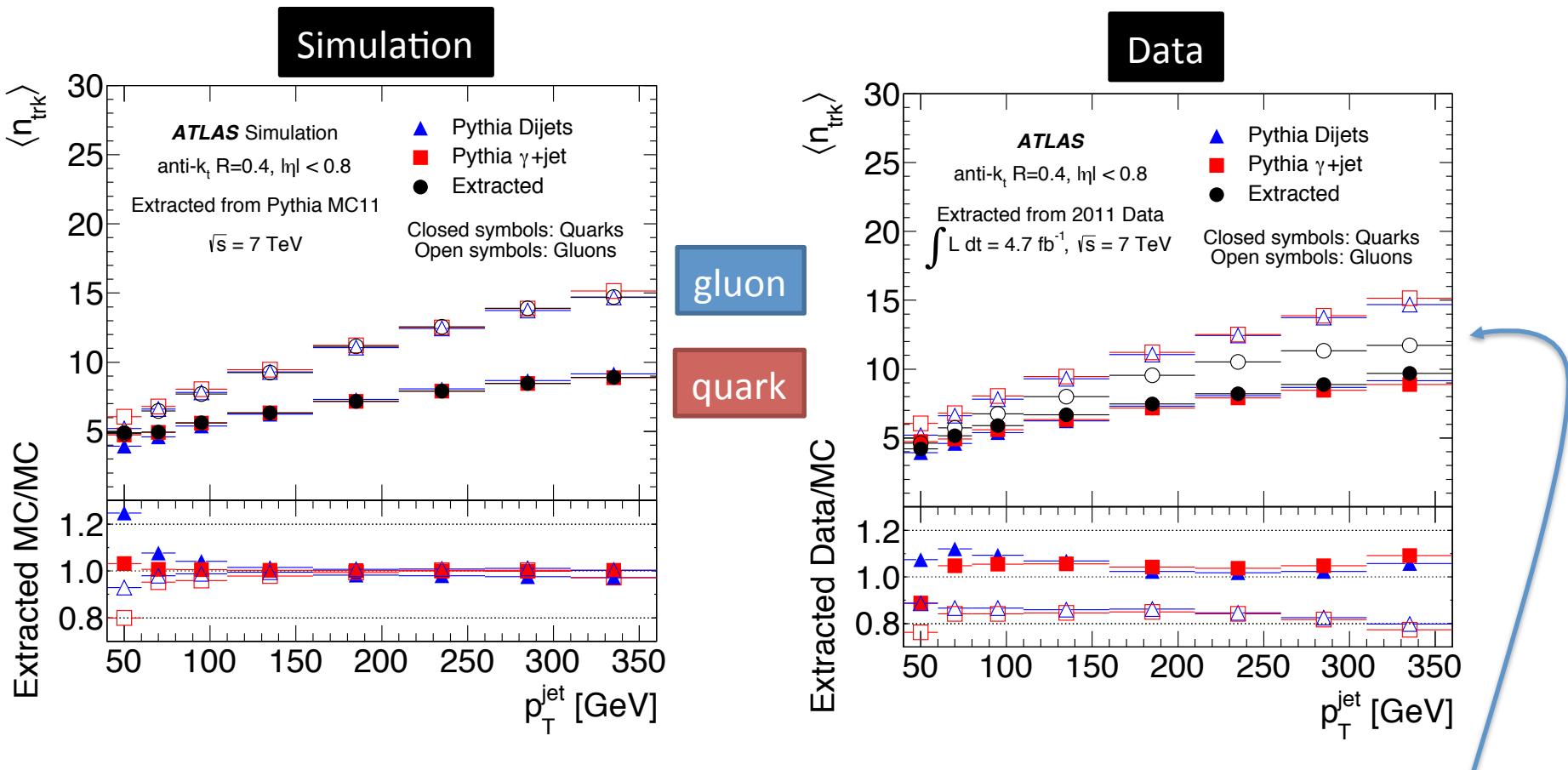
$$\frac{S\epsilon_s}{\sqrt{B\epsilon_b}} = \sigma \frac{\epsilon_s}{\sqrt{\epsilon_b}}$$



100 GeV jets, Pythia

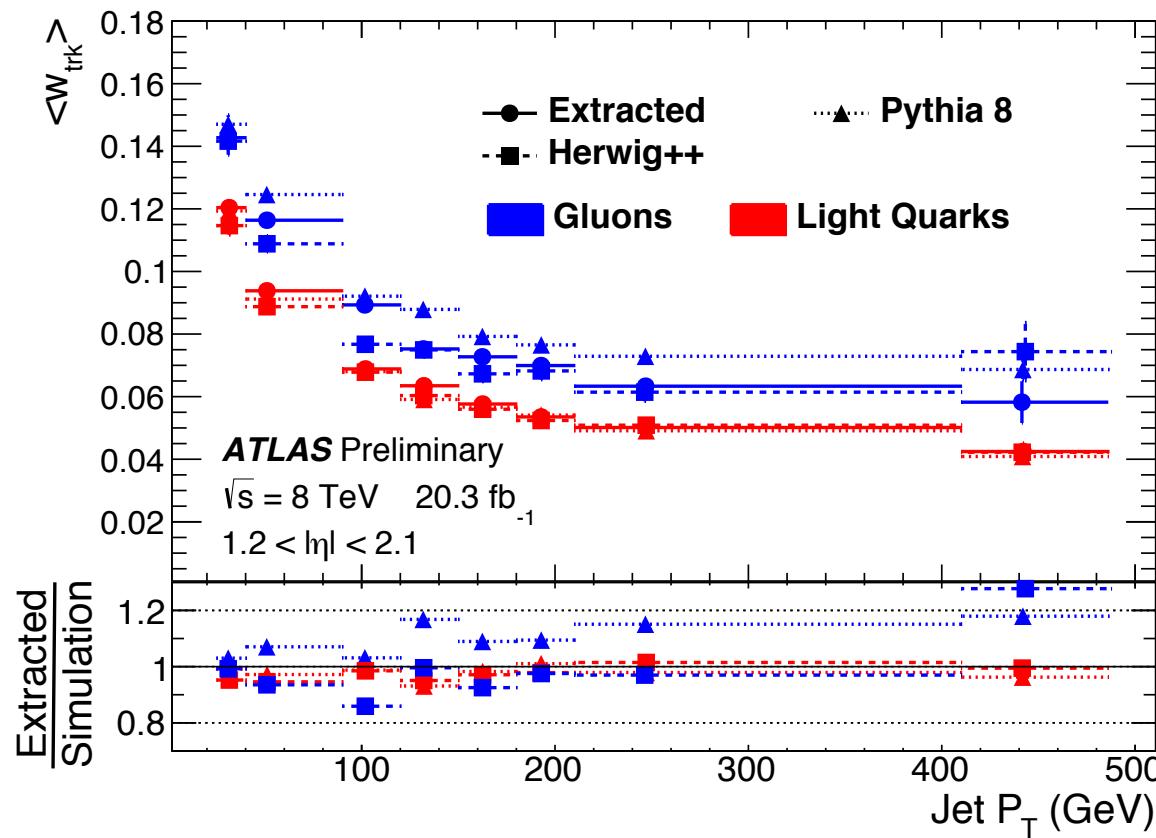
ATLAS 7 TeV

- ATLAS developed procedure to disentangle quark and gluon jets
- Used relatively pure samples (dijets for gluon, $\gamma +$ jet for quark)



Extracted gluon jet properties closer to quark than in pythia

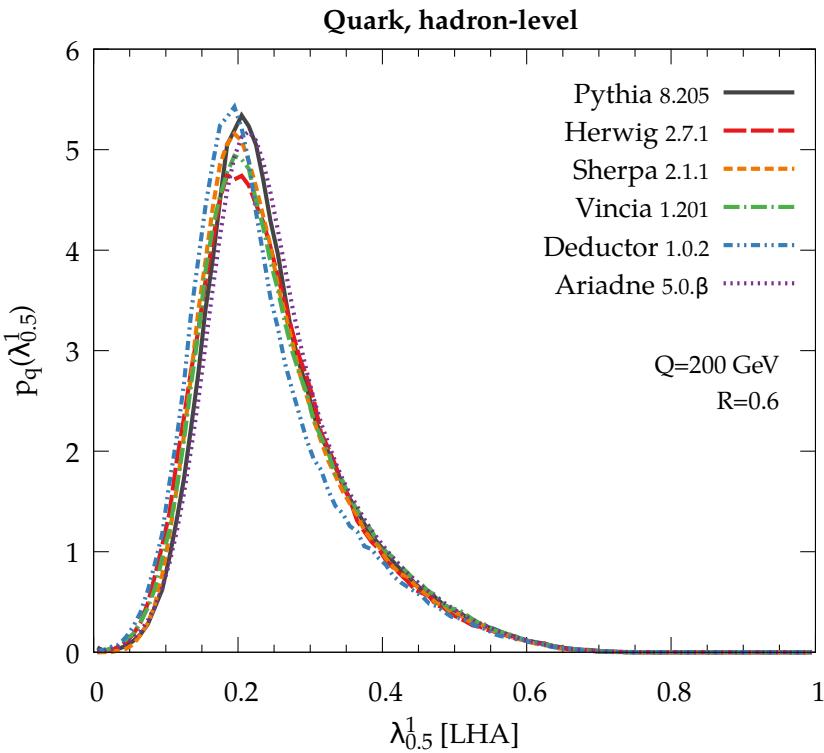
Track width



Data appears to be between Pythia and Herwig

Monte Carlos can be improved...

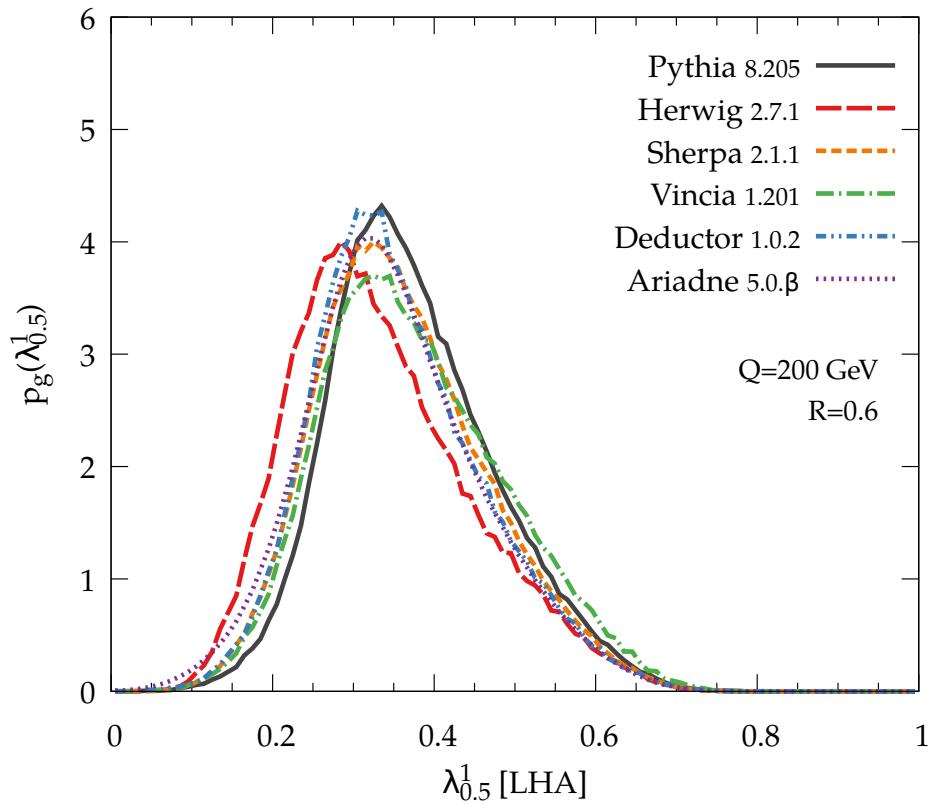
Les Houches study (2016)



Monte Carlo's all seem to agree on quarks

- Promising sign for future progress

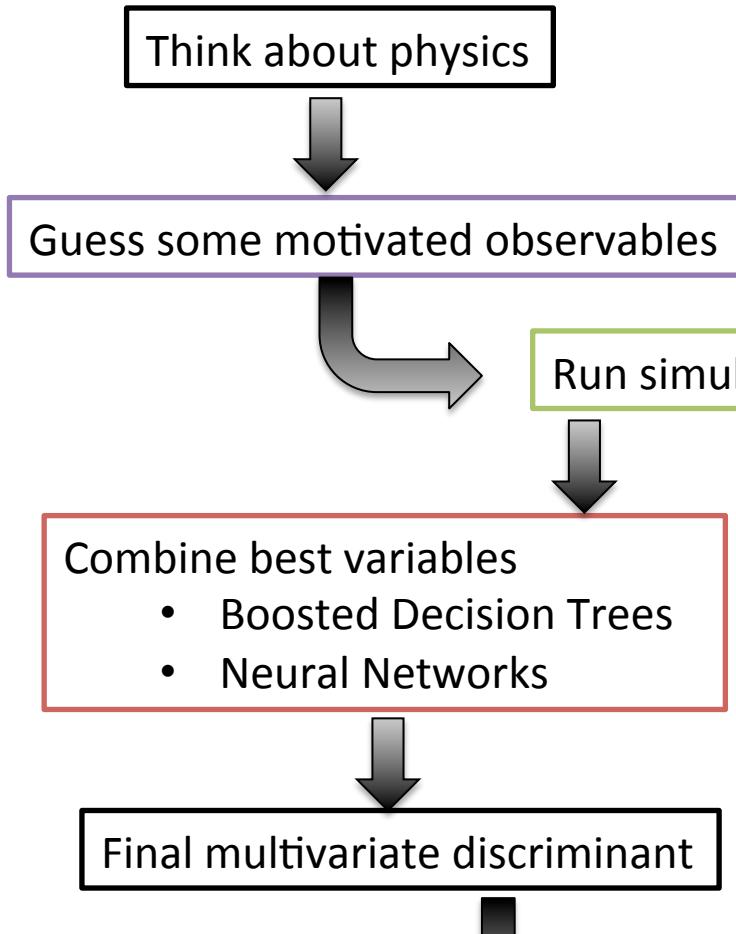
Gluon, hadron-level



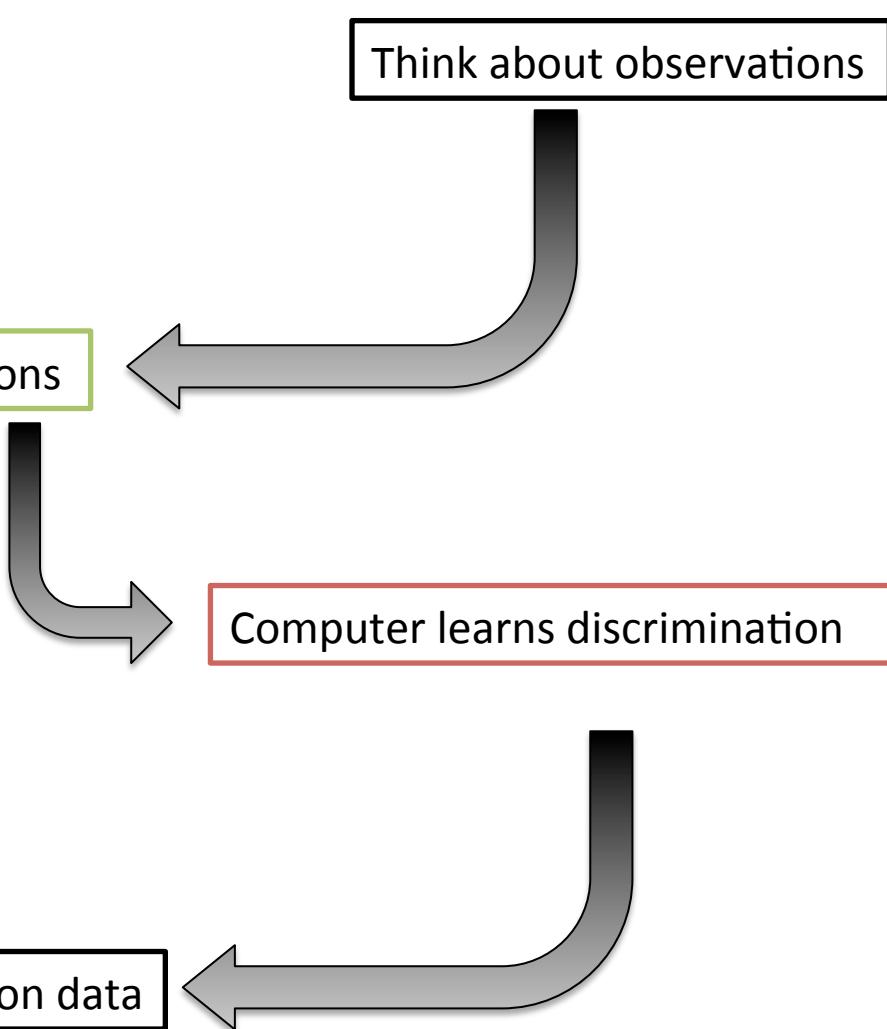
Improved shower MCs in between
Herwig and Pythia

Deep learning

Traditional approach



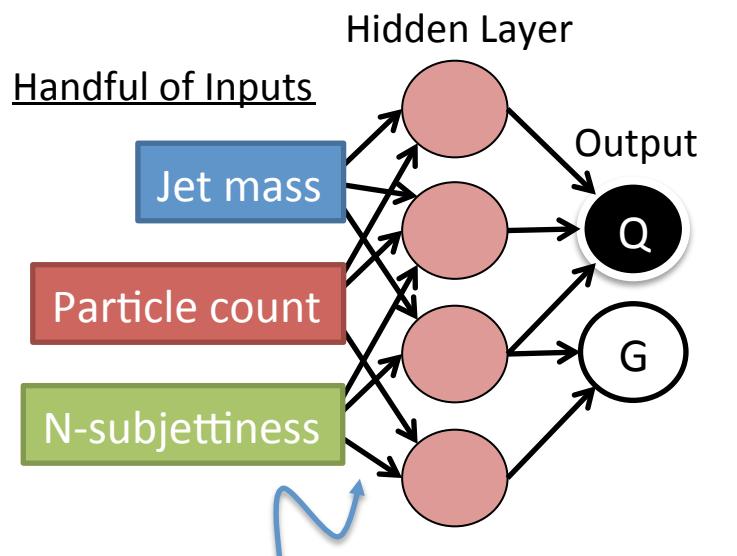
Machine learning approach



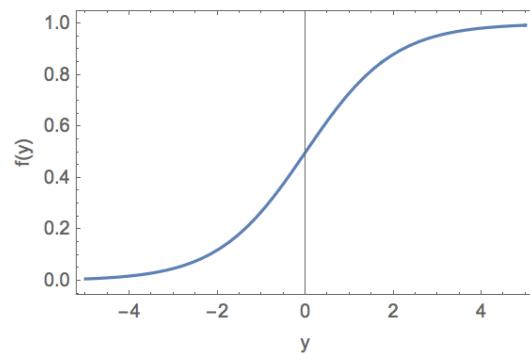
Neural networks

Traditional (shallow) neural networks
Useful for multivariate analysis

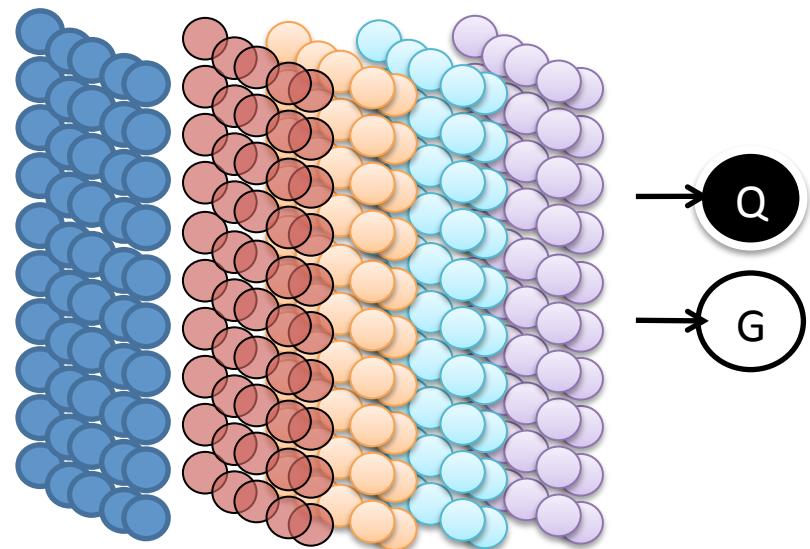
Deep networks



$$f(y) = \frac{1}{1 + \exp(-y)} \text{ (sigmoid)}$$



Activation function
inspired by biology



- Many inputs
- Many hidden layers

Recent advances allowing Deep Learning

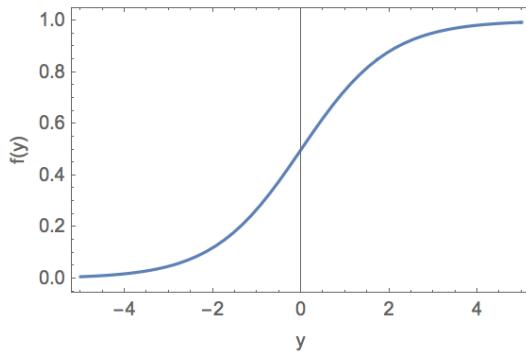
- In algorithms:
 - New **activation functions** to avoid issues such as saturation
 - New model **regularizations**
 - **Dropout**: Randomly selected fraction p of units are ignored during each weight-update.
 - Network architecture **adapted** to application
 - Drastically fewer elements to optimize
- In computing:
 - Faster computing capabilities
 - Graphics Processing Units (GPUs)
 - Easier Usability
 - Keras Deep Learning Python Library

Activation Functions

Traditional

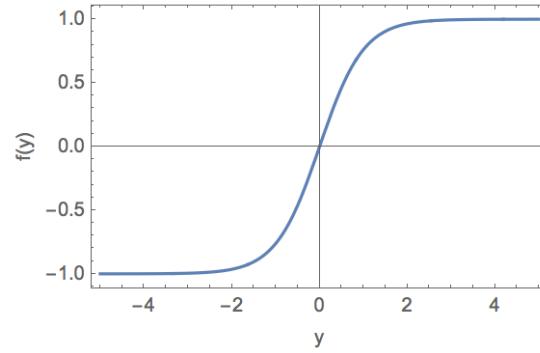
- Sigmoid

$$f(y) = \frac{1}{1 + \exp(-y)}$$



- Tanh

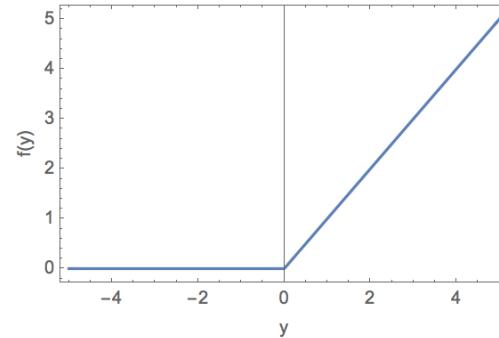
$$f(y) = \tanh(y)$$



New!

- Rectified Linear Unit (ReLU)

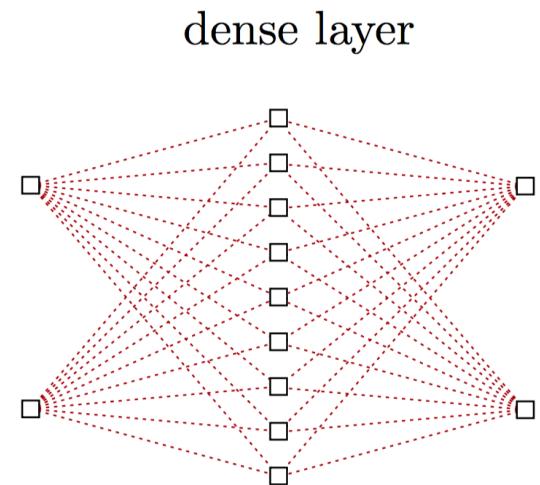
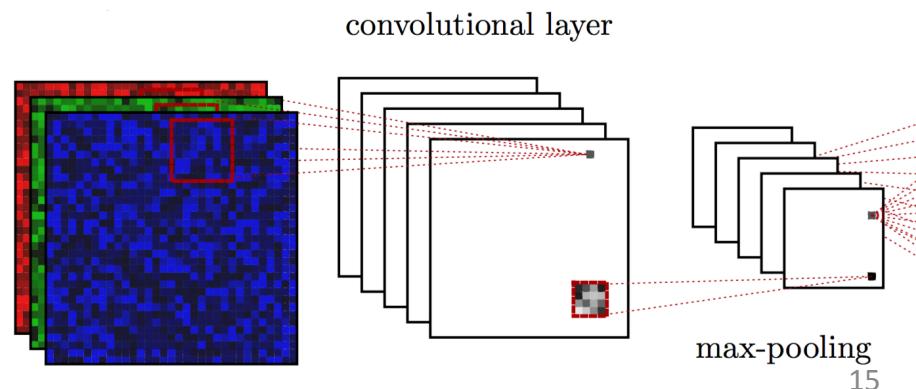
$$f(y) = \max(0, y)$$



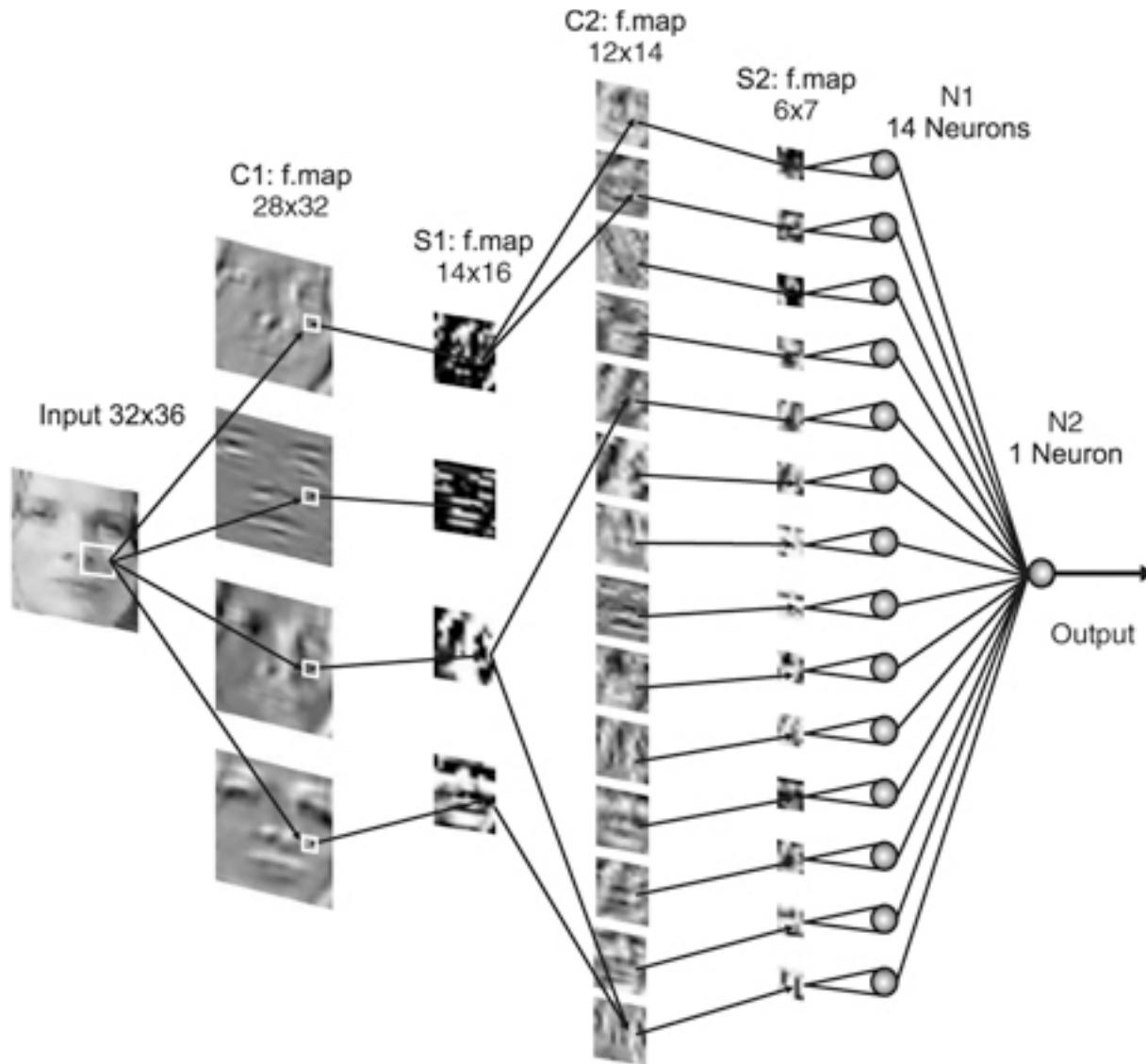
- Sigmoid and Tanh can **saturate**, whereby the gradient becomes vanishingly small for inputs far from zero, making training difficult.
- ReLUs avoid this saturation problem and have an easily computable gradient.

How to link up units?

- Dense (Fully Connected) Layer
 - Each unit is linked to every unit in the previous layer.
- Convolutional Layer
 - Each unit is linked to an $n \times n$ patch of the previous layer.
 - Units are downsampled to $n/2 \times n/2$ patches with a **max-pooling** layer.
 - Can handle multiple **channels**.
E.g. RGB images.



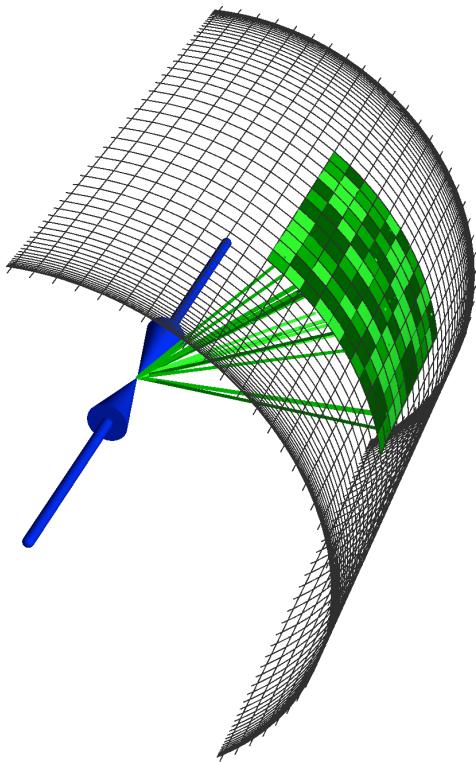
Applications to Image Recognition



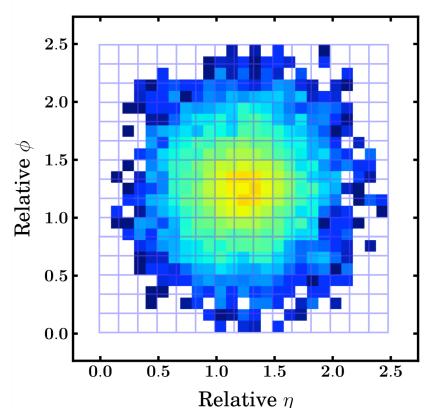
Jet Images

Cogan et al. arXiv:1407.5675

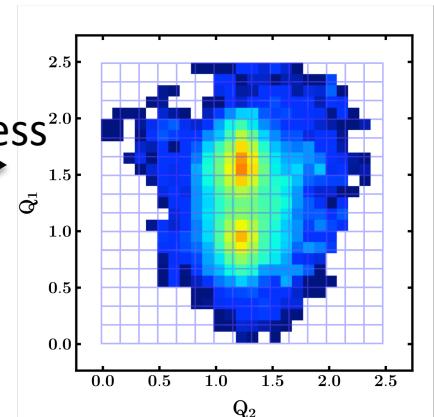
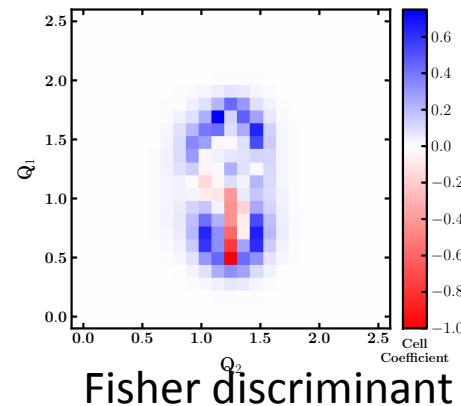
- Treat energy deposits as image



Application to boosted W tagging



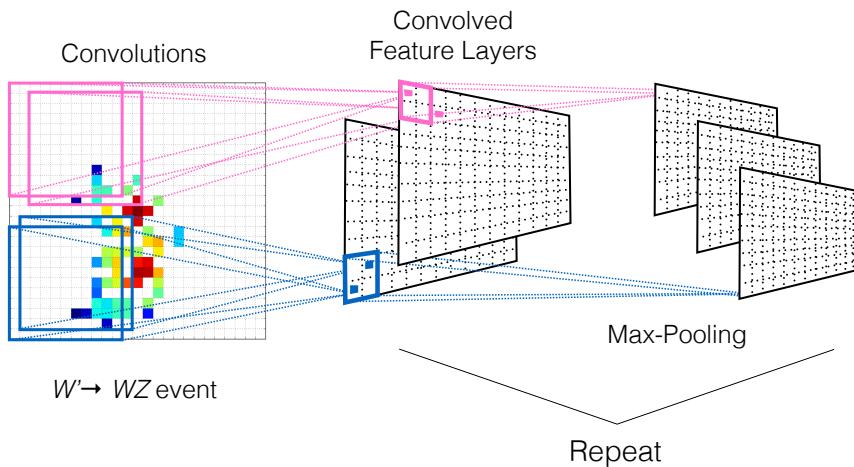
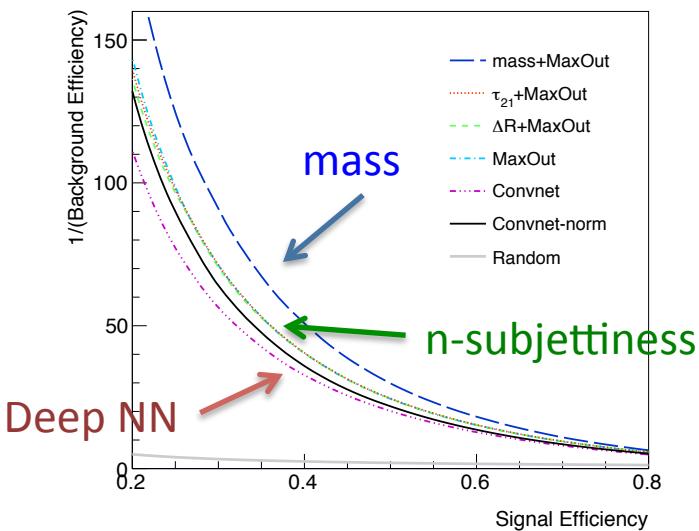
preprocess



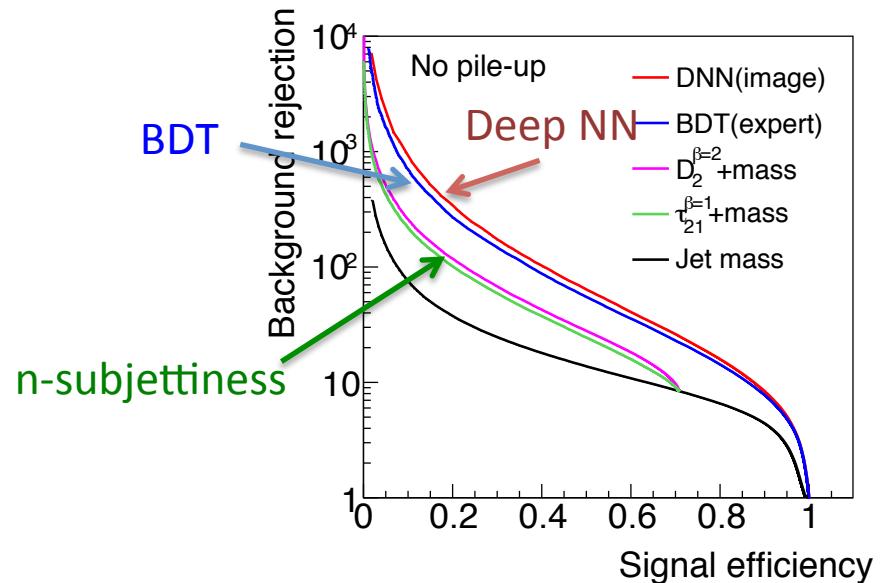
Fisher discriminant

Boosted W's and jet images

de Olivera et al. arXiv:1511.05190

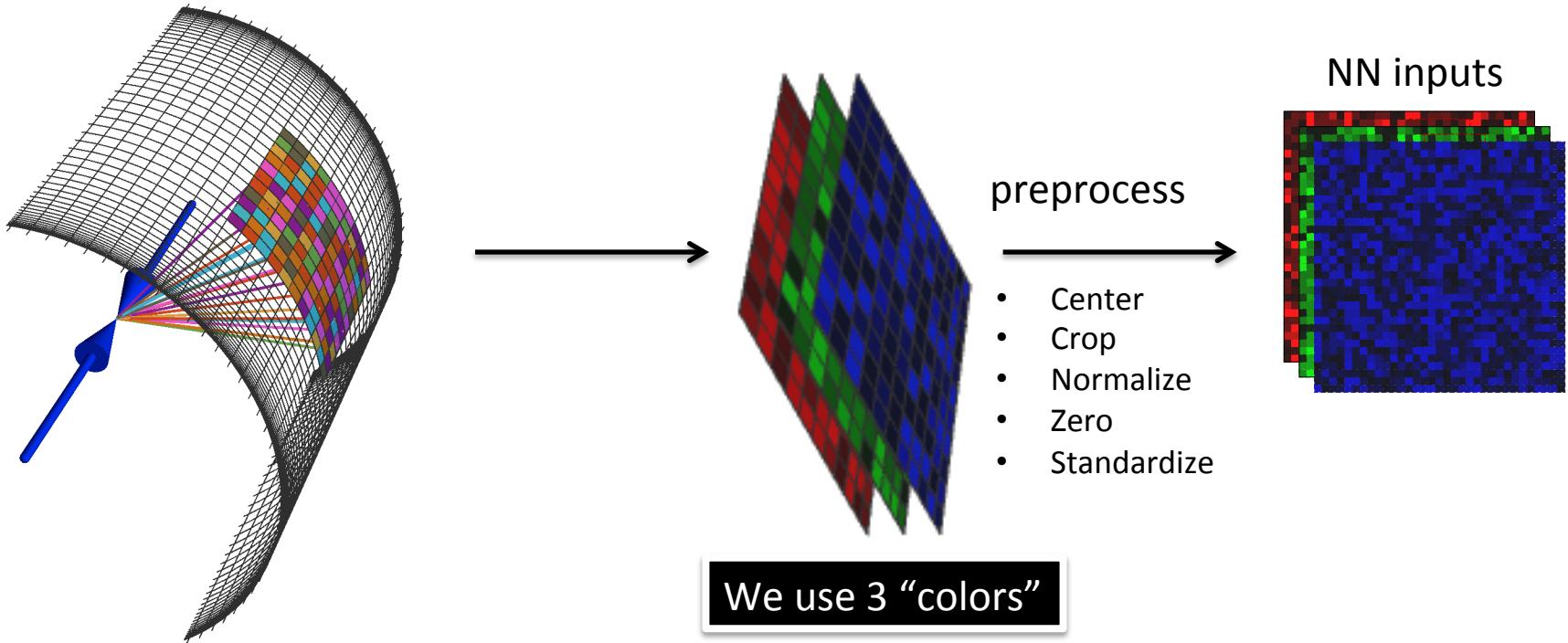


Baldi et al. arXiv:1603.09349



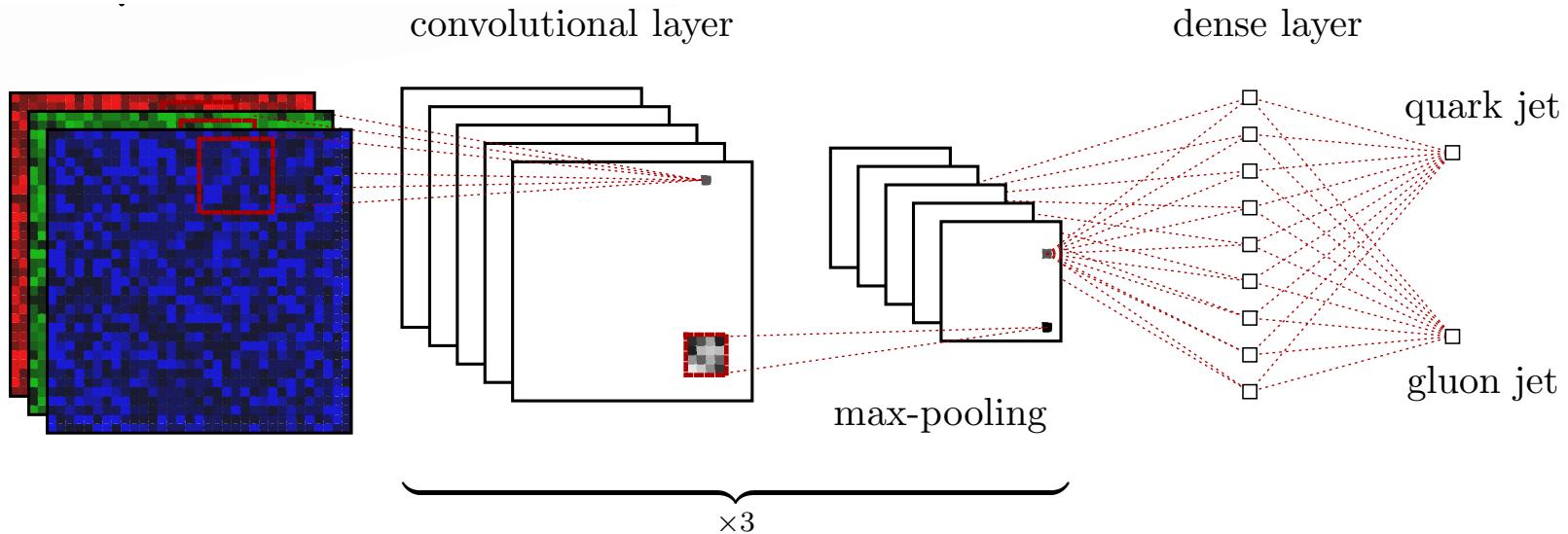
- Deep NN does better than single variables
- Deep NN does about as well as BDT of 6 good discriminants

Deep learning for Q vs G



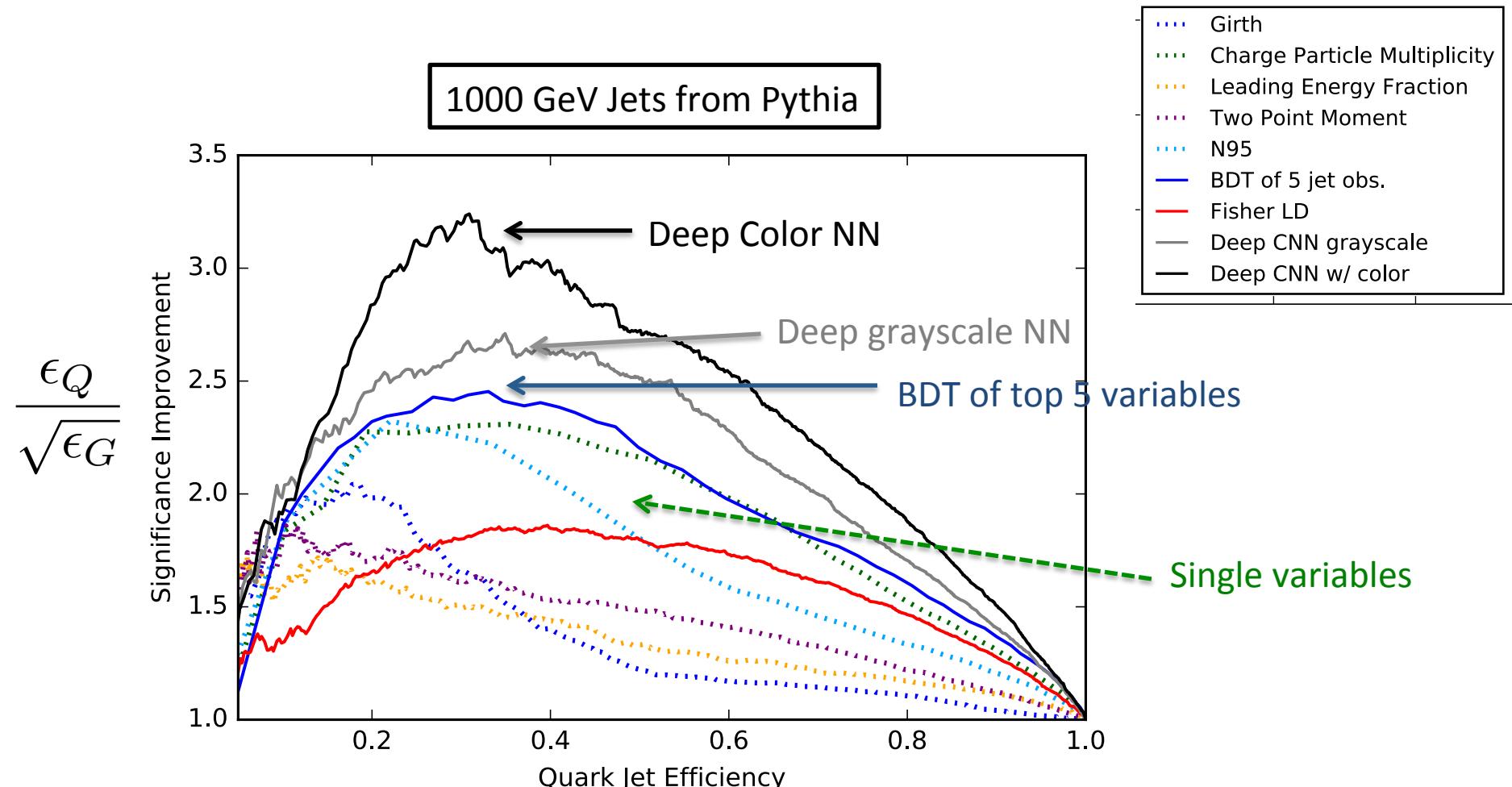
- Find anti- k_T $R=0.4$ jets
- Extract square grid around jet center
- Pixelate into $\Delta\eta \times \Delta\phi = 0.024 \times 0.024$ cells
 - Produces 33x33 image
- Red = p_T of charged particles
- Green = p_T of neutral particles
- Blue = charged particle multiplicity

Deep NN architecture



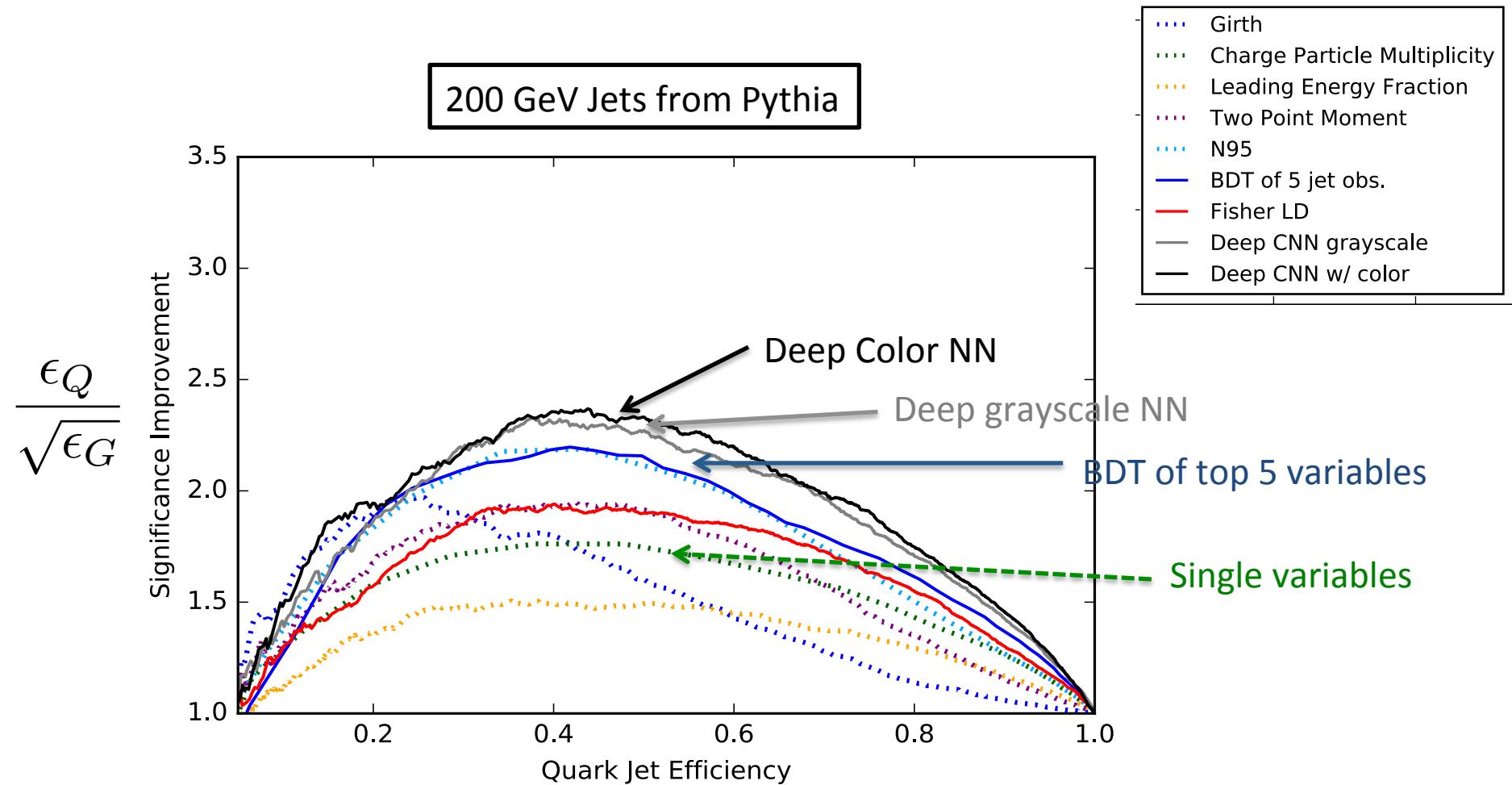
- Convolution layers apply 8x8 pixel filters to images
 - 4x4 filters used for the 2nd and 3rd conv. layers
 - We use 64 independent filters in each layer
- Max-pooling reduces layer size by 4
- Final layer is densely connected to all final filters

Results



Works really well – especially considering we don't put in any physics!

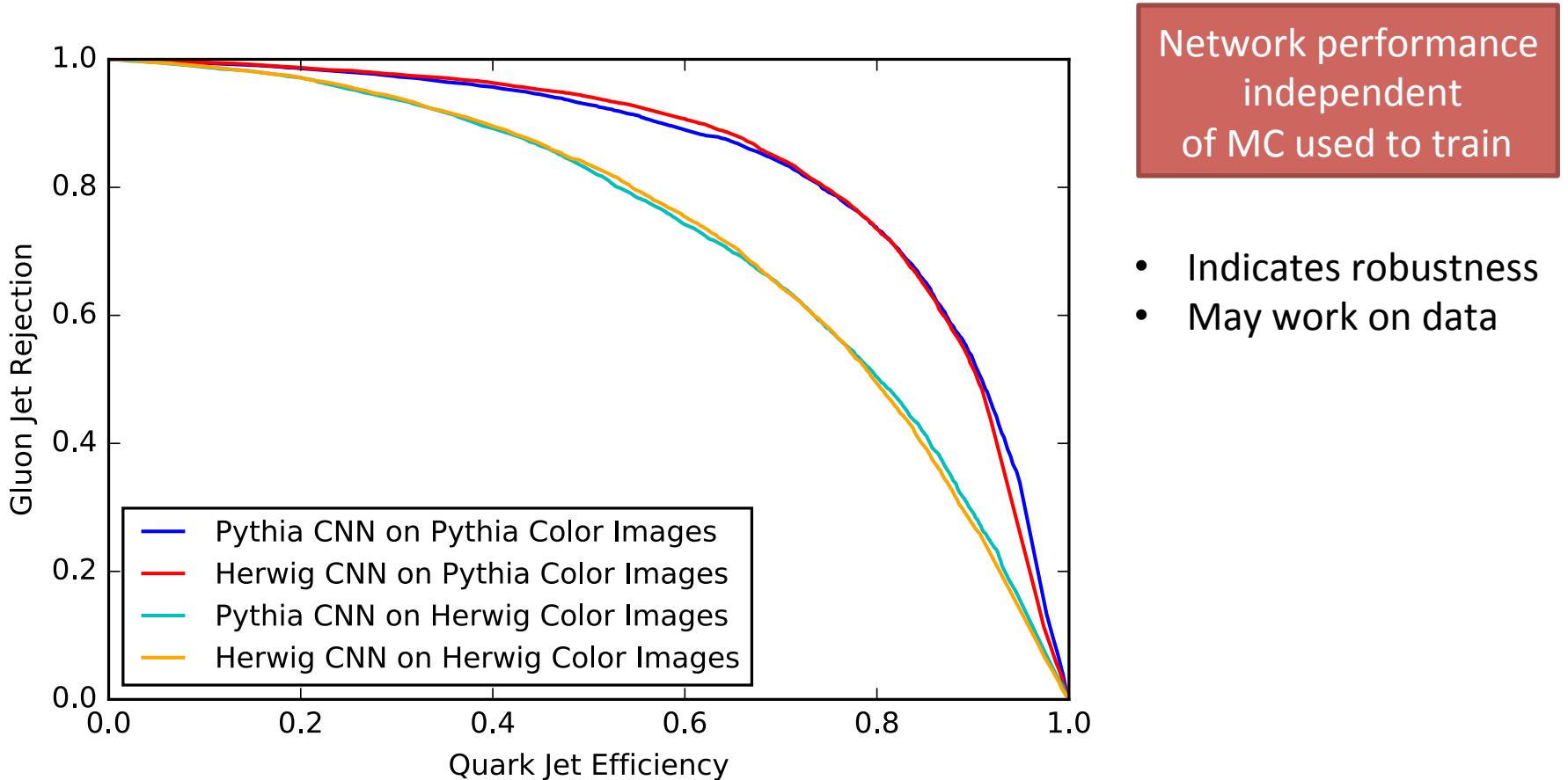
Results



Works really well – especially considering we don't put in any physics!

Comparing Pythia and Herwig

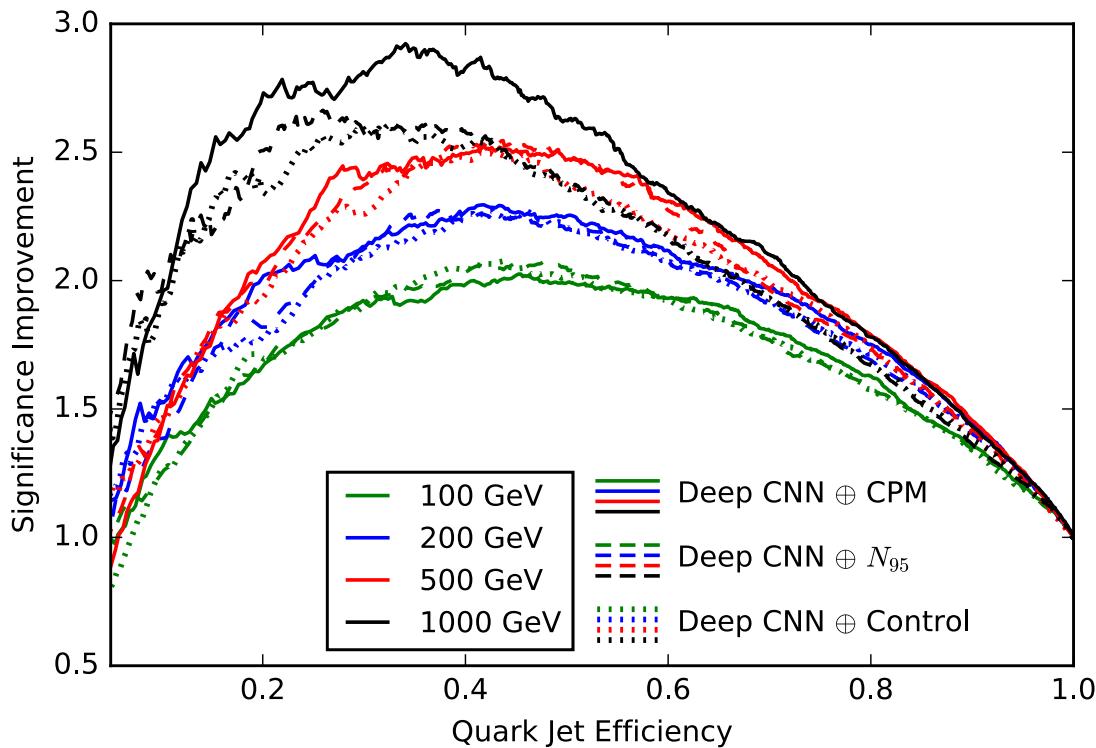
- Discrimination worse in Herwig
 - Gluon and quark jets are more similar
 - Consistent with previous studies



Is it learning physics?

Add in observables

- CPM = charged particle multiplicity
- N_{95} = a useful discriminant (minimum number of pixels with 95% of jet p_T) [Pumplin 1991]



Except at very high p_T ,
no benefit from adding observables

May indicate that NN has
“learned” physics

Conclusions

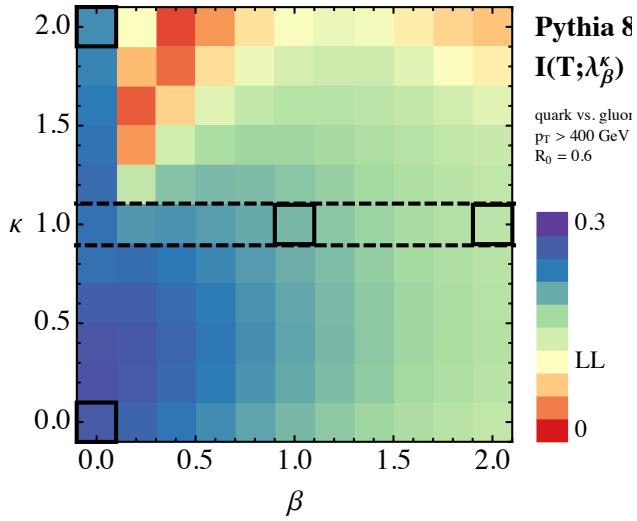
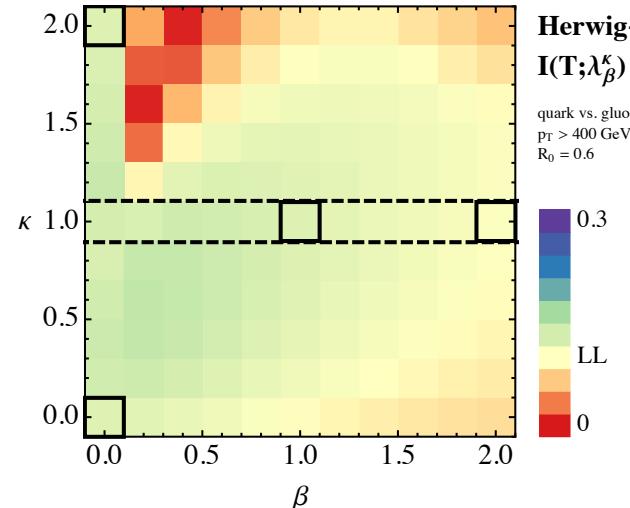
- **Quark and gluon jets can be distinguished** by radiation patterns
 - Pythia and Herwig have significant differences, particularly for gluons
 - Improved parton showers (e.g. vincia) look promising
- **Traditional variables**
 - Two types: **shape** (mass, girth, n-jettiness) and **count** (# particles, # subjets)
 - Marginal gains from exploiting correlations of >2 variables using BDTs
- **Deep learning** approach
 - Use image-recognition technology to avoid thinking
 - Does better than traditional approach!
 - Relies heavily on simulations, *but*
 - Performance independent of Pythia or Herwig training

Domo Arigato!

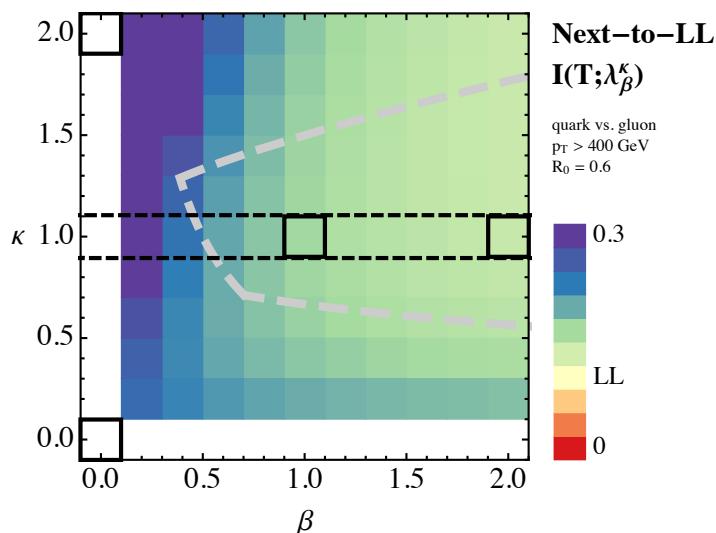
BACKUP

Analytic approach to correlations

Larkoski et al. arXiv:1408.3122



Monte-Carlo simulations

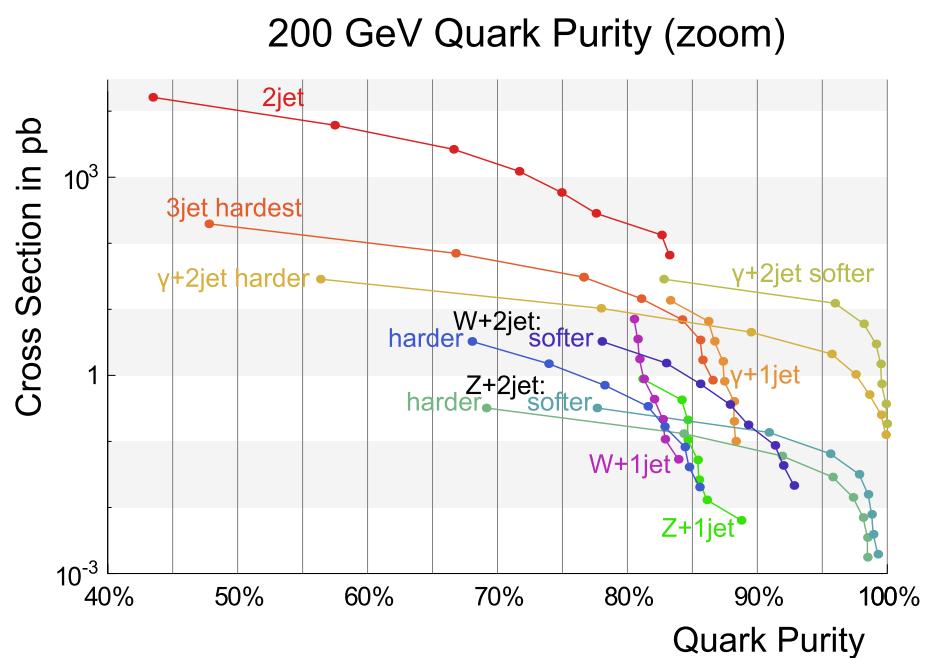
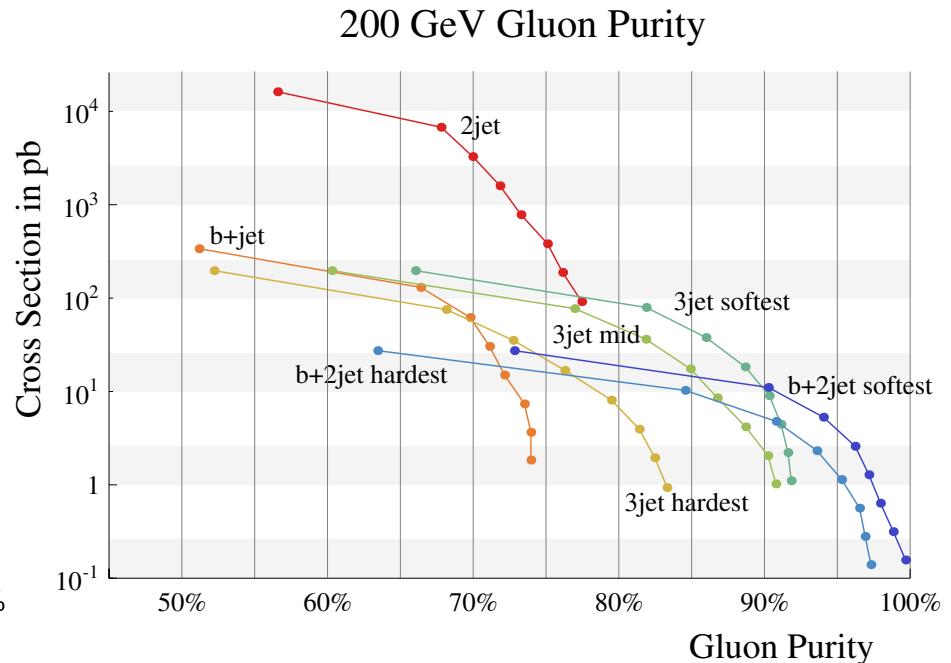


Analytic approach to generalized angularities

$$\lambda_\beta^\kappa = \sum_{i \in \text{jet}} z_i^\kappa \theta_i^\beta .$$

- Challenging
- Not impossible
- Complementary to MCs

Data: where are the quark and gluon jets?



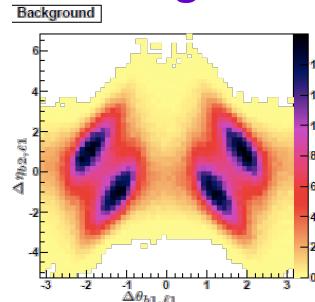
Photon + jet samples

- Jet closer to photon likely quark

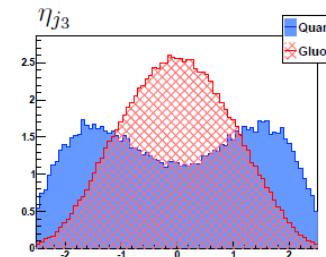
- **b + 2 jet: high purity low s**
 - One jet is b other is gluon
- **Dijet: high cross section, low purity**

Multivariate approach

- We can think about and visualize **single variables**



- Two variables are harder



- Multidimensional distributions are not well-suited for visualization.
- There are things that **computers are just better** at.
- Multivariate approaches let you figure out how well you could **possibly do**

FRAMING

See if simple variables
can do as well (establishes the goal)

EFFICIENCY

Save you the trouble of looking
for good variables (project killer)

POWER

Sometimes they are really necessary (e.g. b tagging)

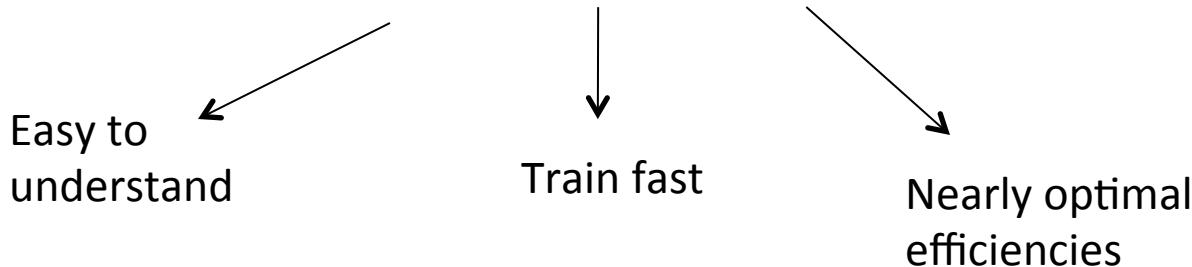
Multivariate methods

Lots of methods

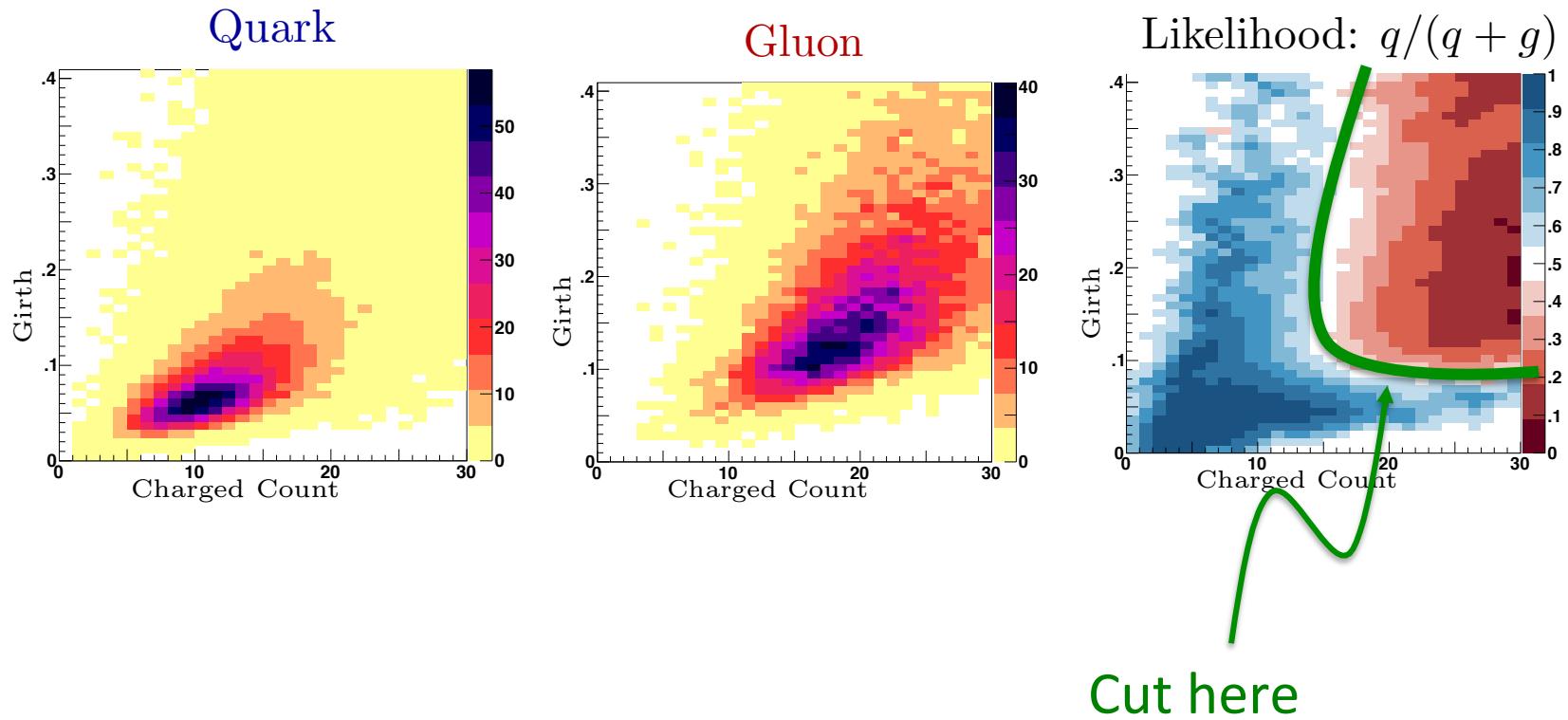
- Boosted Decision Trees
- Artificial Neural Networks
- Fischer Discriminants
- Rectangular cut optimization
- Projective Likelihood Estimator
- H-matrix discriminant
- Predictive learning/Rule ensemble
- Support Vector Machines
- K-nearest neighbor
- ...

Useful in many areas of science

For particle physics, **Boosted Decision Trees** are best suited for combining variables



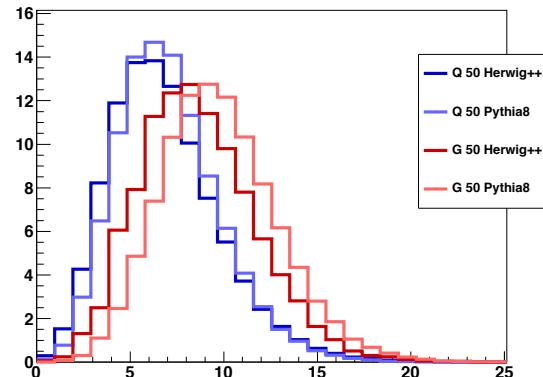
Are they correlated?



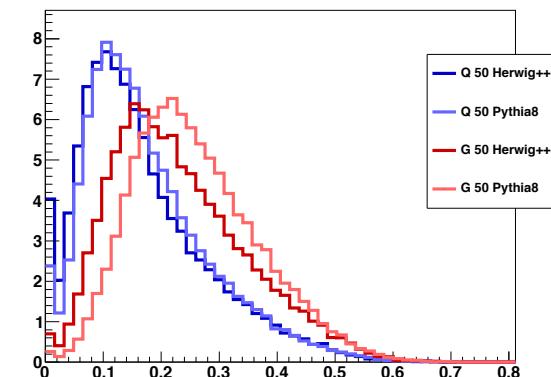
- Not completely
- Can get more discrimination from 2D cuts

Pythia vs Herwig

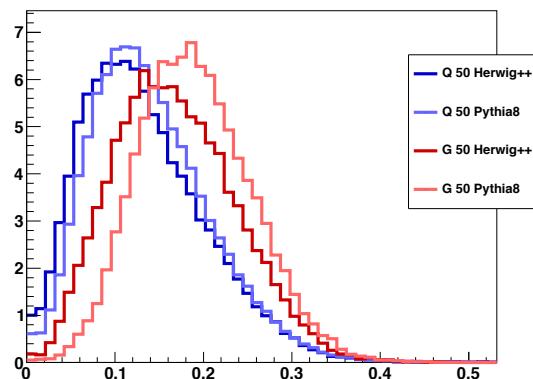
Charged Track Count (n_{trk})



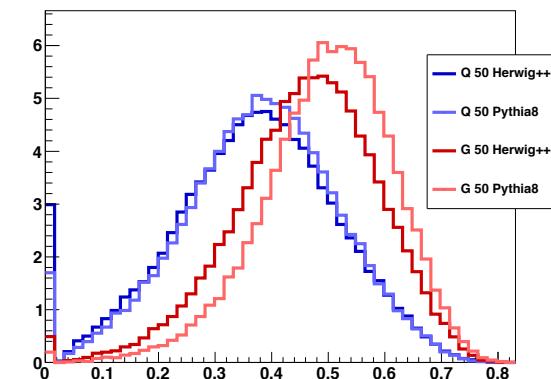
Linear Radial Moment (jet width)



mass/ p_T



1-subjettiness, optimized axes $\beta = 1/4$



- Pythia and Herwig qualitatively similar
- Discrimination power with Herwig ++ universally worse

Quark and gluon tagging: results

Single variables	Gluon Efficiency % at 50% Quark Acceptance	50 GeV				200 GeV			
		Particles		Tracks		Particles		Tracks	
		P8	H++	P8	H++	P8	H++	P8	H++
2-Point Moment $\beta=1/5$	8.7*	17.8*	13.7*	22.8*	8.3	15.9	13.2	19.6	
1-Subjettiness $\beta=1/2$	9.3	18.5	14.2	22.9	7.6	16.2	12.3	19.4*	
2-Subjettiness $\beta=1/2$	9.2	18.6	13.9	23.6	6.8	15.7*	9.8	18.7	
3-Subjettiness $\beta=1$	9.1	19.3	14.6	24.4	5.9*	16.7	8.6*	19.5	
Radial Moment $\beta=1$ (Girth)	10.3	20.5	16.1	24.9	11.2	18.9	15.3	21.9	
Angularity $a = +1$	10.3	20.0	15.8	24.5	12.0	19.3	14.0	21.6	
Det of Covariance Matrix	11.2	21.2	18.1	27.0	9.4	20.9	13.5	24.6	
Track Spread: $\sqrt{< p_T^2 > / p_T^{\text{jet}}}$	16.5	25.3	16.5	25.3	9.3	20.1	9.3	20.1	
Track Count	17.7	26.4	17.7	26.4	8.9	21.0	8.9	21.0	
Decluster with k_T , ΔR	15.8	24.5	20.1	28.4	13.9	20.1	16.9	23.4	
Jet m/p_T for R=0.3 subjet	13.1	25.9	16.3	27.7	11.9	24.2	14.8	26.2	
Planar Flow	28.7	34.4	28.7	34.4	39.6	42.9	39.6	42.9	
Pull Magnitude	37.0	39.0	32.9	35.6	30.6	30.2	29.6	30.6	
Pairs of variables	Track Count & Girth	9.9	20.1	13.4	23.2	7.1	17.3	7.7*	18.7
	R=0.3 m/p_T & R=0.7 2-Point $\beta=1/5$	7.9*	17.7	12.2*	22.1	5.7	14.4*	8.5	17.9
	1-Subj $\beta=1/2$ & R=0.7 2-Point $\beta=1/5$	8.5	17.3*	12.9	22.1	6.0	14.6	8.6	17.7*
	Girth & R=0.7 2-Point $\beta=1/10$	12.6	21.9	12.6	21.9*	9.2	18.0	9.2	18.0
	1-Subj $\beta=1/2$ & 3-Subj $\beta=1$	8.9	18.0	14.0	23.2	5.6*	15.0	8.4	18.4
3,4,5 variables	Best Group of 3	7.5	17.0	11.0	20.9	4.7	14.0	6.9	16.6
	Best Group of 4	7.1	16.7	10.6	20.5	4.5	13.7	6.2	16.3
	Best Group of 5	6.9	16.4	10.4	20.0	4.3	13.3	6.1	15.9