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The S-matrix
• Is the S matrix completely fixed by physical constraints? (causality, analyticity, etc.)?

• Key question of the 1960s, motivated by nuclear physics
• 1970s: Quantum Field Theory explained strong interactions

➥S matrix program on hold for 40 years

• Recent progress in perurbation theory has renewed interested in analytic structure
• More “data” – explicit calculations
• Mathematics of functions appearing in amplitudes (cluster algebras, etc.)

• Very efficient ways to write down amplitudes,
• Success in the perturbative S-matrix bootstrap

• collinear limits, Regge limits, conformal invariance, Steinmann relations
• N=4 SYM 6 point amplitude bootstrapped to 7 loops [Caron-Huot et al 1903.10890]

Steinman relations are constraints on sequntial discontinuities
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How can we understand constraints like this?

[Steinmann 1960]

possible term:

not allowed (at any order):



Example
Consider the simplest 1-loop diagram: the bubble in d=2

• It has a normal threshold branch cut starting at s=4m2

• For s > 4m2 the on-shell process p → p1 +p2 is allowed for physical on-shell momenta

Even this diagram is remarkably rich, as we will see. 

p

• Tree-level process tells you about singularities of loop amplitudes
• e.g., through optical theorem

Im =
p

2

• Not singular at the pseudthreshold s=0
• There is a branch point at s=0 accessible with complex momenta
• Does not correspond to anything physical happening



Imaginary part is too blunt

Im = p
2

Optical theorem

Im = sum of all cuts + + +…

Imaginary part gives the total discontinuity
• Cannot distinguish overlapping branch cuts

• To understand full analytic structure
need to isolate each branch point/cut



• Not singular at x=0
• Sign ambiguity: 
• Branch cut is projection of Riemann surface onto complex plane
• Discontinuity gives back the same function

Branch points/cuts
Square root: • Single valued on Riemann surface

Logarithm:  ln x
• Singular at x=0
• Phase ambiguity on negative real axis
• Riemann surface is infinite sheeted
• Discontinuity gives back a simpler function



Absorption integrals

Cutkosky: The discontinuity of an integral is given by an absorption integral where all
the cut lines are replaced by δ functions

• θ and δ functions make formula ambiguous for 
complex momenta

• Formula actually only applies for “principal” 
singularities, which include all physical ones

• Cutkosky’s formula isolates individual 
                      branch points/cuts

Where does this formula come from?
What is the cleanest way to understand it?



Monodromies
s

1

equal to conventional definition of ln s
• contour cannot pass through x=0
• undefined for real s < 0

s

1

straight line 
contour

generalization to arbitrary contour γ
• contour cannot pass through x=0
• s<0 is ok
• branch cut no longer exists
• called the maximal analytic continuation

• small deformations of contour cannot change the result
• contours classified by winding number around branch point x=0

=-

difference between contours is monodromy = disc = im



Dilogarithm
• Principal branch defined with straight line contours

• Singularities avoided counterclockwise

Branch point at s=1 
• discontinuity along the branch cut for s>1 computed via monodromy:

• monodromy around s=1
• monodromy around s=0 vanishes Now branch point at s=0 is visible

• Branch point at s=0 is on second sheet

Singularities encoded transparently with the symbol

first discontinuity sequential discontinuity

s



Landau Equations
Associate a Feynman integral to a graph G 

numerator = 1 for simplicity

Go to Feynman parameters

e.g.

# internal edges

internal edges
fundamental cycles 

(independent loop momenta)

A necessary condition for a singularity is that the integrand is singular (l=0) 

G=

SingularNot singular
integration contour
pinched between poles

Where in the space of external momenta p is the graph singular?



A necessary condition for a singularity is that the integrand is singular (l=0)

• every internal line is either
on-shell (q2=m2) or α=0 or both

=0

Landau Equations

consider only the lines with α≠0

Landau diagram
q1, q2 on-shell. q3,q4 irrelevant



A necessary condition for a singularity is that the integrand is singular (l=0)

integration contour
pinched between poles

Double pole: 

• every internal line is either
on-shell (q2=m2) or α=0 or both

A necessary condition for a singularity of the integral is that there be double poles

for each loop kc:

• since qe are linear in kc

q2=

q1=

=0

Landau loop equations

Landau Equations



Coleman-Norton interpretation
Landau equations (necessary and sufficient conditions for a branch point)

4-momenta add up to zero after rescaling by α

Landau diagram is interpreted as space-time diagram
• momenta are on-shell (classical)
• αe are the proper times for propagation

[Coleman and Norton 1965]

More physically: singularities due to classically allowed processes
• similar to optical thoerem 

=0



Pham interpretation

Landau 
equations

=0

on-shell constraints (Euclidean d=2) normal vectors of
on-shell constraints q2=m2 

are linearly dependent

intersection
satisfies both 
on-shell constraints

circles are
tangent on boundary
of space where
circles intersect



Vanishing cycle
Physics

Μathematics

consider integration contours in the space

Homology group is that of a plane with two holes

When cirlces are tangent homology group shrinks

space of momenta with on-shell locus removed

pA

pB

p

homology cycle  h becomes trivial

Hadamard’s “vanishing cycle” 

singularity is pinched as ε→0



Homology and Homotopy

=-

Integrals are functions 
of external momenta p

Homotopy classes of paths in space of
external momenta determine discontinuities

Homology classes in space of
internal momenta
determines branch points

These two concepts are connected through the Picard-Lefshetz theorem

Homology: integration contours γ and γ’ are homologous if γ-γ’ is a boundary of some space 
Homotopy: homotopic paths in external momenta can be deformed into each other



1-loop example
Consider again the 1-loop bubble in d=2

Going to Feynman parameters

integrand is singular (l =0) at

• necessary but not sufficient condition for singularities of integral

singularites require pinches, i.e.

=l

normal threshold

pseudothreshold
• location of branch points
• solutions to Landau equations

on-shell locus

two solutions



Picard-Lefschetz Theorem
on-shell locus: α = α±

integration contour [0,1]
in α space

some s

What happens as we take a monodromy of s around sN?
• Poles α± move around too
• Contour must move out of the way to avoid poles

normal threshold

two roots
for each s



Picard-Lefschetz Theorem

initial integration contour final 
integration contour

- =

difference 
integration contour

Discontinuity
    = difference between I(s) before and after analytic continuation
    = monodromy of s around sN:

deform difference contour
Picard-Lefschetz Theorem:

monodromy
in exeternal momtena

integral over
the coboundary

• cycle pinches (vanishes) at s=sN

kronecker index = intersection number between integration contour
and vanishing cell

c

<e,h>=1



Picard-Lefschetz Theorem

What’s the point?
1. treats integral and discontinuity of integral on the same footing

• Amplitude and its discontinuities have same integrand, different integration contours
2. formula is fully analytic: no δ functions of θ functions

A =

• Integral over vanishing cycle can be done with Cauchy’s thm

For >1d integrals, need Leray multivariate residue calculus
• Leads to Cutkosky’s formula

Leray coboundary operator



Imaginary contours
Physicists like to keep +iε in the interand and integration contour d4k real

real integration contour complex poles
α±(s)

complex 
vanishing cell 

We can deform 

complex 
integration contour

h

h

real 
vanishing cell 

real poles α±(s)

Integrand is now real
No more iε

Deformation doesn’t even have to be small



Momentum space
• More useful, and physical, to work in momentum space instead of α space

In d=2 on-shell spaces are hyberbolas 

vanishing cell
(region with s1>0 & s2>0)

arrows indicate 
complex part from  +iε
• integration contour is real plane

go to complex integration contour 

must be real at some point
• must pinch singular surface



Vanishing cell/cycle/sphere

1. Define vanishing cell e by s1>0 & s2>0
2. Define vanishing sphere as ∂1 ∂2 e

same as surface where all lines are on-shell
∂1 ∂2 e = S1∩S2

3. Define the vanishing cycle as the coboundary δ1 δ2  of the vanishing sphere

discontunity =                integral over vanishing cycle

for pesudothreshold
• integration region does not intersect vanishing cell
• discontinuity vanishes 



Bubble in d=3

• 2 points for d=2
• circle for d=3

at fixed Q 

as a function of Q (external momentum): paraboloid

vanishing sphere (d=2)

vanishing
sphere

(on-shell space)

Pham: branch points 
are critical points of 

projection map

on-shell locus

magnitude of    fixed:



Triangle in d=3

3 bubble singularities
• One of the αe=0
• corresponds to yij=1

1 triangle singularity
• All αe >0
• Corresponds to D=0

=0Landau variety                                                  has 4 branches



Bubble singularity of the triangle
The on-shell space (vanishing sphere)
for the bubble at fixed external momenta Q =(p3)2= is a circle 

Absorption integral for the bubble singularity (y12=1) of the triangle
i.e. monodromy around y12=1

can write as an integral over the vanishing sphere

vanishing cycle

Leray residue formula
vanishing sphere



Sequential discontinuity

The on-shell space now has all 3 propagators on shell: s1=s2=s3=0
 

s1=s2=0

s3=0

Now we want to take a discontinuity of           around the triangle singularity (D=0) 

Fix Q (intersect with a plane)

integration domain for bubble integral

region of integration domain
with s3>0  

(vanishing sphere)



Sequential discontinuity

region of integration domainwith s3>0  

3 δ-functions
   for 3 cut lines

We get the same thing as if we just took a single triangle discontinuity:

hierarchcial
Pham relation

vanishing
sphere



Contractions
A useful language for studying singularities of integrals is with graph contractions

image of contractionkernel of contraction

removing legs and connecting vertices

All Landau diagrams
come from contractions
of original graph



Hierarchical principle

• “Principal” is a technical mathematical requirement about stable topological type
• Pham corrected subtlety in previous formulation of the “hierarchical principle”

[Landsdoff et al. 1966]

e.g. 



Tangential intersections
For the d=3 triangle, look at the Landau variety in the space of external kinematics

planes are yij=±1 (bubbles)

pillow region 
and cones are D=0 (triangle)

lines are 
intersections between
triangle and bubbles



Tangential intersections
For the d=3 bubble, look at the Landau variety in the space of external kinematics for α>0

bubble and triangle
intersect tangentially

regions shown have α>0
(singularities are in the physical region)



Tangential intersections

We can consider monodromies around bubble and triangle

triangle

bubble

We want to take

We can show that 

= = no singularity for α<0
adding monodromy does nothing 



Transversal intersections

traingle and bubble
intersect tangentially

bubbles intersect
each other transversely

For transversal intersections, monodromies commute

Thm (Pham):



Transversal intersections

• Condition for internal intersecton is
• Landau equations for internal momenta can be solved simultaneously
• Kernels of contractions are compatible (Pham)

Singular surfaces intersect transversaly in external momenta

on-shell surfaces may not intersect in internal momenta
• vanishing cell from first monodromy doesn’t intersect 

integration contour of second
• then sequential monodromy vanishes

same

same

different

different



Steinmann relations

No sequential discontinuities in partially overlapping channels in the physical region 

[Steinmann 1960, in German]

cannot have a term like

Follows from the Pham diagram analysis

kernels are incompatible



Extended Steinmann relations

Compatible kernel condition more general

Box diagram

cannot have terms like

• channels are not partially overlapping



Bootstrap application

Can we bootstrap the two loop massive box graph?

First computed in 2014
 by Johannes Henn and Simon Caron-Huot

1. Identify possible singularities

physical singularities
(first symbol entry)

unphysical singularities
(not first symbol entry)

MDS, Hannesdottir, McLeod, Vergu
in preperation

defining then singularities are {u,v} = {0,1,∞)



Bootstrap application
2. Identify possible letters: 
• algebraic functions (with square roots) of singularities with no new singularities

3. Impose Pham/Steinmann type constraints

Cannot have discontinuity in s then t
• s= 4m2 is 1+u = L3 = 0
• t= 4m2 is 1=v = L4 =0 

forbidden by Pham



Bootstrap application
Determine symbol
• 2-loop can have 4 terms in symbol
• 11 letters – 114 = 14641 possible terms
• symbol must be integrable  = 2597 terms
• must be invariant under Galois symmetry 

Steinmann/Pham
constraints

Final result completely determined (and agrees with Henn/Caron-Huot)



Summary
Geometric analyis is a powerful way to understand singularities of scattering amplitudes

1. Branch points are critical points of projection map

2. Picard-Lefshetz and Leray coboundary theory 
connect homotopy of paths in external momenta
to homology of integration contours

3. Geometric picture lets us prove general relations about sequential discontinuities

hierarchical case (tangential)

non-hierarchical case (transversal)

4. Provides powerful constraints useful for perturbaive S-matrix bootstrap



Next steps
• Weaken assumptions

• We assumed all masses were generic
• Zero masses, or equal mass can make singularities overlap

• Study second-type (non-Landau) singularities

• Not on physical sheet
• Still relevant to analytic structure of 

scattering amplitudes

e.g. bubble in d=3



Next steps
• Study more examples

• All mass n-gon in n-dimensions (like bubble in 2d, triangle in 3d)

• Connect back to the finite S matrix
• Can overlapping singularities tell us about factorization?
• Does preserving Pham relations in the massless limit lead to a natural scheme

for remainder functions?
• What can be said non-perturbatively?



Older



In d=2, vasnishing sphere (on-shell locus) is two points

as Q varies points approach and retreat 



Example
Consider the simplest 1-loop diagram: the bubble in d=2

• At has a normal threshold branch cut starting at 
• For s > sN the on-shell process p → p1 +p2 is allowed for physical on-shell momenta

Even this diagram is remarkably rich, as we will see. 

p

• Tree-level process tells you about singularities of loop amplitudes
• e.g., through optical theorem

Im =
p

2



Example
Consider the simplest 1-loop diagram: the bubble in d=2

It has a branch cut starting at 

• This is a normal threshold
• For s > sN the on-shell process p → p1 +p2 is allowed for physical on-shell momenta
• Near normal threshold

Even this diagram is remarkably rich, as we will see. 

p

• It has a pseudothreshold branch cut starting at 

• Cannot be reached with physical momenta (real s>0, )

• Near pseudothreshold



BACKUP



Absorption integrals

Im = p
2

Optical theorem

All imaginary parts come from iε in propagators

Absorption integral replace propagators with δ functions

Cutkosky: The discontinuity of an integral is given by an absorption integral where all
the cut lines are replaced by δ functions



Im and Disc

Im = p
2

Optical theorem

Im = sum of all cuts + + +…

• Imaginary part is a very coarse tool: cannot isolate individual branch points

1. Imaginary part defined on negative real axis
2. Has a branch point at z=0 and a branch cut for z<0

• ln(z) is discontinuous across branch cut

• Discontinuitiy is twice the imaginary part for ln(z)

Consider conventional definition of ln(z), e.g. in Mathematica



Challenges with Im

Imaginary part gives the total discontinuity
• Cannot distinguish overlapping branch cuts

• To understand full analytic structure
need to isolate each branch point/cut

• Imaginary part is real
• Cannot find sequential discontinnuties by taking imaginary part again

• Absorption integral formula has non-analytic components



Example

Consider the simplest 1-loop diagram: the bubble in d=2

It has a branch cut starting at 

• This is a normal threshold
• For s > sN the on-shell process p → p1 +p2 is allowed for physical on-shell momenta

Even this diagram is remarkably rich, as we will see. 

p

It has another branch cut starting at 

• This is a pseudo threshold
• Cannot be reached with physical momenta (real s>0, )



Example

Consider the 3-point diagram at 1-loop in a theory with massless internal lines:

p1

p2

p3





How did I get into this?
What about QCD or N=4 SYM theory?

• N=4 is supposed to be a beautiful simple theory with lots of symmetry
• Why should an S matrix that doesn’t exist have any symmetry?

[Bern, Dixon, Smirnov 2005]

BDS Anzatz:

“Remainder functions” have nice properties:

• Rn respects dual conformal invariance but violates Steinmann relations

BDS-like ansatz [Alday, Giotto, Maldacena 2009]

• violates dual conformal invariance but respects Steinmann relations 

[Hannesdottir and MDS 2020]

Taking HA = HSCET gives a finite S matrix for QCD and N=4 

• S matrix elements are finite and agree with BDS-like remainder functions
• Unifies coherent/dressed states, SCET, and modern amplitude calculations

What properties does the finite S matrix have?



How did I get into this?

The S matrix describes the scattering of particles

“In state” “out state”

How is the S-matrix actually defined?

• Doesn’t exist: infinitiely oscillating phase

• Works for mass-gapped theory
• Infrared divergent in gauge theories

• HA is the “asymptotic Hamiltonian”
• Includes all long-range interactions, e.g. Coulomb phase

[Wheeler, Heisenberg 1960]

[Dollard 1970, Fadeev and Kulish 1970] 



The S Matrix

The S matrix describes the scattering of particles

“In state” “out state”

• S matrix been studied both perturbatively and non-perturbatively
• Does it exist?

• Hard to prove
• The usual definition only of  S only works for theories with a mass gap

• Is it unique?
• Strong constraints: unitarity, analyticity, causality, cluster-decomposition, etc.
• The S matrix program of the 1950s-1960s studied this question

  
• What constraints does it satisfy?

• Useful both pertubatively and non-perturbatively



Analyticity revisited

• The S matrix program from 1960s was never completed
• Progress was slow
• Quantum Field Theory was shown capable of explaining strong interactions

• Recent progress in perurbation theory has renewed interested in analytic structure
• More “data” – explicit calculations
• Mathematics of functions appearing in amplitudes (cluster algebras, etc.)

• Very efficient ways to write down amplitudes,
• Success in the perturbative S-matrix bootstrap

• collinear limits, Regge limits, conformal invariance, Steinmann relations
• N=4 SYM 6 point amplitude bootstrapped to 7 loops [Caron-Huot et al 1903.10890]

Steinman relations are constraints on sequntial discontinuities

1

2

3 4

5

6Why?

[Steinmann 1960]

possible term:

not allowed (at any order):



Landau diagrams

1) Integrand is singular:

=0

consider only the lines with α≠0

Landau diagram
q1, q2 on-shell. q3,q4 irrelevant

8 Landau diagrams for the ice-cream cone graph

• These are all possible branch points
    (necessary condition only)

• Some diagrams may not be branch points
            (not a sufficient condition)



Pham interpretation
Landau equations

=0

on-shell constraints (Euclidean d=2)

normal vectors of
on-shell constraints q2=m2 

are linearly dependent

intersection
satisfies both 
on-shell constraints

circles are
tangent on boundary
of space where
circles intersect

on-shell space 

on-shell space
of external momenta {p}

Landau variety is 
the boundary of the projection map

Pham: Landau variety is the set of critical points of the projection map
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