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Why	
  do	
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  care?	
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  jets	
   Backgrounds	
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Figure 1. Gluino decay as an of of a quark-heavy signal, in this case with 8 quark jets and no
gluon jets produced. Multi-jet events in standard model backgrounds are extremely unlikely to have
so many quark jets.

1 Introduction

Being able to distinguish quark-initiated from gluon-initiated jets reliably at the LHC could

be fantastically useful, since signatures of beyond-the-standard-model physics are often quark

heavy. For example, a typical gluino-pair production topology is pictured in Figure 1. Pro-

duced in pairs, each gluino’s cascade decay can produce four quarks and missing transverse

momentum due to the escape of the lightest supersymmetric partner. Backgrounds to this

process have events with many jets produced from QCD. These jets are predominately glu-

onic. Additionally, many R-parity violating SUSY models produce quark jets without the

missing transverse momentum. To constrain these models, being able to filter out background

QCD events containing gluon jets would be helpful. Leptophobic Z ′ or W ′ particles provide

other obvious examples where quark/gluon discrimination would be useful.

Gluon-heavy backgrounds are especially problematic for signals without leptons, gauge

bosons, B-jets, tops, or missing energy. Quark/gluon tagging might be one of the few ways

to improve these searches. Another application is to reduce reduce combinatorial ambiguity

within a single event. If jets in a given event could be identified as quark or gluon, their

place in a proposed decay topology could be constrained, or they could be classified as initial-

state radiation. Examining the quark/gluon tagging scores of jets produced by a new particle

might be the only way to measure QCD quantum numbers directly. Alternatively, some

signals consist of gluon jets, like coloron models [1] or buried-Higgs, where h → 2a → 4g

and a is CP odd scalar [2]. The same observables and techniques apply to gluon tagging,

though here we will treat the quark jets as the signal and the gluon jets as background for

concreteness.

– 2 –

1.	
  BSM	
  searches:	
  

2.	
  SM	
  searches	
  
•  Gluonic	
  backgrounds	
  to	
  e.g.	
  hadronic	
  top	
  decays	
  

	
  
3.	
  Improve	
  Monte	
  Carlos	
  

•  Gluon	
  jet	
  modeling	
  limits	
  accuracy	
  of	
  current	
  simula4ons	
  
	
  
4.	
  Test	
  precision	
  QCD	
  
5.	
  For	
  the	
  challenge:	
  can	
  we	
  do	
  it?	
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Quark/Glue	
  basics	
  
Probability	
  of	
  quark	
  radia4ng:	
  

P (q ! qg) =
↵s

2⇡
CF (· · · )

Probability	
  of	
  quark	
  radia4ng:	
  

P (g ! gg) =
↵s

2⇡
CA(· · · )

CF =
4

3
= 1.3 CA = 3

•  Gluons	
  around	
  twice	
  as	
  likely	
  to	
  radiate	
  than	
  quarks	
  
•  Gluon	
  jets	
  are	
  fa6er	
  
•  Gluon	
  jets	
  are	
  more	
  massive	
  
•  Gluon	
  jets	
  have	
  more	
  par4cles	
  
•  …	
  

3	
  



Example	
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We	
  looked	
  at	
  10,000	
  variables	
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Figure 14. Profiles fa(θ̃) for different choices of the angularity a parameter spaced at 0.1 intervals
(in rainbow) and linear radial-moment “girth” (in black). These profile shapes have nothing to do with
the shapes of the distributions resulting from integrating these moments over jets and histogramming
the results.
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Figure 15. Gluon rejection power for angularities as a function of angularity parameter a. Each line
represents growing jet size from R=0.2 in red up to R=1.0 in purple. Here the scores for all pT s are
averaged. The best angularities perform slightly better than masses, but worse than track and subjet
counts.

the jet mass, but this is not the most useful for our purposes. A given angularity has two

parameters (Rjet and a) in addition to any discrete choices like normalization (none, jet mass,

jet pT , jet E) or angle used (θ̃ as defined, or geometric θ.) Gluon rejections for different

choices of a are shown in Figure 15.

8.6 Optimal Kernel for Radial Moment

Rather than sticking to powers of r, sines and cosines (like angularity), or another orthonormal

basis, we looked for the kernel f(r) that gives the best discrimination power between quarks

and gluons for each pT . Because the goal is to find the best function, the optimization

problem is technically infinite dimensional. But through reasonable smoothness criteria, it

can be reduced to adjusting a few control-points of a spline or coefficients of an orthonormal

basis. Since adding a constant doesn’t change the discrimination power, we chose our kernels
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8.9 Two-Dimensional Geometric Moments

The radial moments above ignored how the pT was distributed around the jet axis. Motivated

by the moment-of-inertia and covariance tensors, a second order 2D geometric moment tensor

can be formed as shown in Figure 19. Combinations of its eigenvalues and eigenvectors (like

Planar Flow) have been used used to distinguish boosted objects.

None of these variables turn out not be particularly useful for quark/gluon discrimination,

so no distributions are shown here. Whether a quark emits a gluon or a gluon splits, the the

2-body kinematics are similar. Since it’s this leading emission that dominates the subsequent

shower, it is understandable that these shapes might not differ significantly between quarks

and gluons.

Covariance Tensor: C =
∑

i∈jet

piT
pjetT

(

∆ηi∆ηi ∆ηi∆φi
∆φi∆ηi ∆φi∆φi

)

Combination of Eigenvalues

Eigenvalues: a > b

Quadratic Moment: g =
√
a2 + b2

Determinant: det = a · b
Ratio: ρ = b/a

Eccentricity: ϵ =
√
a2 − b2

Planar Flow: pf = 4ab
(a+b)2

Orientation: θ

Figure 19. The Covariance Tensor and its eigenvalues and eigenvectors.
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Figure 12. The Integrated Jet Shape Ψ(r) is the fraction of the pT of a jet of cone size R falling
within a smaller cone of size r, as illustrated in the far left panel. Ψ(r = Rjet) = 1 by definition.
In the center is a plot of the integrated jet shape averaged over all observed jets of a particular type
(here our quark and gluon dijet sample). On the right the distribution of r = 0.1 jet shapes is shown.
The mean of these distributions gives Ψ(0.1) for quarks and gluons. The distribution is clearly not a
simple Gaussian centered around the average value, indicating that much information is discarded in
considering only the integrated jet shape. The rise at low r is due to jets where the parton underwent
a semi-hard splitting leading to little pT deposited along the jet axis.

more precisely as

Integrated Jet Shape: Ψ(r) =

∫ r

0

pT (r′)

pjetT

dr′ . (8.1)

An important distinction must be made between this definition, which is different function

for each jet, and what is commonly plotted as ‘jet shape,’ which is averaged over all jets seen

by a detector (with some cuts.) In Figure 12, this averaged integrated jet shape is the left

plot, whereas the distribution of integrated jet shapes out to a single radius of r = 0.1 is

the right plot. The distribution is clearly not a gaussian centered around the average value.

Given Ψ(0.1) for a particular jet that you want to classify, it’s more useful to know the full

distribution for quarks and gluons than just the two average values. Historic measurements

and calculations are for the average rather than the full distribution. The same is true for jet

masses: often average masses are calculated and measured for different pT s rather than mass

distributions.

Measurements at CDF agreed well [30] with Pythia Tune A and Herwig out to pjetT =

380GeV. At higher pT , shapes got narrower, which is consistent with the mix of quark and

gluon jets evolving from 27% quark at 50GeV to 80% quark at 350GeV. Early ATLAS

data also agrees moderately well [25] with simulations. When used event-by-event, often a

particular annulus was chosen to be integrated over, for example 0.2 < r < 0.7 in the CMS

jet shape briefs [31] and [32]. At the Tevatron, CDF chose 0.3 < r < 0.7 [30]. This particular

choices were not optimized for distinguishing quarks from gluons.
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Figure 16. Profiles for the optimal kernels found for various jet sizes. Kernels for the higher-pT jets
give a higher weight to pT near the jet axis.

to have f(0) = 0. This means that the energy deposits near the crowded and noisy jet

center count least. Multiplying by a constant (even a negative one) also does not affect

discrimination power, so we normalized our trial profiles so their maximum value was +1.

We evaluated the ROC curve at three different quark efficiencies, 20%, 50%, and 80%.

The best kernels we found had rejection scores that were not significantly higher than

those for girth (equation 8.3) or the square-root profile (equation 8.5). For this reason, we

won’t go into much more detail. Some general trends did appear. By construction, all kernels

started out at zero at the center of the jet and rose to +1 at some distance away. In the best

kernels, this happened around r = 0.4 for low-pT jets, 0.3 for 100GeV jets and 0.24 for 400

and 800GeV jets. Beyond this, it mattered less what happened, but the best kernels did fall

toward the edge of the jet. Examples of such kernels are shown in Figure 16.

8.7 N-subjettiness

N-subjettiness [38] is a family of jet shapes that attempt to characterize the degree to which a

jet has exactly N subjets. N is one of the input parameters, and is commonly taken to be 1,

2 or 3. N -subjettiness finds exactly N axes within the jet and associates each particle or pT
deposit to the nearest axis. These are the N subjets. The N -subjettiness score τN is sum of

pT -weighted radial moments for each subjet. In this moment, each bit of pT is multiplied by

its distance to the subjet axis ∆R raised to a power β, which must be positive. Specifically,

this is

τN,β =
1

d0

N
∑

J=0

∑

k∈subjetJ

pT,k (∆RJ,k)
β , (8.8)

where d0 is a normalization involving the jet size R0 to keep τN,β between zero and one:

d0 = Rβ
0

∑

k∈jet

pT,k . (8.9)

There are three parameters: N , the exponent β, and the method of choosing axes. A simple

way of choosing N axes is to undo a kT or Cambridge-Aachen clustering exactly N steps. A
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Figure 10. For subjets, smaller is better. Gluon rejection at 50% quark acceptance is plotted as a
function of initial jet size Rjet. These scores are averaged over all jet pT bins from 50GeV to 1600GeV.
The color corresponds to the subjet algorithm, with anti-kT in red being slightly better than CA in
green, which is slightly better than kT in blue. As for subjet size, the darkest color corresponds to the
smallest and best subjet size of Rsub = 0.1. Lightest is the largest and worst subjet size of Rsub = Rjet.
These trends hold even for subjet variables not plotted.
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Subjet	
  counts	
  
	
  and	
  proper4es	
  

h6p://jets.physics.harvard.edu/qvg	
   5	
  



	
  
Charged	
  par4cle	
  count	
  

•  Be6er	
  spa4al	
  and	
  energy	
  resolu4on	
  works	
  be6er	
  
•  e.g.	
  par4cles	
  >	
  calorimeter	
  clusters	
  >	
  subjets	
  	
  	
  

	
  
	
  
Linear	
  radial	
  moment	
  (girth)	
  

•  Similar	
  to	
  jet	
  broadening	
  

The	
  best	
  two	
  variables	
  in	
  Pythia	
  are:	
  

and	
  

1	
  

2	
   g =
1

pjetT

X

i2jet

piT |ri|

We	
  looked	
  at	
  10,000	
  variables	
  

•  Many	
  variables	
  have	
  similar	
  performance	
  

6	
  



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

best group of 5

charged mult & girth

charged mult * girth

charged mult R=0.5

subjet mult Rsub=0.1

mass/Pt R=0.3

girth R=0.5

|pull| R=0.3

planar flow R=0.3

optimal kernel at 80%

1st subjet R=0.5

avg kT of Rsub=0.1

decluster kT Rsub=0.1

jet shape Ψ(0.1)

Quark Jet Acceptance

Significance ImprovementSignificance Improvement

S
ig
n
ifi
ca
n
ce

Im
p
ro
ve
m
en
t

Figure 23. Significance Improvement Curves for pT = 100 jets for selected variables. These curves
show the significance improvement εS/

√
εB as a function of εS.
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Quark	
  and	
  gluon	
  jet	
  substructure	
  

If the signal is not pure quark and the background is not pure gluon, a cut with these

quark and gluon efficiencies will translate into signal and background efficiencies in a way that

depends on: the fraction of signal made of quarks sq, signal made of gluons sg, background

made of quarks bq, and background made of gluons bg. In this case,

ϵs = sqϵq + sgϵg and ϵb = bqϵq + bgϵg . (12.1)

Now suppose you start with S signal events and B background events. A cut with signal

efficiency ϵs and background efficiency ϵb changes the statistical significance in a simple way

as before:

σ =
S√
B

→
Sϵs√
Bϵb

= σ
ϵs√
ϵb

(12.2)

If the signal started with some significance σ, the cut will improve it by a factor ϵs/
√
ϵb,

which is called the “Significance Improvement” in the plots below. It depends not only on

the performance of the tagger, but on the quark/gluon makeup of your signal and background

and where one chooses to operate. A ROC curve for quark/gluon discrimination (ϵg vs ϵq) can

be easily transformed into a Significance Improvement Curve (ϵs/
√
ϵb vs ϵs) using equations

12.1 and 12.2. The first plot in Figure 27, several such curves are shown for signals that

are 100% quark, but backgrounds that are mixed. The curve labeled 0% has a background

that is purely gluon jets and corresponds to the curves shown previously. Even when the

background has only 10% quark jets, the maximum achievable significance improvement has

fallen quite a bit. The second plot in this figure shows those maxima as a continuous function

of the background’s quark fraction. A typical low-pT QCD background has 15% quarks and

is indicated. Clearly the tagger will be most useful when the signal and background are both

quite pure.

The same analysis can be performed for the publishedB-tagger ROC curves. Generic low-

pT QCD backgrounds have around 2% B-jets. For this value, the significance improvement

peaks at around 60% B-acceptance. This is the typical operating point of these taggers.
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Fig. 2 Average (a,c) ntrk and (b,d) track width for quark- (solid symbols) and gluon-jets (open symbols) as a function of
reconstructed jet pT for isolated jets with |η| < 0.8. Results are shown for distributions obtained using the in-situ extraction
method in Pythia 6 simulation (black circles, (a,b)) or data (black circles, (c,d)), as well as for labelled jets in the dijet
sample (triangles) and in the γ+jet sample (squares). The error bars represent only statistical uncertainties. Isolated jets are
reconstructed using the anti-kt jet algorithm with radius parameter R = 0.4. The bottom panels show the ratio of the results
obtained with the in-situ extraction method to the results in the dijet and γ+jet MC samples.

5.3.2 Heavy-flavour input uncertainties

The fractions of b-jets and c-jets are varied by ±20%
in the dijet sample, following Ref. [55], and by ±50%
in the γ+jet sample to estimate a conservative uncer-
tainty. As the fractions of b-jets and c-jets are small,
these uncertainties remain sub-leading. The two input
fractions are varied independently. The differences in

the results obtained after the extraction of the pure
quark- and gluon-jet properties are added in quadra-
ture to obtain the total systematic uncertainty from
this effect.

Uncertainties on the properties of b-jets are deter-
mined using a tt̄ sample, described in Sec. 3. The purity
of this sample is generally better than 95%. An enve-
lope 10% uncertainty is included on the b-jet properties

•  ATLAS	
  developed	
  procedure	
  to	
  disentangle	
  quark	
  and	
  gluon	
  jets	
  
•  Used	
  rela4vely	
  pure	
  samples	
  (dijets	
  for	
  gluon,	
  γ	
  +	
  jet	
  for	
  quark)	
  

Simula4on	
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Fig. 2 Average (a,c) ntrk and (b,d) track width for quark- (solid symbols) and gluon-jets (open symbols) as a function of
reconstructed jet pT for isolated jets with |η| < 0.8. Results are shown for distributions obtained using the in-situ extraction
method in Pythia 6 simulation (black circles, (a,b)) or data (black circles, (c,d)), as well as for labelled jets in the dijet
sample (triangles) and in the γ+jet sample (squares). The error bars represent only statistical uncertainties. Isolated jets are
reconstructed using the anti-kt jet algorithm with radius parameter R = 0.4. The bottom panels show the ratio of the results
obtained with the in-situ extraction method to the results in the dijet and γ+jet MC samples.

5.3.2 Heavy-flavour input uncertainties

The fractions of b-jets and c-jets are varied by ±20%
in the dijet sample, following Ref. [55], and by ±50%
in the γ+jet sample to estimate a conservative uncer-
tainty. As the fractions of b-jets and c-jets are small,
these uncertainties remain sub-leading. The two input
fractions are varied independently. The differences in

the results obtained after the extraction of the pure
quark- and gluon-jet properties are added in quadra-
ture to obtain the total systematic uncertainty from
this effect.

Uncertainties on the properties of b-jets are deter-
mined using a tt̄ sample, described in Sec. 3. The purity
of this sample is generally better than 95%. An enve-
lope 10% uncertainty is included on the b-jet properties
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Figure 5: Means of extracted templates for wtrk (left) and wcalo (right) comparing data (solid line), P����� (dotted
line) and Herwig++ (dashed line). The top plots show the distribution for |⌘ | < 0.8, the bottom plots are for
1.2 < |⌘ | < 2.1. The bottom panel of each plot shows the ratio of the P����� and Herwig++ distributions to the
extracted templates. The last pT bin in all plots includes overflow events.

4.4 Validation

Using the �+2jet and trijet validation samples defined in Section 3 it is possible to check the extracted
templates against purified quark- and gluon-jet data samples. Figure 7 show a comparison of the means of
the template distributions for quarks and gluons as compared with the two samples. The variables ntrk and
wcalo are displayed as examples. Generally the extracted templates and validation samples agree within
15%, with the extracted gluon means being typically 10–15 % higher in the validation sample. The quark
means are well reproduced, except at the lowest pT bins. Note that no attempt is made to correct the
validation samples to 100% light-quark or gluon jet purity. However the purity of these samples is above
90%. therefore di�erences between the the validation and extracted templates can be attributed to other
sources, such as sample dependence, as discussed in Section 5.

4.5 Discrimination Performance

In order to determine which variables are most powerful for quark-gluon discrimination, a likelihood is
created to rank the variables based on the fraction of gluons they reject (gluon rejection) for fixed quark
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This note presents a study of the discrimination between jets arising from light flavor quarks
and gluons using data from

p
s = 8 TeV proton-proton collisions taken with the ATLAS

detector at the LHC. Templates of light-quark and gluon jet properties are derived and
compared with predictions from Monte Carlo generators and high purity quark and gluon
jet samples. The power of a variety of discriminants derived from data is studied and
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the dependence of the discrimination performance for di�erent event samples. Rejections of
40 to 50% of jets initiated from gluons are achieved for 70% light quark jet acceptance.

© 2016 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Data	
  appears	
  to	
  be	
  between	
  Pythia	
  and	
  Herwig	
  

ATLAS	
  8	
  TeV	
  

9	
  



 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

Q=200 GeV
R=0.6p q

(λ
1 0.

5)

λ1
0.5 [LHA]

Quark, hadron-level 

Pythia 8.205
Herwig 2.7.1
Sherpa 2.1.1
Vincia 1.201

Deductor 1.0.2
Ariadne 5.0.β

(a) (b)

(c)

Fig. IV.48: Hadron-level distributions of the LHA for (a) the e+e≠ æ uū (“quark jet”) sample,
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Recent	
  advances	
  allowing	
  Deep	
  Learning	
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  algorithms:	
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  such	
  as	
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  model	
  regulariza4ons	
  

•  Dropout:	
  Randomly	
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  frac4on	
  p	
  of	
  units	
  are	
  ignored	
  during	
  
each	
  weight-­‐update.	
  

–  Network	
  architecture	
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  to	
  applica4on	
  
•  Dras4cally	
  fewer	
  elements	
  to	
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How	
  to	
  link	
  up	
  units?	
  
•  Dense	
  (Fully	
  Connected)	
  Layer	
  

–  Each	
  unit	
  is	
  linked	
  to	
  every	
  unit	
  in	
  the	
  
previous	
  layer.	
  

•  Convolu4onal	
  Layer	
  
–  Each	
  unit	
  is	
  linked	
  to	
  an	
  n	
  ×	
  n	
  patch	
  of	
  the	
  

previous	
  layer.	
  
	
  

–  Units	
  are	
  downsampled	
  to	
  n/2	
  ×	
  n/2	
  
patches	
  with	
  a	
  max-­‐pooling	
  layer.	
  
	
  

–  Can	
  handle	
  mul4ple	
  channels.	
  
	
  E.g.	
  RGB	
  images.	
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Figure 2: A Fisher’s linear discriminant presented as an image (left) and the distributions

of the discriminant output when applied to W-jets and Light-jets (right), when the FLD is

trained on jets with pT 2 [250, 300] GeV, mass M 2 [65, 95] GeV, and separation between

subjets of �R 2 [0.6, 0.8].

The background rejection vs. signal e�ciency curves for the FLD, computed using

the 1-D likelihood ratios of the output distribution of the FLD for W-jets and QCD jets,

can be seen in Figure 3a, along with the rejection vs. e�ciency curves observed when

using N-subjettiness (⌧2/⌧1) [7, 8] computed analogously with the 1-D likelihood ratios.

For the rejection vs. e�ciency curve in Figure 3a Fisher-jets are trained on jets satisfying

pT 2 [250, 300] in 6 bins of �Rjj , and a combined 1D likelihood ratio distribution is

computed by taking the likelihood ratio for each jet computed with respect to appropriate

�Rjj bin and merging these likelihood ratio values into a single distribution. The N-

subjettiness distributions are not binned in �Rjj as this did not show any improvements

in performance. Figure 3b shows the e�ciency of W jets at a fixed QCD jet rejection of 10

as a function of jet pT for the FLD (combining the 6 bins of �Rjj for each jet pT bin) and

for N-subjettiness. It can be seen that FLD outperforms N-subjettiness for the full range

of jet pT examined.

It should be noted that the output of FLD and N-subjettiness are correlated, as shown

in Figures 4a and 4b for W and QCD jets respectively, with a correlation coe�cient of

approximately 0.7 for both W and QCD jets. Thus, the Fisher-jet approach is able to

combine in a linear way the information comprising the jet e↵ectively, and capture much

of the information of N-subjettiness and more. On the other hand, mass, which relies

on quadratic relationships between the inputs, is a simple quantity which FLD does not

reproduce, as shown in Figures 4c and 4d for W and QCD jets respectively. Since the

Fisher-jet output is only slightly correlated with mass, with a correlation coe�cient of

approximately -0.25 for both W and QCD jets indicating a small degree of anti-correlation,

the performance of the classifier does not change dramatically whether it is applied to a

small window around the W mass, or to a sample without jet mass cuts.

– 9 –
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L2 weight matrix norm. A
down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.
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Figure 6: Left: ROC curves for individual physics-motivated features as well as three deep neural
network discriminants. Right: the DNNs are compared with pairwise combinations of the physics-
motivated features.
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Figure 7: ROC curves that combined the DNN outputs with physics motivated features for the
Convnet (left) and MaxOut (right) architectures.
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boosted decision trees trained on the expert features, both
with (bottom) and without pile-up (top). Typical choices of
signal e�ciency in real applications are in the 0.5-0.7 range.
Also shown are the performance of jet mass individually as
well as two expert variables in conjunction with a mass win-
dow.

INTERPRETATION

Current typical use in experimental analysis is the
combination of the jet mass feature with ⌧21 or one of
the energy correlation variables. Our results show that
even a straightforward BDT-combination of all six of the
high-level variables provides a large boost in comparison.
In probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by
the BDT.

The deep network has clearly managed to match or
slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on

the underlying theoretical questions may naturally be cu-
rious as to whether the deep network has learned a novel
strategy for classification which could inform their stud-
ies, or rediscovered and further optimized the existing
features.
While one cannot probe the motivation of the ML al-

gorithm, it is possible to compare distributions of events
categorized as signal-like by the di↵erent algorithms in
order to understand how the classification is being accom-
plished. To compare distributions between di↵erent algo-
rithms, we study simulated events with equivalent back-
ground rejection, see Figs. 5 and 6 for a comparison of the
selected regions in the expert features for the two classi-
fiers. The BDT preferentially selects events with values
of the features close to the characteristic signal values
and away from background-dominated values. The DNN,
which has a modestly higher e�ciency for the equivalent
rejection, selects events near the same signal values, but
in some cases can be seen to retains a slightly higher frac-
tion of jets away from the signal-dominated region. The
likely explanation is that the DNN has discovered the
same signal-rich region identified by the expert features,
but has in addition found avenues to optimize the perfor-
mance and carve into the background-dominated region.
Note that DNNs can also be trained to be independent of
mass, by providing a range of mass in training, or train-
ing a network explicitly parameterized [44, 45] in mass.

DISCUSSION

The signal from massive W ! qq jets is typically ob-
scured by a background from the copiously produced low-
mass jets due to quarks or gluons. Highly e�cient classifi-
cation is critical, and even a small relative improvement
in the classification accuracy can lead to a significant
boost in the power of the collected data to make statis-
tically significant discoveries. Operating the collider is
very expensive, so particle physicists need tools that al-
low them to make the most of a fixed-size dataset. How-
ever, improving classifier performance becomes increas-
ingly di�cult as the accuracy of the classifier increases.
Physicists have spent significant time and e↵ort de-

signing features for jet-tagging classification tasks. These
designed features are theoretically well motivated, but as
their derivation is based on a somewhat idealized descrip-
tion of the task (without detector or pileup e↵ects), they
cannot capture the totality of the information contained
in the jet image. We report the first studies of the ap-
plication of deep learning tools to the jet substructure
problem to include simulation of detector and pileup ef-
fects.
Our experiments support two conclusions. First, that

machine learning methods, particularly deep learning,
can automatically extract the knowledge necessary for
classification, in principle eliminating the exclusive re-
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Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

charged, neutral and negatively charged particles. To be concrete, in this study we take three

input channels:

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

Each of these observables is evaluated on each image pixel. All channels of the image undergo

the standard pre-processing: the images are normalized such that
P

ij I
(k)
ik = 1, where k

indexes over channel; the zero centering and standardization are done for each pixel in each
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•  Convolu4on	
  layers	
  apply	
  8x8	
  pixel	
  filters	
  to	
  images	
  
•  	
  4x4	
  filters	
  used	
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  for	
  2nd	
  and	
  3rd	
  conv.	
  layers	
  
•  We	
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  64	
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  size	
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Figure 5: (top) ROC and (bottom) SIC curves of the FLD and the deep convolutional

network trained on (left) 200GeV and (right) 1000GeV Pythia jet images with and without

color compared to baseline jet observables and a BDT of the five jet observables.

in signal over background discrimination power in a collider physics application, and also

exhibits a nontrivial maximum (at some "q) which gives an unbiased measure of the relative

performance of di↵erent discriminants [6].

The ROC and SIC curves of the jet variables and the deep convolutional network on

200GeV and 1000GeV Pythia jets are shown in Figure 5. The quark jet classificiation

e�ciency at 50% quark jet classification e�ciency for each of the jet variables and the CNN

are listed in Table 1. To combine the jet variables into more sophisticated discriminants, a

boosted decision tree (BDT) is implemented with scikit-learn. The convolutional network

outperforms the traditional variables and matches or exceeds the performance of the BDT of

all of the jet variables. The performance of the networks trained on images with and without

color is shown in Figure 6.
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Comparing	
  Pythia	
  and	
  Herwig	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

Figure 8: ROC curves for the Pythia- and Herwig-trained CNNs applied to 200 GeV samples

generated with both of the generators. Remarkably, the network performance seems robust

to which samples are used for training.

distributions and disagree primarily on the gluon distributions. The baseline jet variables and

the convolutional network all indeed have worse performance on Herwig jets than on Pythia

jets. A comparison of the discrimination power of the observables between the two generators

is included in Table 1.

It is interesting to consider the four possibilities of applying the convolutional networks

trained on Pythia jets or Herwig jets to test samples of Pythia jets or Herwig jets. Figure 8

and Figure 9 show the resulting ROC curves and distributions of convolutional network

outputs on the colored jet images. We find that the network is surprisingly insensitive to the

generator: the convolutional network trained on Pythia jets and tested on Herwig jets has

comparable performance to the convolutional network trained directly on Herwig jets and

tested on Herwig jets. This insensitivity is a positive sign for being able to train the network

on MC-generated jets and apply it to data robustly.

6 Conclusions

The ability to distinguish quark-initiated jets from gluon-initiated jets would be of tremendous

practical application at colliders like the LHC. For example, many signals of beyond the

standard model physics contain mostly quark jets, while their backgrounds are gluon-jet

dominated. Quark/gluon jet discrimination is also extremely challenging: correlations in

their radiation patterns and non-pertubative e↵ects like hadronization are hard to disentangle.

Thus this task is ideally suited for artificial intelligence.

– 17 –

•  Discrimina4on	
  worse	
  in	
  Herwig	
  
•  Gluon	
  and	
  quark	
  jets	
  are	
  more	
  similar	
  
•  Consistent	
  with	
  previous	
  studies	
  

Network	
  performance	
  
	
  independent	
  

of	
  MC	
  used	
  to	
  train	
  

•  Indicates	
  robustness	
  
•  May	
  work	
  on	
  data	
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Is	
  it	
  learning	
  physics?	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Figure 6: SIC curve of deep convolutional network performance on Pythia jets with color

(solid) and without color (dotted). The introduction of color becomes more helpful at higher

energies, with the largest improvement on the 1000GeV jets.

Figure 7: SIC curve of deep convolutional network performance on Pythia jets without color

with additional inputs of CPM (solid), N
95

(dashed), and zero as a control (dotted). The

spread in the SIC curves for models trained on 100GeV and 200GeV jets is within the typical

variation, with no clear improvement from the additional variables. For models trained on

500GeV and 1000GeV jets, a modest improvement was seen from the introduction of CPM,

though not as large as the improvement from the introduction of color.

– 16 –

Add	
  in	
  observables	
  
•  CPM	
  =	
  charged	
  par4cle	
  mul4plicity	
  
•  N95=	
  a	
  useful	
  discriminant	
  (minimum	
  number	
  of	
  pixels	
  with	
  95%	
  of	
  jet	
  pT)	
  [Pumplin	
  1991]	
  

Except	
  at	
  very	
  high	
  pT,	
  	
  
	
  	
  	
  no	
  benefit	
  from	
  adding	
  observables	
  

May	
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  that	
  NN	
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Conclusions	
  
•  Quark	
  and	
  gluon	
  jets	
  can	
  be	
  dis4nguished	
  by	
  radia4on	
  pa6erns	
  

•  Pythia	
  and	
  Herwig	
  have	
  significant	
  differences,	
  par4cularly	
  for	
  gluons	
  
•  Improved	
  parton	
  showers	
  (e.g.	
  vincia)	
  look	
  promising	
  

•  Tradi4onal	
  variables	
  	
  
•  Two	
  types:	
  shape	
  (mass,	
  girth,	
  n-­‐jelness)	
  and	
  count	
  (#	
  par4cles,	
  #	
  subjets)	
  
•  Marginal	
  gains	
  from	
  exploi4ng	
  correla4ons	
  of	
  >2	
  variables	
  using	
  BDTs	
  

•  Deep	
  learning	
  approach	
  
•  Use	
  image-­‐recogni4on	
  technology	
  to	
  avoid	
  thinking	
  
•  Does	
  be6er	
  than	
  tradi4onal	
  approach!	
  
•  Relies	
  heavily	
  on	
  simula4ons,	
  but	
  	
  

•  Performance	
  independent	
  of	
  Pythia	
  or	
  Herwig	
  training	
  

Domo	
  Arigato!	
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Figure 12: The quark/gluon truth overlap for an individual generalized angularity �
� . Top:

the LL and NLL analytic calculations. Note that these calculations are singular at  = 0 or

� = 0. Bottom: the Pythia 8 and Herwig++ parton showers (identical to Figs. 4a and

4b). The solid boxes correspond to dots indicated in Fig. 1, the dashed box corresponds to

the IRC safe angularities e� , and the grey dashed curve in the LL/NLL plots marks the range

of validity of our calculations (i.e. the edge of the blue region in Fig. 7).
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Setting the quark fraction f equal to 1/2 and CA/CF = 9/4 for QCD, the mutual

information for quark/gluon discrimination is

I(T ;A)f=1/2 ' 0.103. (3.9)

This will be the baseline value to which all observables will be compared. Note that I(T,A)

is quite far from 1 (i.e. a full truth bit), demonstrating the inherent challenge of quark/gluon

tagging.

4 Generalized Angularities

Our analytic studies of quark/gluon separation will focus on the generalized angularities �
�

defined in Eq. (1.2), repeated for convenience:

�
� =

X

i2jet
zi ✓

�
i . (4.1)

Here zi is the energy fraction and ✓i = Ri/R0

the angular fraction with respect to the jet

radius R
0

, such that 0  zi, ✓i  1. We measure the angles Ri with respect to the recoil-free

winner-take-all axis [21–23] and we use a jet algorithm that centers the jet on the winner-take-

all axis, such that ✓i  1 is strictly enforced. For the IRC safe angularities e� , it is known

that a recoil-free axis improves quark/gluon discrimination power [9]. For the generalized

angularities �
� , a recoil-free axis is crucial for the calculations with � . , since it ensures

that �
� measures the radiation pattern around the initiating hard quark or gluon and not

the displacement (i.e. recoil) of the hard parton away from the jet axis.

These variables are e↵ective quark/gluon discriminants because they probe the angular

and energetic structure of jets, both of which are sensitive to the di↵ering color factors between

quarks and gluons, among other e↵ects. Large � emphasizes wide-angle radiation whereas

small � emphasizes collinear radiation. Large  emphasizes harder hadrons, whereas small 

emphasizes softer hadrons. For reference, we highlight the  = 1 and � = 0 cases:

e� ⌘ �1

� =
X

i2jet
zi✓

�
i , (4.2)

�
0

=
X

i2jet
zi . (4.3)

While �1

0

= 1 is a trivial observable, we can expand around  = 1 to find

lim
!1

�
0

= 1 +
X

i2jet
(� 1)zi ln zi, (4.4)

so when we present studies for �1

0

, we really mean lim!1

�
0

, which is e↵ectively the same as

the observable
P

i2jet zi ln zi.

To get a feel for the performance of the various �
� , we can use parton shower simulations

to estimate their quark/gluon truth overlap. We generate an equal admixture of quark and

– 10 –

Monte-­‐Carlo	
  simula4ons	
  

•  Challenging	
  
•  Not	
  impossible	
  
•  Complementary	
  to	
  MCs	
  

Larkoski	
  et	
  al.	
  arXiv:1408.3122	
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Figure 11: Cross section as a function of quark purity. The left panel shows the purity for the
different samples with a 200GeV cut on all non-b jets. The different points correspond to different
cuts placed on a Boosted Decision Tree output, trained to optimize the quark purity. The leftmost
dots of each sample are the uncut purities, and each successive dot corresponds to cutting the number
of events in half. By the final dot, which keeps 1/128th of the signal, cutting harder no longer increases
the purity. The right panel shows the purities for the γ+1jet (red) and γ+2jet (blue) samples for
various pT ’s, where the cuts are with BDTs trained on 6 and 9 kinematic variables, respectively. The
black curves correspond to purities obtained after cutting on the single variable ηγηj1 +∆Rγj2 . The
blue curve takes the jet closest to the photon as a starting point, whereas the black curve takes the
softer of the two jets as its starting point. This is the reason for the lower initial purity but the same
cross section. (It was easier to find a single variable using the softer jet rather than the jet closer to
the photon.)

anticipated, the γ+1jet cannot be purified much — putting harsher cuts hits a wall and

eventually just kills the cross section. On the right, we focus on just the γ+1jet and γ+2jet

samples for all pT . The red curves are the BDT output using 6 inputs for γ+1jet, the

blue curves BDT with 9 inputs for γ+2jets, and the black curves for our single variable

ηγηj1 +∆Rγj2 . It is nice that the single variable does as well as the comprehensive analysis

using the 9 BDT inputs.

We conclude that the best way to get a clean quark sample at low pT is to use γ+1jet, for

simplicity, or γ+2jets at moderate to large pT , cutting on the single variable ηγηj1 +∆Rγj2 .

Depending on how much cross section you are willing to sacrifice, for 200GeV jets, you can

get 95% quark purity at 2 pb or 99% purity at 500 nb.

3.2 Gluon jet purification

Next, we turn to the more difficult case of gluon jet purification. It is more difficult because

there is no starting sample with purity above 80%, and because there are no simple physically

motivated handles for purification. Indeed, for the quark, we used the fact that there is a

collinear qγ singularity but no gγ singularity to inspire a ∆Rjγ cut. But for a gluon we

cannot use the gq singularity since we are trying to avoid q jets all together. The exception is
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Figure 12: Cross section as a function of gluon purity for the different samples with a 200GeV cut
on all non-b jets. The different points correspond to different cuts placed on a Boosted Decision Tree
trained to optimize the gluon purity. The leftmost dots of each sample are the uncut purities. There
are 3 curves for the 3-jet samples, and two for the b+2jet samples, corresponding to which of the jets
(from hardest to softest) is being considered. Note the three 3-jet samples start with identical cross
sections, but higher purities are achievable for the softer jets.

samples with jets and b’s, where we can use b-tagging information to help purify the sample.

This will in fact be relevant, but we will find that the 3- and 4-jet samples actually work quite

well, and avoid having to deal with b-tagging.

To begin, we start with a multivariate BDT analysis using as inputs the (pT , η,φ) of all

final state particles. The results for the different 200GeV samples are shown in Figure 12.

We can see that while the b+2jets has good efficiency, it also has a cross section orders of

magnitude smaller than the 2-jet sample. The 3-jet sample is somewhere in between, with

efficiencies about 80% for a cross section of 100 pb. We will consider these three samples in

the following, as there may be situations when each one is advantageous.

First, consider the b+2jet sample. Looking back at Figure 3, we see that there is a

contribution from both ‘GG’ (with ggb final states) and ‘QG’ (with qgb final states). The ggb

section obviously has perfect gluon efficiency regardless of cuts. The main parton level process

contribution in the qgb channel is ub → ubg, which looks like final state gluon radiation from

t-channel ub → ub. Since we put a harder cut on the u and g than the b, the kinematics

will mostly have the u going back-to-back with the gb, and so the g will be somewhat softer.

This explains why the starting efficiencies for the softer jet at pT=200GeV are around 73%,

versus 63% for the harder jet, as shown in see Figure 12.
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Combining Variables: Girth and Charged Count
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Figure 28. Distributions of charged track count and linear radial moment (here calculated using
only the charged tracks within the jet) for 50GeV jets. Quark samples are blue and Gluon samples
red. Pythia 8.165 is the lighter shade and Herwig++ 2.5.2 is in the darker shade.
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Gluon Efficiency % at 50GeV 200GeV

50% Quark Acceptance Particles Tracks Particles Tracks

P8 H++ P8 H++ P8 H++ P8 H++

2-Point Moment β=1/5 8.7∗ 17.8∗ 13.7∗ 22.8∗ 8.3 15.9 13.2 19.6

1-Subjettiness β=1/2 9.3 18.5 14.2 22.9 7.6 16.2 12.3 19.4∗

2-Subjettiness β=1/2 9.2 18.6 13.9 23.6 6.8 15.7∗ 9.8 18.7

3-Subjettiness β=1 9.1 19.3 14.6 24.4 5.9∗ 16.7 8.6∗ 19.5

Radial Moment β=1 (Girth) 10.3 20.5 16.1 24.9 11.2 18.9 15.3 21.9

Angularity a = +1 10.3 20.0 15.8 24.5 12.0 19.3 14.0 21.6

Det of Covariance Matrix 11.2 21.2 18.1 27.0 9.4 20.9 13.5 24.6

Track Spread:
√

< p2T >/pjetT 16.5 25.3 16.5 25.3 9.3 20.1 9.3 20.1

Track Count 17.7 26.4 17.7 26.4 8.9 21.0 8.9 21.0

Decluster with kT , ∆R 15.8 24.5 20.1 28.4 13.9 20.1 16.9 23.4

Jet m/pT for R=0.3 subjet 13.1 25.9 16.3 27.7 11.9 24.2 14.8 26.2

Planar Flow 28.7 34.4 28.7 34.4 39.6 42.9 39.6 42.9

Pull Magnitude 37.0 39.0 32.9 35.6 30.6 30.2 29.6 30.6

Track Count & Girth 9.9 20.1 13.4 23.2 7.1 17.3 7.7∗ 18.7

R=0.3 m/pT & R=0.7 2-Point β=1/5 7.9∗ 17.7 12.2∗ 22.1 5.7 14.4∗ 8.5 17.9

1-Subj β=1/2 & R=0.7 2-Point β=1/5 8.5 17.3∗ 12.9 22.1 6.0 14.6 8.6 17.7∗

Girth & R=0.7 2-Point β=1/10 12.6 21.9 12.6 21.9∗ 9.2 18.0 9.2 18.0

1-Subj β=1/2 & 3-Subj β=1 8.9 18.0 14.0 23.2 5.6∗ 15.0 8.4 18.4

Best Group of 3 7.5 17.0 11.0 20.9 4.7 14.0 6.9 16.6

Best Group of 4 7.1 16.7 10.6 20.5 4.5 13.7 6.2 16.3

Best Group of 5 6.9 16.4 10.4 20.0 4.3 13.3 6.1 15.9

Table 1. Comparison of gluon efficiencies at the 50% quark acceptance working point. All of the
single variables use R=0.5 jets, wheras combinations sometimes include R=0.7 jets. Gluon efficiencies,
rather than gluon rejections (one minus efficiencies), are shown because a fractional improvement here
is the same fractional improvement in S/B. Divided by two, it is also the fractional improvement in
S/

√
B. These scores have ±0.5% statistical errors, but they are correlated — the differences between

variables has smaller spread, as does the improvement when combining variables. Because of the large
number of variables and parameters, and the larger number of possible combinations of these, there is
definitely a look-elsewhere-type effect when choosing the top pair. Many pairs statistically tied for the
top spot in each category, so five pairs were chosen as representative. Their scores are marked with
asterisks, as are the best individual variables in each category. The best groups of 3, 4, and 5 start to
show diminishing returns.
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