

Landau, Cutkosky, and Pham: Geometry and Analyticity of Scattering Amplitudes

ICTP-SISSA-UNITS

Joint seminar

March 25, 2024

Matthew Schwartz

Harvard University

Based mostly on

arXiv:2211.07633 “[Constraints on Sequential Discontinuities from the Geometry of On-shell Spaces](#)”

Holmfridur S. Hannesdottir, Andrew J. McLeod, **MDS** and Cristian Vergu

+ work in progress ...

and a bit on

arXiv:2007.13747 “[Sequential Discontinuities of Feynman Integrals and the Monodromy Group](#)”

J. Bourjaily, Holmfridur S. Hannesdottir, Andrew J. McLeod, **MDS** and Cristian Vergu

arXiv:1911.06821 “[An S-matrix for massless particles](#)” Holmfridur S. Hannesdottir and **MDS**

Outline

1. Introduction
 - Discontinuities, imaginary parts and monodromies
2. Landau equations
 - Geometric interpretation
3. Vanishing cells
 - Deforming integration contours
4. Constraints on sequential discontinuities
 - Tangential vs transversal intersections
5. Conclusions

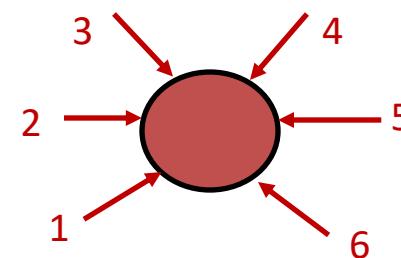
The S-matrix

- **Is the S matrix completely fixed by physical constraints?** (causality, analyticity, etc.)?
 - Key question of the 1960s, motivated by nuclear physics
 - 1970s: Quantum Field Theory explained strong interactions
→ S matrix program on hold for 40 years
- Recent progress in perturbation theory has renewed interest in analytic structure
 - More “data” – explicit calculations
 - **Mathematics** of functions appearing in amplitudes (cluster algebras, etc.)
 - Very efficient ways to write down amplitudes,
 - Success in the perturbative S-matrix bootstrap
 - collinear limits, Regge limits, conformal invariance, **Steinmann relations**
 - $N=4$ SYM 6 point amplitude bootstrapped to 7 loops [Caron-Huot et al 1903.10890]

Steinmann relations are constraints on sequential discontinuities [Steinmann 1960]

possible term: $\ln(p_1 + p_2)^2 \ln(p_3 + p_4)^2$

not allowed (at any order): $\ln(p_1 + p_2 + p_3)^2 \ln(p_2 + p_3 + p_4)^2$



How can we understand constraints like this?

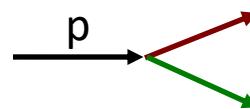
Example

Consider the simplest 1-loop diagram: the bubble in $d=2$

$$I_{\text{O}}(p) = \text{Diagram} = \int d^2k \frac{1}{k^2 - m^2 + i\varepsilon} \frac{1}{(p - k)^2 - m^2 + i\varepsilon} = \frac{-2\pi}{\sqrt{s(s - 4m^2)}} \ln \frac{\sqrt{4m^2 - s} - i\sqrt{s}}{\sqrt{4m^2 - s} + i\sqrt{s}}$$

Even this diagram is remarkably rich, as we will see.

- It has a **normal threshold** branch cut starting at $s=4m^2$
 - For $s > 4m^2$ the on-shell process $p \rightarrow p_1 + p_2$ is allowed for physical on-shell momenta



- Tree-level process tells you about singularities of loop amplitudes
 - e.g., through optical theorem

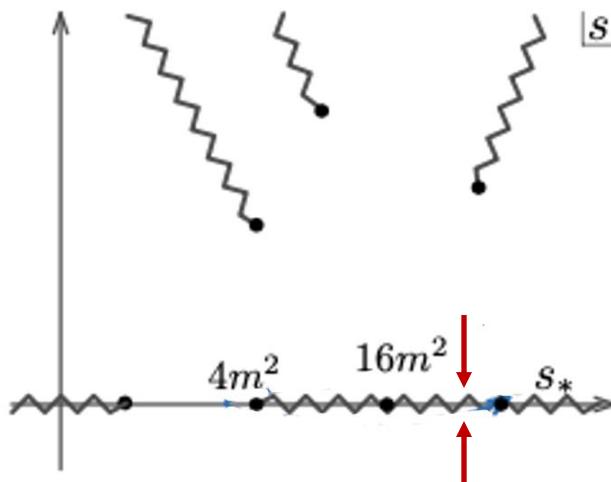
$$\text{Im } \text{Diagram} = \int d\Pi \left| \text{Diagram} \right|^2$$

- Not singular at the **pseudreshold** $s=0$
 - There is a branch point at $s=0$ accessible with complex momenta
 - Does not correspond to anything physical happening

Imaginary part is too blunt

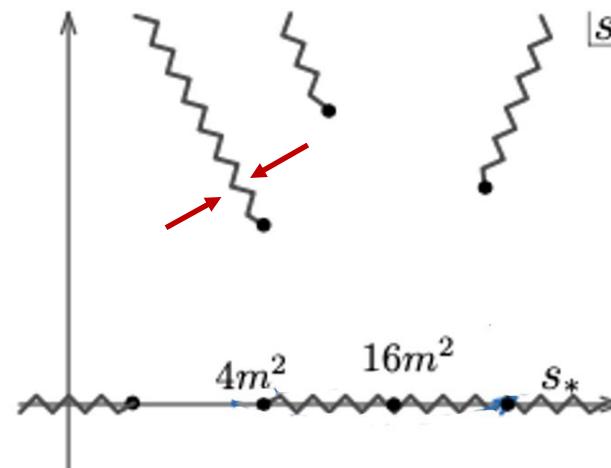
Optical theorem

$$\text{Im} \quad \text{Diagram with a loop} = \int d\Pi \left| \text{Diagram with a loop} \right|^2$$
$$\text{Im} \quad \text{Diagram with a cut} = \text{sum of all cuts} \quad \text{Diagram with a cut} + \text{Diagram with a cut} + \text{Diagram with a cut} + \dots$$



Imaginary part gives the total discontinuity

- Cannot distinguish overlapping branch cuts



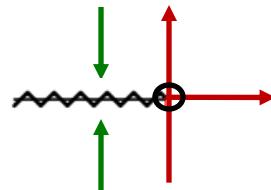
- To understand full analytic structure need to isolate each branch point/cut

Branch points/cuts

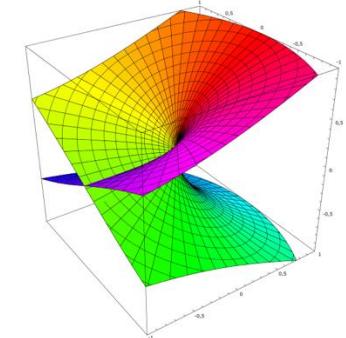
Square root \sqrt{x}

- Single valued on Riemann surface

- Not singular at $x=0$
- Sign ambiguity: $\sqrt{-x} = \pm i\sqrt{|x|}$
- Branch cut is projection of Riemann surface onto complex plane
- Discontinuity gives back the same function



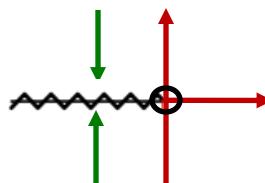
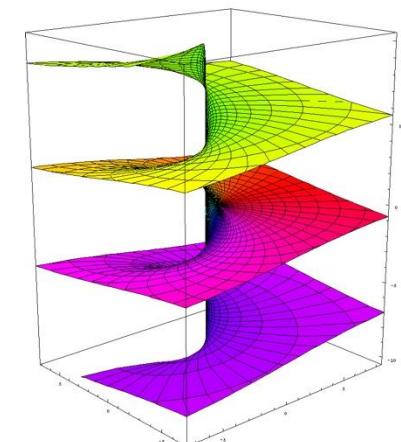
$$\text{Disc } \sqrt{x} = 2\sqrt{x}\theta(-x)$$



Logarithm: $\ln x$

- Singular at $x=0$
- Phase ambiguity on negative real axis $\ln(-x) = \ln x \pm \pi i$
- Riemann surface is infinite sheeted
- Discontinuity gives back a simpler function

$$\text{Disc } \ln(x) = 2\pi i\theta(-x)$$

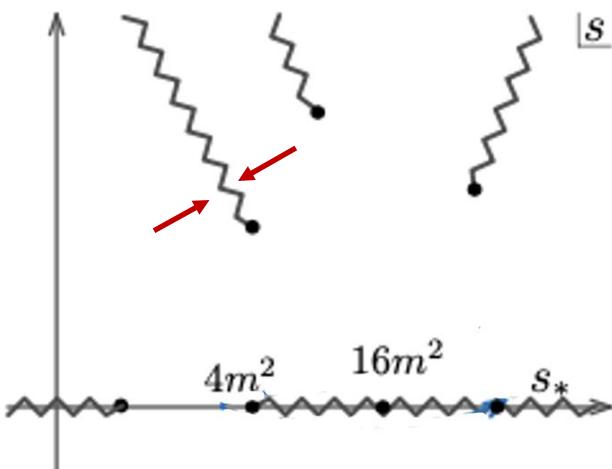
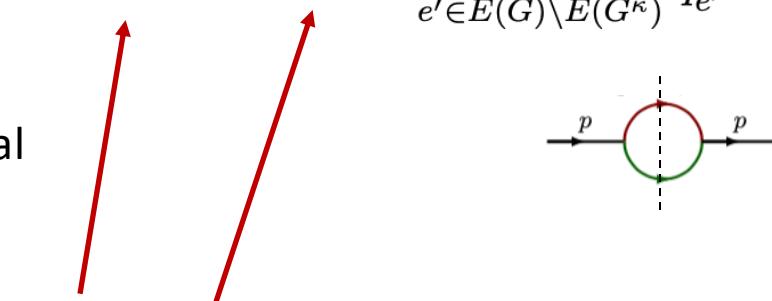


Absorption integrals

Cutkosky: The discontinuity of an integral is given by an **absorption integral** where all the cut lines are replaced by δ functions

$$\mathcal{A}_G^\kappa(p) = \int \prod_{c \in \widehat{C}(G)} d^d k_c \prod_{e \in E_{\text{int}}(G^\kappa)} (-2\pi i) \theta_*(q_e^0) \delta(q_e^2 - m_e^2) \prod_{e' \in E(G) \setminus E(G^\kappa)} \frac{1}{q_{e'}^2 - m_{e'}^2 + i\varepsilon}.$$

- Cutkosky's formula isolates individual branch points/cuts

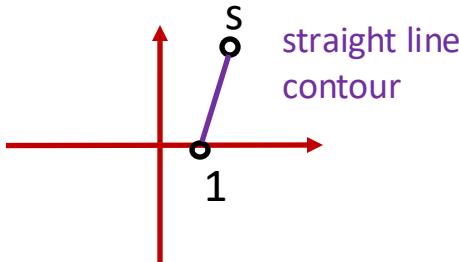


- θ and δ functions make formula ambiguous for complex momenta
- Formula actually only applies for “principal” singularities, which include all physical ones

Where does this formula come from?
What is the cleanest way to understand it?

Monodromies

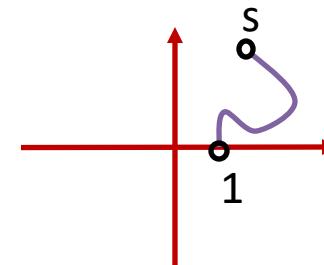
$$\ln s = \int_1^s \frac{dx}{x}.$$



equal to conventional definition of $\ln s$

- contour cannot pass through $x=0$
- undefined for real $s < 0$

$$\ln_{\gamma} s = \int_{\gamma} \frac{dx}{x}$$



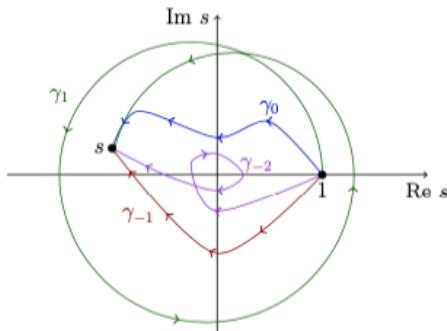
generalization to arbitrary contour γ

- contour cannot pass through $x=0$
- $s < 0$ is ok
- **branch cut no longer exists**
- called the maximal analytic continuation

- small deformations of contour cannot change the result
- contours classified by **winding number** around branch point $x=0$

difference between contours is **monodromy** = $\text{disc} = \text{im}$

$$\ln_{\gamma_0} s - \ln_{\gamma_{-1}} s = \int_{\gamma_0} \frac{dx}{x} = 2\pi i$$

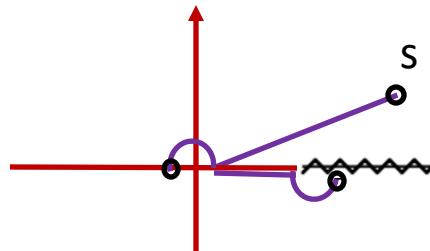


$$\int_{\gamma_0} \frac{dx}{x} - \int_{\gamma_{-1}} \frac{dx}{x} = 2\pi i$$

Dilogarithm

- Principal branch defined with straight line contours
 - Singularities avoided counterclockwise

$$\text{Li}_2(s) = - \int_0^s \frac{dx}{x} \ln(1-x) = \int_0^s \frac{dx}{x} \int_0^x \frac{dx'}{1-x'}$$



Branch point at $s=1$

- discontinuity along the branch cut for $s>1$ computed via **monodromy**:

$$\text{Disc Li}_2(s) = \int_0^s \frac{dx}{x} \int_{\mathcal{O}_1} \frac{dx'}{1-x'} = 2\pi i \int_0^s \frac{dx}{x} = 2\pi i \ln s$$

- **monodromy** around $s=1$
- **monodromy** around $s=0$ vanishes

Now branch point at $s=0$ is visible

- **Branch point at $s=0$ is on second sheet**

Singularities encoded transparently with the **symbol**

$$\text{Li}_s(s) = \int d \ln s \int d \ln(1-s) = \int_{\gamma_0} \frac{ds}{1-s} \circ \frac{ds}{s}$$

$$\mathcal{S}(\text{Li}_2) = (1-s) \otimes s$$

first discontinuity

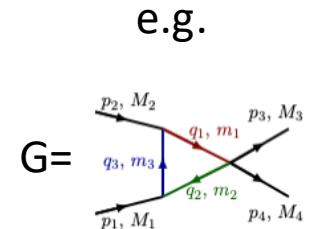
sequential discontinuity

Landau Equations

Associate a Feynman integral to a graph G

$$I_G(p) = \int \prod_{c \in \hat{C}(G)} d^d k_c \prod_{e \in E_{\text{int}}(G)} \frac{1}{[q_e(k, p)]^2 - m_e^2 + i\varepsilon}$$

numerator = 1 for simplicity



Go to Feynman parameters

$$I_G(p) = (n_{\text{int}} - 1)! \int_0^\infty \prod_{e \in E_{\text{int}}(G)} d\alpha_e \int \prod_{c \in \hat{C}(G)} d^d k_c \frac{1}{(\ell + i\varepsilon)^{n_{\text{int}}}} \delta\left(1 - \sum_{e \in E_{\text{int}}(G)} \alpha_e\right)$$

internal edges internal edges fundamental cycles
(independent loop momenta)

$$\ell = \sum_{e \in E_{\text{int}}(G)} \alpha_e (q_e^2 - m_e^2)$$

Where in the space of external momenta p is the graph singular?

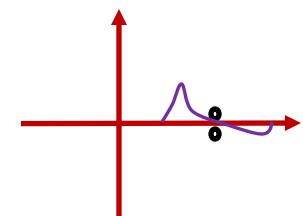
A **necessary condition** for a singularity is that the **integrand** is singular ($\ell=0$)

$$\int_2^{10} dx \frac{1}{x - 3 + i\varepsilon} = \ln(-7 - i\varepsilon)$$

Not singular

$$\int_2^{10} dx \frac{1}{(x - 3)^2 + i\varepsilon} \sim \frac{1}{\sqrt{\varepsilon}} = \infty$$

Singular



integration contour
pinched between poles

Landau Equations

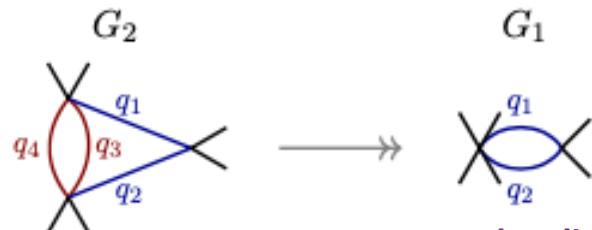
$$I_G(p) = (n_{\text{int}} - 1)! \int_0^\infty \prod_{e \in E_{\text{int}}(G)} d\alpha_e \int \prod_{c \in \hat{C}(G)} d^d k_c \frac{1}{(\ell + i\varepsilon)^{n_{\text{int}}}} \delta \left(1 - \sum_{e \in E_{\text{int}}(G)} \alpha_e \right)$$

A necessary condition for a singularity is that the *integrand* is singular ($\ell=0$)

$$\ell = \sum_{e \in E_{\text{int}}(G)} \alpha_e (q_e^2 - m_e^2) = 0$$

- every internal line is either on-shell ($q^2=m^2$) or $\alpha=0$ or both

consider only the lines with $\alpha \neq 0$



Landau diagram

q_1, q_2 on-shell. q_3, q_4 irrelevant

Landau Equations

$$I_G(p) = (n_{\text{int}} - 1)! \int_0^\infty \prod_{e \in E_{\text{int}}(G)} d\alpha_e \int \prod_{c \in \hat{C}(G)} d^d k_c \frac{1}{(\ell + i\varepsilon)^{n_{\text{int}}}} \delta\left(1 - \sum_{e \in E_{\text{int}}(G)} \alpha_e\right)$$

A necessary condition for a singularity is that the *integrand* is singular ($\ell=0$)

$$\ell = \sum_{e \in E_{\text{int}}(G)} \alpha_e (q_e^2 - m_e^2) = 0$$

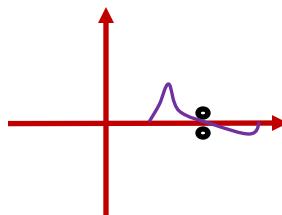
- every internal line is either on-shell ($q^2=m^2$) or $\alpha=0$ or both

A necessary condition for a singularity of the *integral* is that there be double poles

for each loop k_c :

$$\sum_{e \in E_{\text{int}}(G^\kappa)} \alpha_e \frac{\partial}{\partial k_c} (q_e^2 - m_e^2) = 0.$$

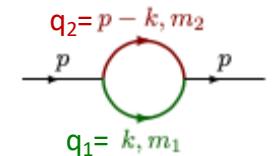
Double pole:



integration contour
pinched between poles

- since q_e are linear in k_c

$$\sum_{e \text{ in loop}} \pm \alpha_e q_e^\mu = 0$$



Landau loop equations

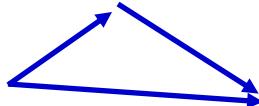
Coleman-Norton interpretation

Landau equations (necessary and sufficient conditions for a branch point)

$$\ell = \sum_{e \in E_{\text{int}}(G)} \alpha_e (q_e^2 - m_e^2) = 0$$

$$\sum_{e \text{ in loop}} \pm \alpha_e q_e^\mu = 0$$

4-momenta add up to zero after rescaling by α



[Coleman and Norton 1965]

Landau diagram is interpreted as space-time diagram

- momenta are on-shell (classical)
- α_e are the proper times for propagation

More physically: singularities due to classically allowed processes

- similar to optical theorem

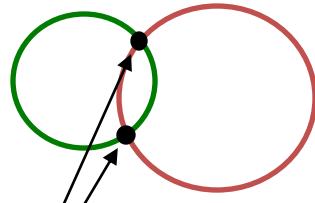
Pham interpretation

Landau
equations

$$\ell = \sum_{e \in E_{\text{int}}(G)} \alpha_e (q_e^2 - m_e^2) = 0$$

on-shell constraints (Euclidean d=2)

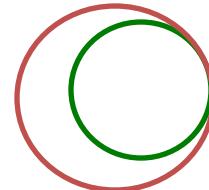
$$q_x^2 + q_y^2 = m_e^2$$



intersection
satisfies both
on-shell constraints

$$\sum_{e \text{ in loop}} \pm \alpha_e q_e^\mu = 0$$

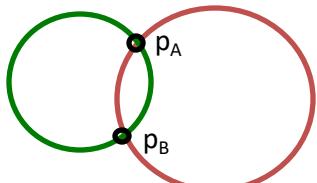
normal vectors of
on-shell constraints $q^2 = m^2$
are linearly dependent



circles are
tangent on boundary
of space where
circles intersect

Vanishing cycle

Mathematics



consider integration contours in the space

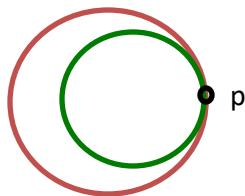
$$\mathcal{E}(G) \setminus \mathcal{S}(G)$$

space of momenta with **on-shell locus** removed

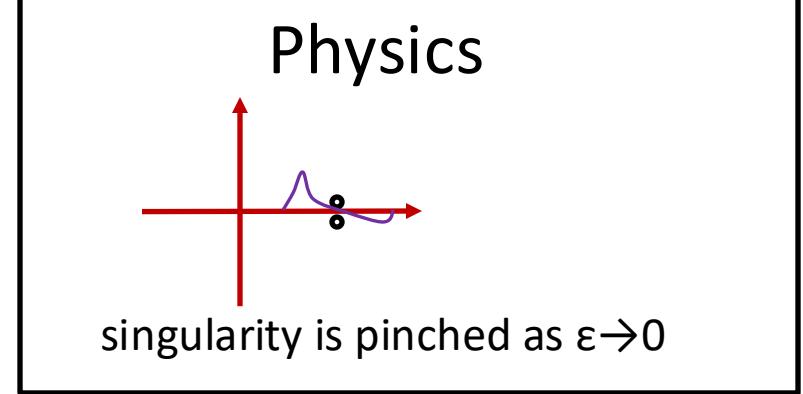
Homology group is that of a plane with two holes

$$H_1(\mathbb{R}^2 \setminus \{p_A \cup p_B\})$$

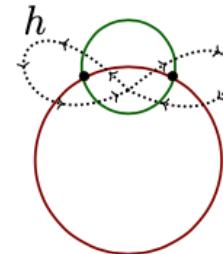
When circles are tangent homology group shrinks



$$H_1(\mathbb{R}^2 \setminus p)$$



homology cycle h becomes trivial



Hadamard's "vanishing cycle"

Homology and Homotopy

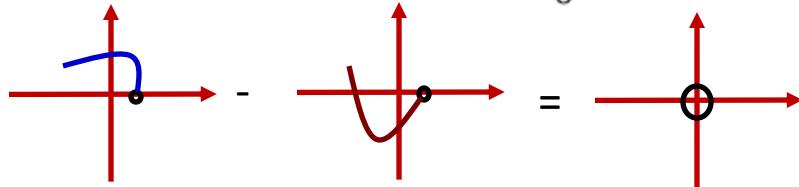
Integrals are functions of external momenta p

$$I_G(p) = \int \prod_{c \in \widehat{C}(G)} d^d k_c \prod_{e \in E_{\text{int}}(G)} \frac{1}{[q_e(k, p)]^2 - m_e^2 + i\varepsilon}$$

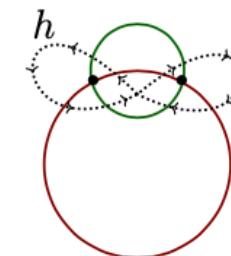
Homology: integration contours γ and γ' are homologous if $\gamma - \gamma'$ is a boundary of some space
 Homotopy: homotopic paths in external momenta can be deformed into each other

Homotopy classes of paths in space of external momenta determine discontinuities

$$\ln_{\gamma_0} s - \ln_{\gamma_{-1}} s = \int_{\mathcal{O}_0} \frac{dx}{x} = 2\pi i$$



Homology classes in space of internal momenta determines branch points



These two concepts are connected through the Picard-Lefshetz theorem

1-loop example

Consider again the 1-loop bubble in $d=2$

$$I_{\text{O}}(p) = \text{---} \xrightarrow[p]{\text{---}} \text{---} = \lim_{\varepsilon \rightarrow 0^+} \int d^2 k \frac{1}{k^2 - m_1^2 + i\varepsilon} \frac{1}{(p - k)^2 - m_2^2 + i\varepsilon},$$

Going to Feynman parameters

$$I_{\text{O}}(s) = \lim_{\varepsilon \rightarrow 0^+} \int_0^1 d\alpha \frac{-i\pi}{s\alpha(1-\alpha) - m_1^2\alpha - m_2^2(1-\alpha) + i\varepsilon} = \ell$$

integrand is singular ($\ell = 0$) at

$$\alpha_{\pm} = \frac{s + m_2^2 - m_1^2 \pm \sqrt{s^2 - 2s(m_1^2 + m_2^2) + (m_1^2 - m_2^2)^2 + i\epsilon s}}{2s}.$$
on-shell locus

- necessary but not sufficient condition for singularities of integral

singularities require pinches, i.e. $\frac{d\ell}{d\alpha} = 0$

normal threshold $s = (m_1 + m_2)^2 - i\varepsilon,$

pseudothreshold $s = (m_1 - m_2)^2 + i\varepsilon,$

two solutions

$$\alpha_{\pm} = \begin{cases} \frac{m_2}{m_2 + m_1} + i\varepsilon \operatorname{sgn}(m_2 - m_1), \\ \frac{m_2}{m_2 - m_1} - i\varepsilon \operatorname{sgn}(m_2 - m_1). \end{cases}$$

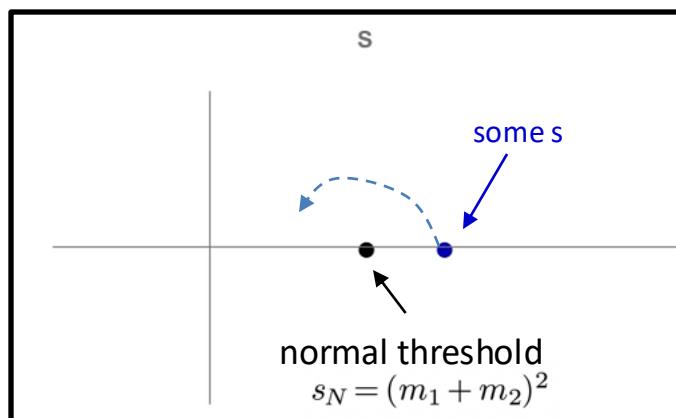
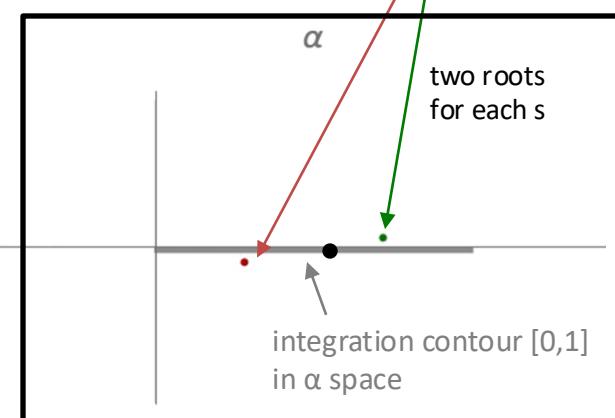
- location of branch points
- solutions to Landau equations

Picard-Lefschetz Theorem

$$I_{\text{O}}(s) = \lim_{\varepsilon \rightarrow 0^+} \int_0^1 d\alpha \frac{-i\pi}{s\alpha(1-\alpha) - m_1^2\alpha - m_2^2(1-\alpha) + i\varepsilon} \\ = \int_0^1 \frac{d\alpha}{[\alpha - \alpha_+(s)][\alpha - \alpha_-(s)]}$$

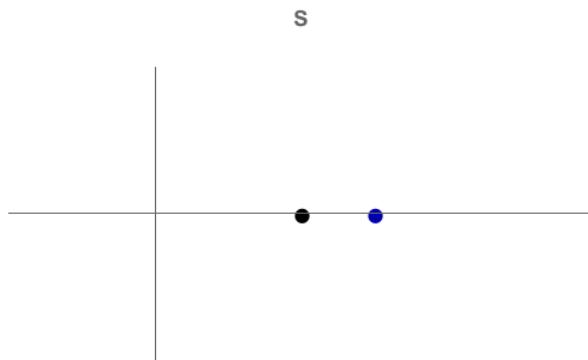
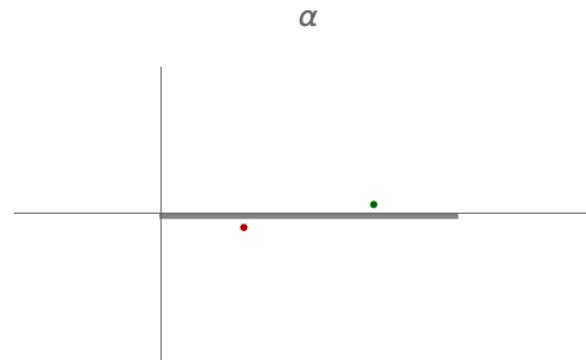
on-shell locus: $\alpha = \alpha_{\pm}$

$$\alpha_{\pm} = \frac{s + m_2^2 - m_1^2 \pm \sqrt{s^2 - 2s(m_1^2 + m_2^2) + (m_1^2 - m_2^2)^2 + i\varepsilon}}{2s}.$$



What happens as we take a monodromy of s around s_N ?

- Poles α_{\pm} move around too
- Contour must move out of the way to avoid poles



Picard-Lefschetz Theorem

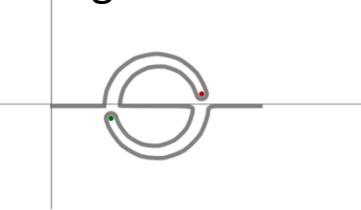
Discontinuity

= difference between $I(s)$ before and after analytic continuation

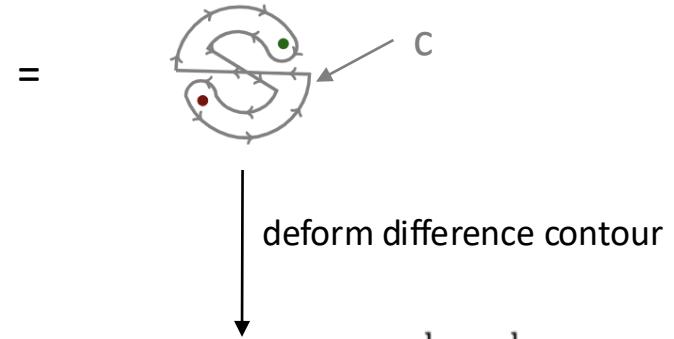
= monodromy of s around s_N : $(1 - \mathcal{M}_{s=(m_1+m_2)^2}) I_{\text{O}}(s_0)$

initial integration contour

final integration contour



difference integration contour



Picard-Lefschetz Theorem:

$$(1 - \mathcal{M}_{s=(m_1+m_2)^2}) I_{\text{O}}(s_0) = \langle e, h \rangle \int_c dI$$

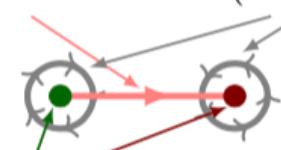
monodromy
in external momenta

integral over
the coboundary

Kronecker index = intersection number between integration contour
and vanishing cell

$$\langle e, h \rangle = 1$$

vanishing cell e



coboundary c
(vanishing cycle)

boundary
(vanishing sphere)

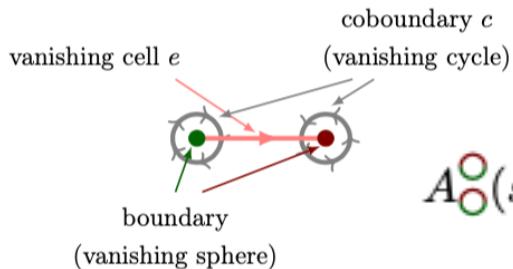
- cycle pinches (vanishes) at $s=s_N$

Picard-Lefschetz Theorem

$$A = (1 - \mathcal{M}_{s=s^*}) \int_h dI = N_0 \int_c dI,$$

What's the point?

1. treats integral and discontinuity of integral on the same footing
 - Amplitude and its discontinuities have **same integrand, different integration contours**
2. formula is fully analytic: no δ functions of θ functions



- Integral over vanishing cycle can be done with Cauchy's thm

$$\begin{aligned}
 A_{\text{O}}(s_0) &\equiv (1 - \mathcal{M}_{s=(m_1+m_2)^2}) I_{\text{O}}(s_0) = \int dI \\
 &= -\frac{2\pi^2}{s_0} \left(\text{res}_{\alpha=\alpha_+} \frac{d\alpha}{(\alpha - \alpha_+)(\alpha - \alpha_-)} - \text{res}_{\alpha=\alpha_-} \frac{d\alpha}{(\alpha - \alpha_+)(\alpha - \alpha_-)} \right) \\
 &\quad \uparrow \\
 &\text{res}_{\alpha=\alpha_0} f(\alpha) d\alpha = 2\pi i f(\alpha_0) = 2\pi i d\alpha \delta(\alpha - \alpha_0)
 \end{aligned}$$

For >1d integrals, need Leray multivariate residue calculus

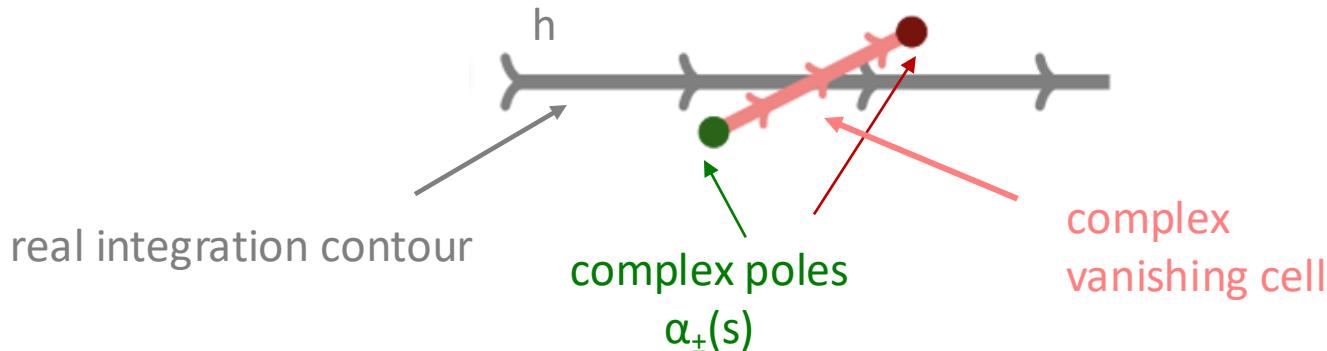
- Leads to Cutkosky's formula

$$\int_{\delta_1 \delta_2 \sigma} \omega = (2\pi i)^2 \int_{\sigma} \text{res}_{S_2} \text{res}_{S_1} \omega.$$

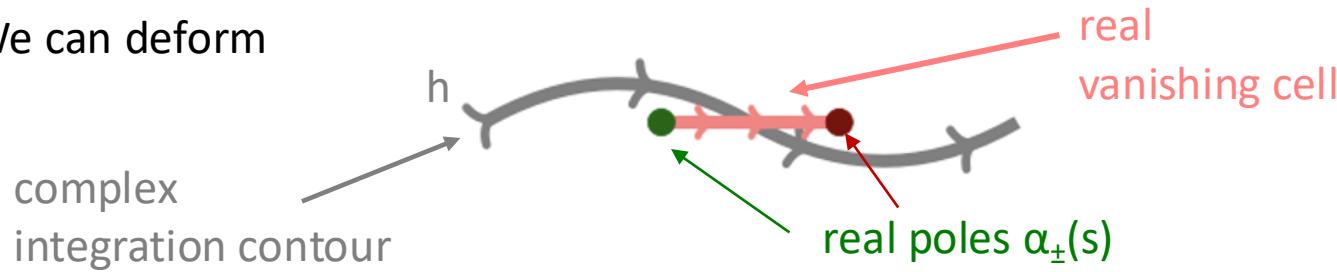
Leray coboundary operator

Imaginary contours

Physicists like to keep $+i\epsilon$ in the interand and integration contour d^4k real



We can deform



Integrand is now real

$$I_O(p) = \int_h \frac{d^2k}{[k^2 - m_1^2][(p - k)^2 - m_2^2]}$$

No more $i\epsilon$

Deformation doesn't even have to be small

Momentum space

- More useful, and physical, to work in momentum space instead of α space

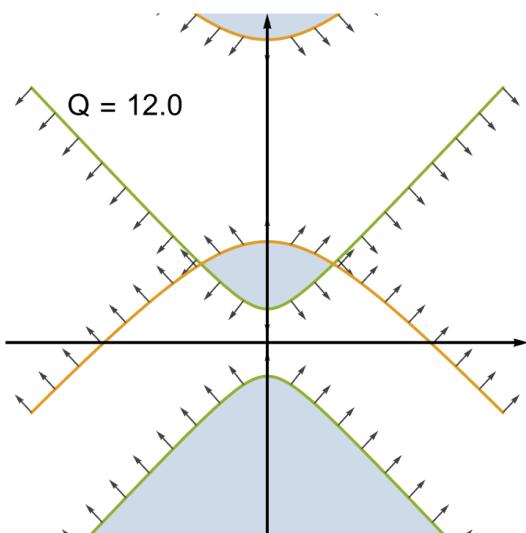
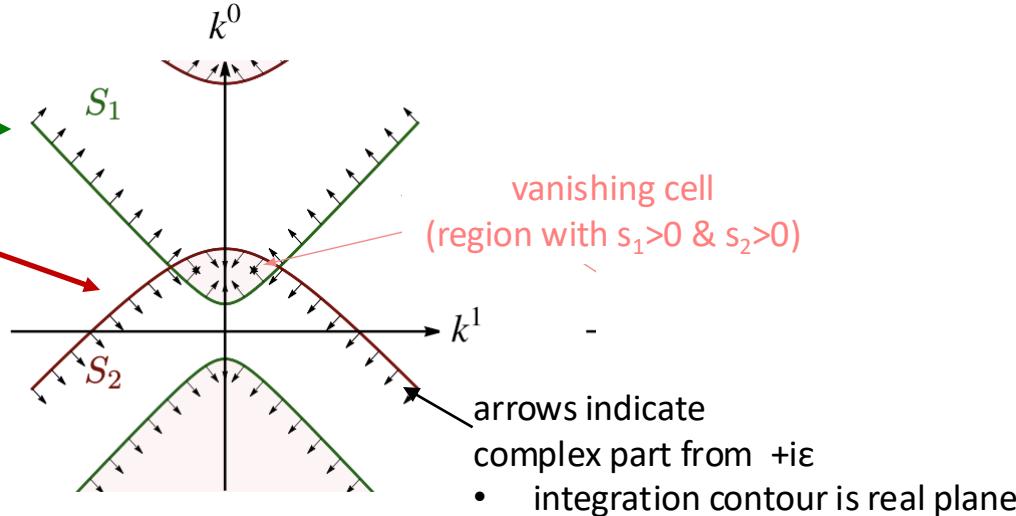
$$I_O(p) = \text{Diagram} = \int_h \frac{d^2 k}{[k^2 - m_1^2][(p - k)^2 - m_2^2]}$$

The diagram shows a loop with external momentum p and internal momenta k, m_1 and $p - k, m_2$.

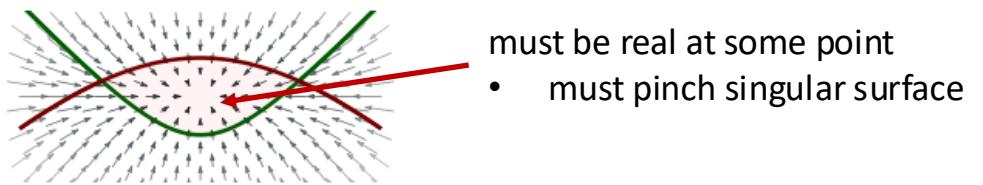
In $d=2$ on-shell spaces are hyperbolas

$$s_1(p, k) = (k^0)^2 - (k^1)^2 - m_1^2,$$

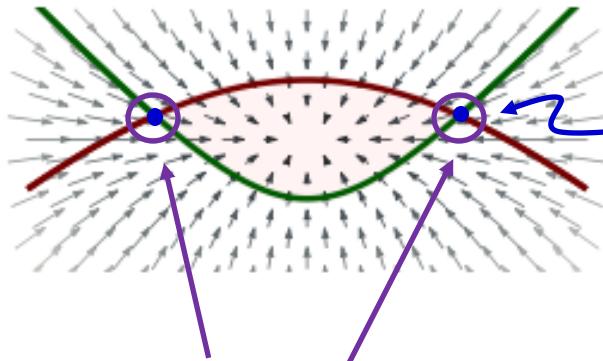
$$s_2(p, k) = (Q - k^0)^2 - (k^1)^2 - m_2^2.$$



go to complex integration contour



Vanishing cell/cycle/sphere



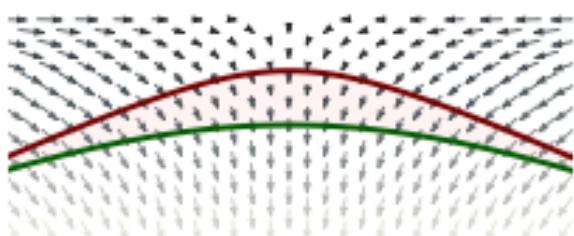
3. Define the **vanishing cycle** as the coboundary $\delta_1 \delta_2$ of the vanishing sphere

$$(1 - \mathcal{M}_{s=(m_1+m_2)^2}) I_{\text{O}}(p) = -\langle e, h \rangle \int_{\delta_1 \delta_2 \partial_2 \partial_1 e} \frac{dk_0 \wedge dk_1}{[k^2 - m_1^2][(p - k)^2 - m_2^2]}$$

discontinuity

=

integral over vanishing cycle



for pesudothreshold

- integration region does not intersect vanishing cell
- discontinuity vanishes

Bubble in d=3

on-shell locus

$$s_1 = k_0^2 - \vec{k}^2 - m_1^2 = 0$$

$$s_2 = (Q - k_0)^2 - \vec{k}^2 - m_2^2 = 0$$

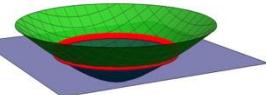
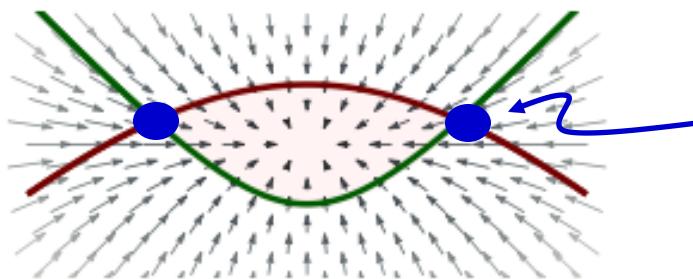
$$I_0(p) = \text{Diagram} = \frac{\sqrt{\pi}}{\sqrt{s}} \log \left(\frac{m_1 + m_2 + \sqrt{s}}{m_1 + m_2 - \sqrt{s}} \right)$$

The diagram shows a loop with a self-energy insertion. The external momentum is p . The loop momentum is $p - k, m_2$. The internal line is k, m_1 .

magnitude of \vec{k} fixed: $|\vec{k}|^2 = \frac{(Q + m_1 + m_2)(Q - m_1 - m_2)(Q - m_1 + m_2)(Q + m_1 - m_2)}{4Q^2}$

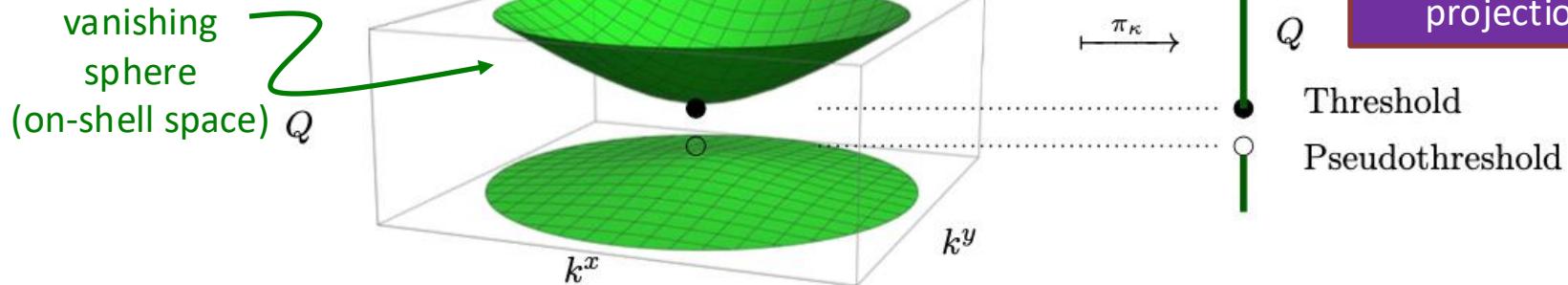
at fixed Q

- 2 points for $d=2$
- circle for $d=3$



vanishing sphere (d=2)

as a function of Q (external momentum): paraboloid



Pham: branch points
are critical points of
projection map

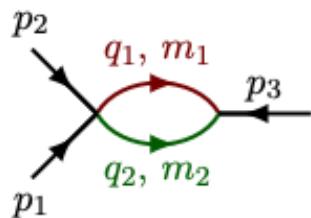
Triangle in d=3

$$\begin{aligned}
 I_{\triangleright}(p) &= \text{Diagram} = \int_h d^3k \frac{1}{s_1(p, k)s_2(p, k)s_3(p, k)} \\
 &= \frac{\pi^2}{4\sqrt{D}} \left[\log \left(-\frac{y_{12} + y_{23} y_{13} + i\sqrt{D}}{y_{12} + y_{23} y_{13} - i\sqrt{D}} \right) + \log \left(-\frac{y_{23} + y_{13} y_{12} + i\sqrt{D}}{y_{23} + y_{13} y_{12} - i\sqrt{D}} \right) + \log \left(-\frac{y_{13} + y_{12} y_{23} + i\sqrt{D}}{y_{13} + y_{12} y_{23} - i\sqrt{D}} \right) + \pi i \right] \\
 &= \frac{\pi^2}{4\sqrt{D}} \left[\log \left(\frac{(p_i + p_j)^2 - m_i^2 - m_j^2}{2m_i m_j} \right) + \log \left(\frac{1 - y_{12}^2 - y_{23}^2 - y_{13}^2 - 2y_{12} y_{23} y_{13}}{D} \right) \right]
 \end{aligned}$$

Landau variety $\ell = \sum_{e \in E_{\text{int}}(G)} \alpha_e (q_e^2 - m_e^2) = 0$ has 4 branches

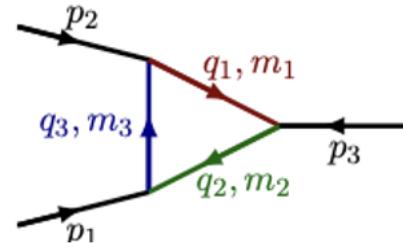
3 bubble singularities

- One of the $\alpha_e = 0$
- corresponds to $y_{ij} = 1$



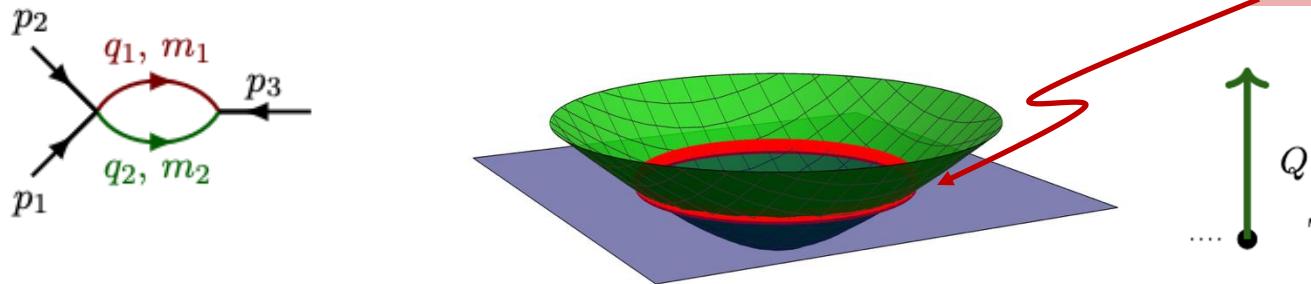
1 triangle singularity

- All $\alpha_e > 0$
- Corresponds to $D = 0$



Bubble singularity of the triangle

The on-shell space (vanishing sphere)
for the bubble at fixed external momenta $Q = (p_3)^2 =$ is a circle



Absorption integral for the bubble singularity ($y_{12}=1$) of the triangle
i.e. monodromy around $y_{12}=1$

$$\begin{aligned}
 A_{\triangleright}^{\circlearrowleft}(p) &= (1 - \mathcal{M}_{y_{12}=1}) I_{\triangleright} = -\langle e_{12}, h \rangle \int_{\delta_1 \delta_2 \partial_2 \partial_1 e_{12}} \omega. \\
 &\quad \text{Leray residue formula} \quad \text{vanishing cycle} \\
 &= -(2\pi i)^2 \langle e_{12}, h \rangle \int_{\partial_2 \partial_1 e_{12}} \text{res}_2 \text{res}_1 \omega \\
 &= -(2\pi i)^2 \langle e_{12}, h \rangle \int_{\partial_2 \partial_1 e_{12}} \frac{d^3 k}{(ds_1 \wedge ds_2) s_3}.
 \end{aligned}$$

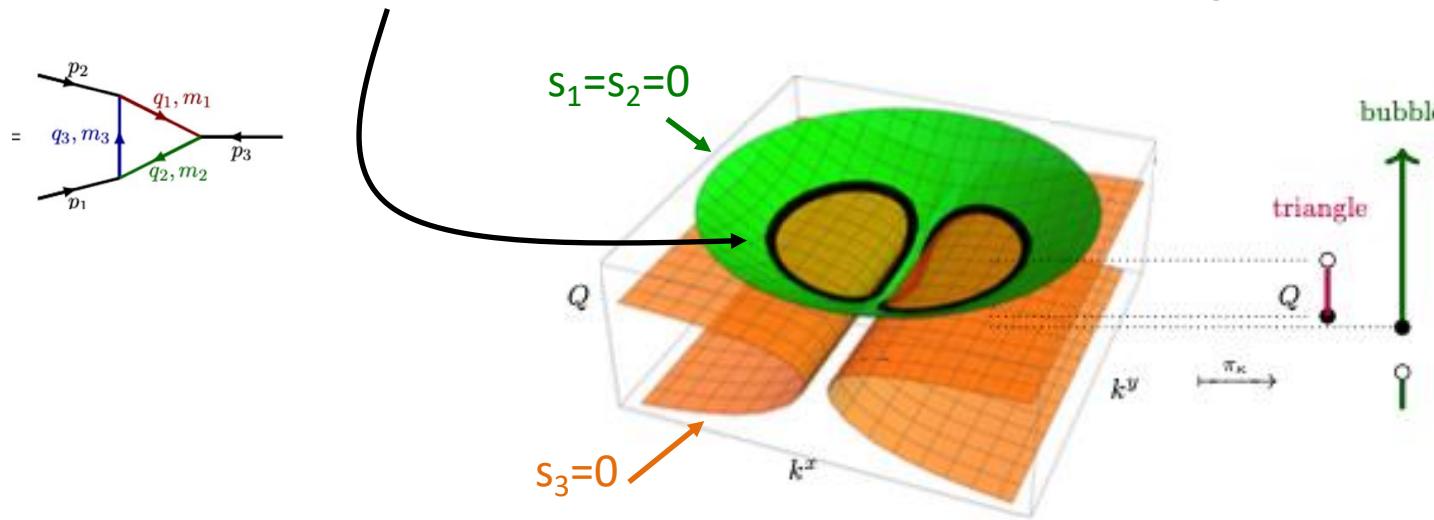
can write as an integral over the vanishing sphere

Sequential discontinuity

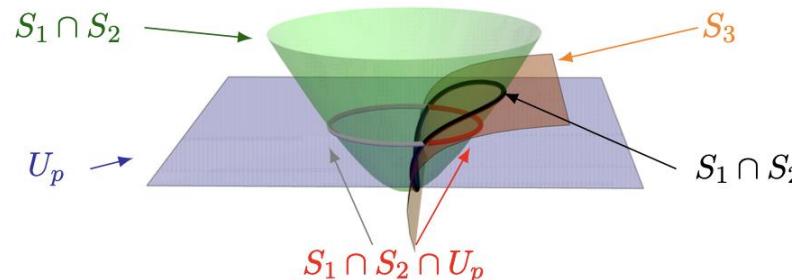
Now we want to take a discontinuity of A_{\triangleright} around the triangle singularity ($D=0$)

$$(1 - \mathcal{M}_{D=0}) A_{\triangleright}(p)$$

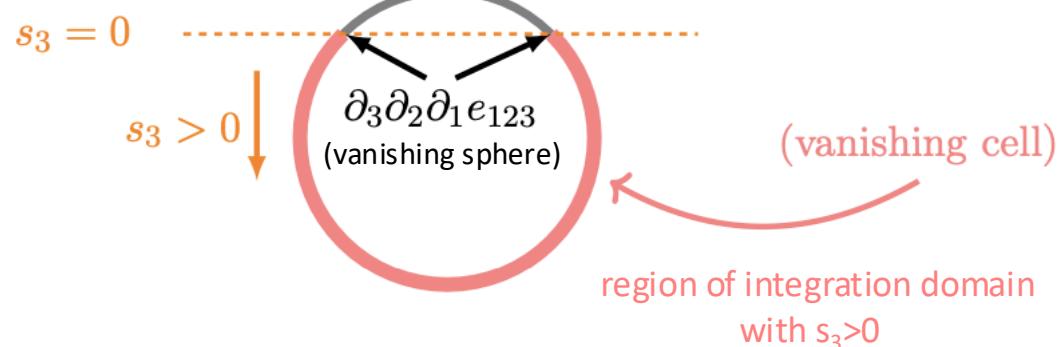
The **on-shell space** now has all 3 propagators on shell: $s_1=s_2=s_3=0$



Fix Q (intersect with a plane)

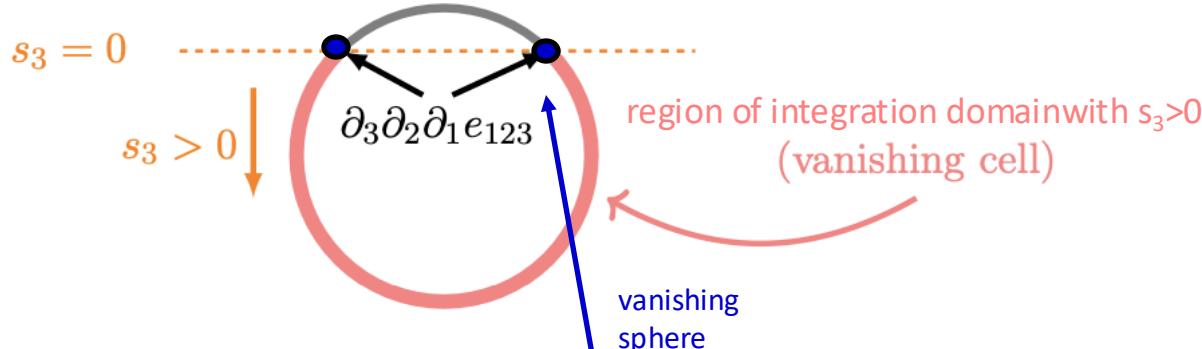
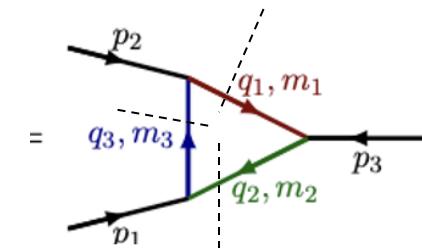


integration domain for bubble integral



region of integration domain with $s_3 > 0$

Sequential discontinuity



$$\begin{aligned}
 (1 - \mathcal{M}_{D=0}) A_{\triangleright}(p) &= (2\pi i)^2 \langle e_{123}, \partial_2 \partial_1 e_{12} \rangle \langle e_{12}, h \rangle \int_{\delta_3 \delta_2 \delta_1 e_{123}} \frac{d^3 k}{(ds_1 \wedge ds_2) s_3} \\
 &= (2\pi i)^3 \int_{\partial_1 \partial_2 \partial_3 e_{123}} \frac{d^3 k}{ds_1 \wedge ds_2 \wedge ds_3} = \frac{2\pi^3 i}{\sqrt{D}}
 \end{aligned}$$

3 δ -functions
for 3 cut lines

We get the same thing as if we just took a single triangle discontinuity:

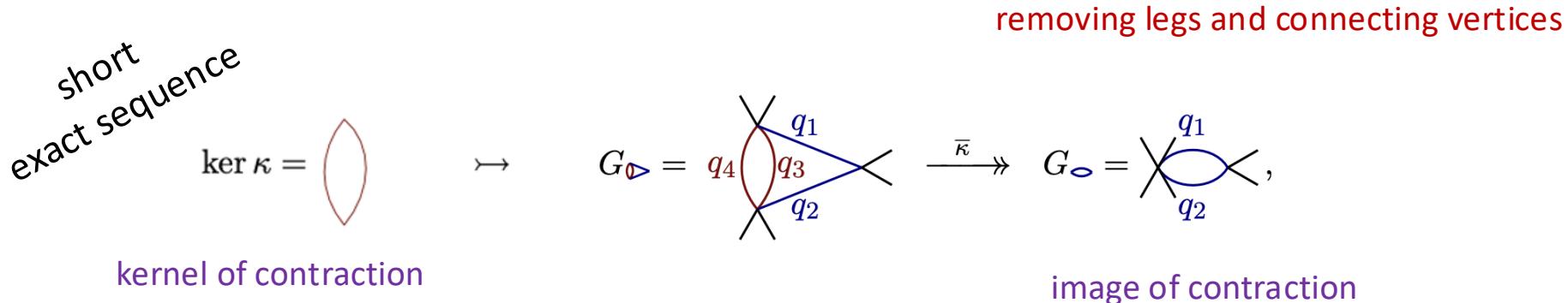
$$\begin{aligned}
 (1 - \mathcal{M}_{D=0}) I_{\triangleright} &= -\langle e_{123}, h \rangle \int_{\delta_1 \delta_2 \delta_3 \delta_2 \delta_1 e_{123}} \frac{d^3 k}{s_1 s_2 s_3} \\
 &= (2\pi i)^3 \int_{\partial_3 \partial_2 \partial_1 e_{123}} \frac{d^3 k}{ds_1 \wedge ds_2 \wedge ds_3} = \frac{2\pi^3 i}{\sqrt{D}}
 \end{aligned}$$

hierachcial
Pham relation

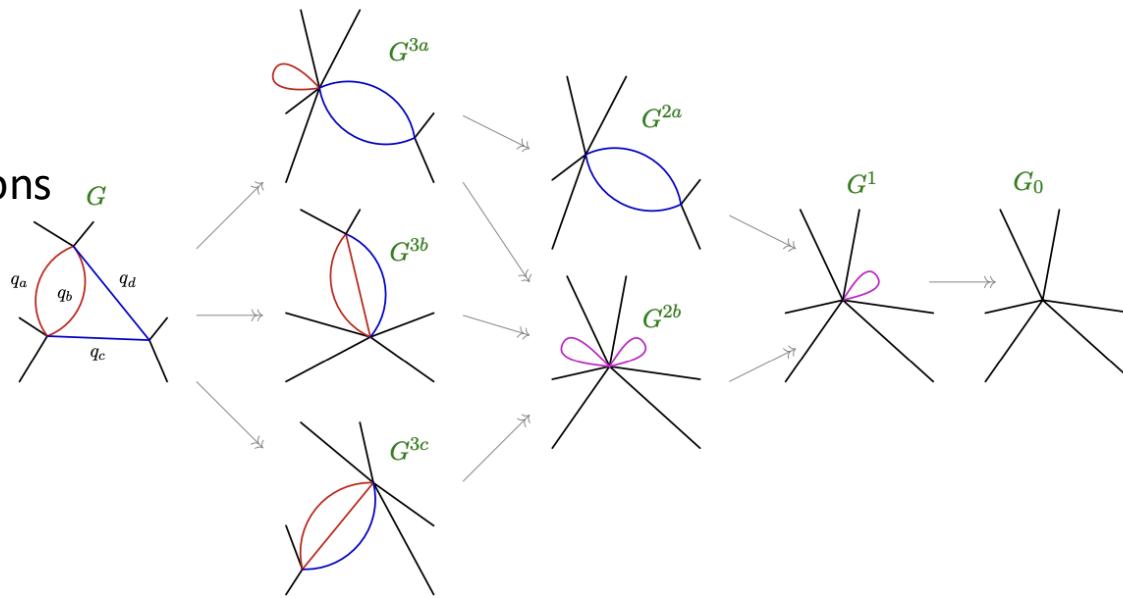
$$(1 - \mathcal{M}_{D=0})(1 - \mathcal{M}_{y_{12}=1}) I_{\triangleright} = (1 - \mathcal{M}_{D=0}) I_{\triangleright}.$$

Contractions

A useful language for studying singularities of integrals is with **graph contractions**



All Landau diagrams
come from contractions
of original graph



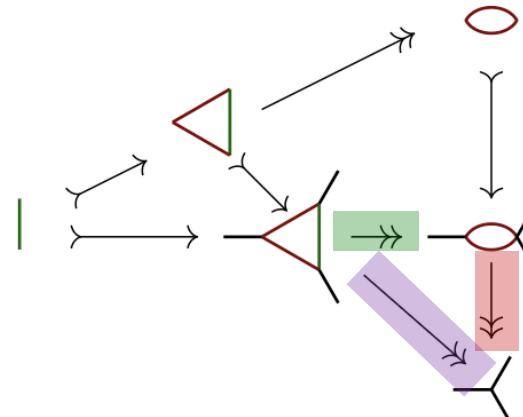
Hierarchical principle

Theorem 2 (Pham). *For a series of contractions $G \twoheadrightarrow G^{\kappa'} \twoheadrightarrow \dots \twoheadrightarrow G^\kappa \twoheadrightarrow G_0$ the relation*

$$(\mathbb{1} - \mathcal{M}_{\mathcal{P}_{\kappa'}}) \cdots (\mathbb{1} - \mathcal{M}_{\mathcal{P}_\kappa}) I_G(p) = (\mathbb{1} - \mathcal{M}_{\mathcal{P}_{\kappa'}}) I_G(p) \quad (6.2)$$

holds when $\mathcal{P}_\kappa \dots \mathcal{P}_{\kappa'}$ correspond to principal Pham loci, and p is in the physical region.

$$\begin{array}{ccccc}
 & \text{short exact sequence} & & & \\
 & \downarrow & & & \\
 \ker \kappa' & \xrightarrow{\quad} & \ker \kappa & \downarrow & \\
 \downarrow & \downarrow & \downarrow & & \\
 \ker \bar{\kappa} & \xrightarrow{\quad} & G^{\kappa'} & \xrightarrow{\bar{\kappa}} & G^\kappa \\
 & \downarrow & \downarrow & \downarrow & \\
 & \ker \kappa' & G^{\kappa'} & G^\kappa & G^0 \\
 & \downarrow & \downarrow & \downarrow & \\
 & \ker \kappa' & G^{\kappa'} & G^\kappa & G^0
 \end{array}$$



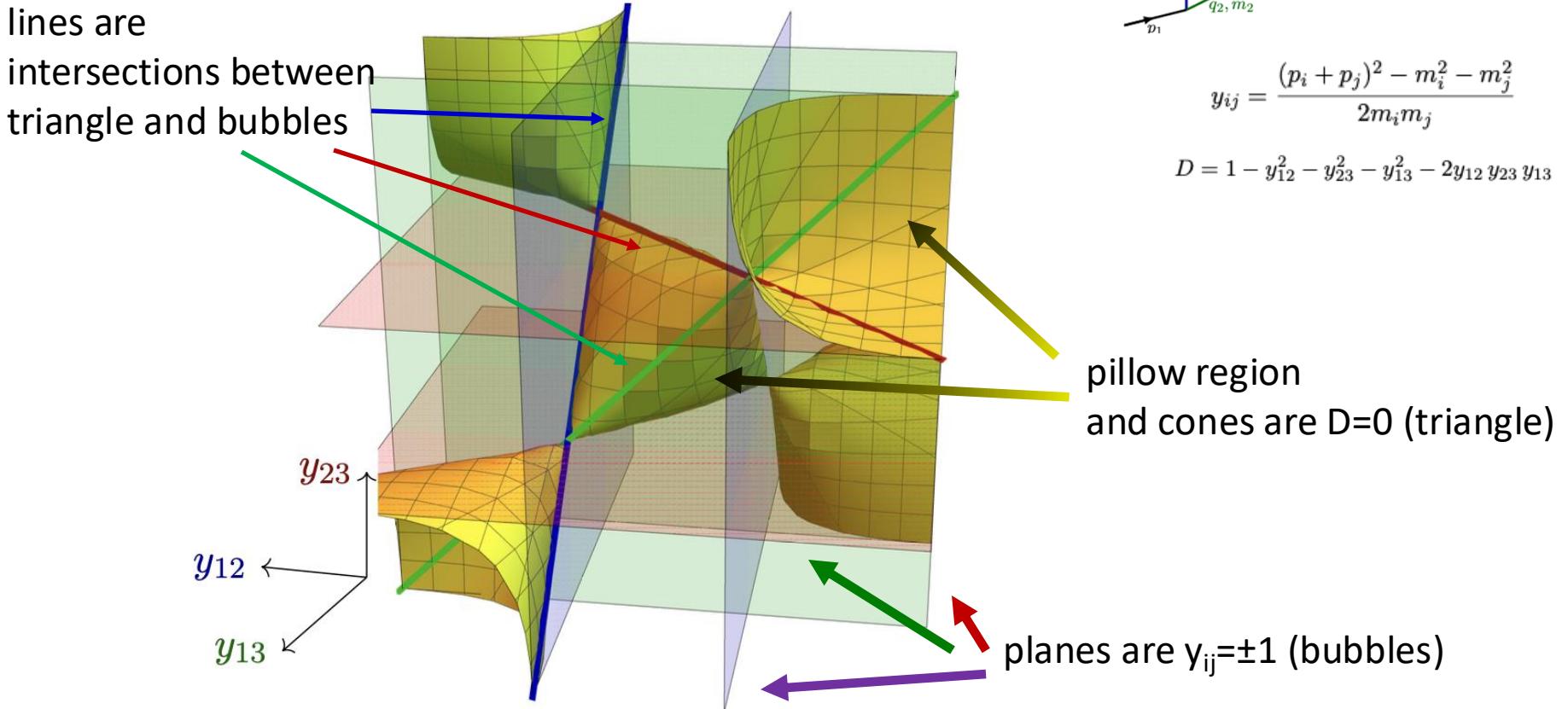
e.g. $\underline{(\mathbb{1} - \mathcal{M}_{D=0})(\mathbb{1} - \mathcal{M}_{y_{12}=1}) I_{\triangleright}} = (\mathbb{1} - \mathcal{M}_{D=0}) I_{\triangleright}$

- “Principal” is a technical mathematical requirement about stable topological type
- Pham corrected subtlety in previous formulation of the “hierarchical principle”

[Landsdoff et al. 1966]

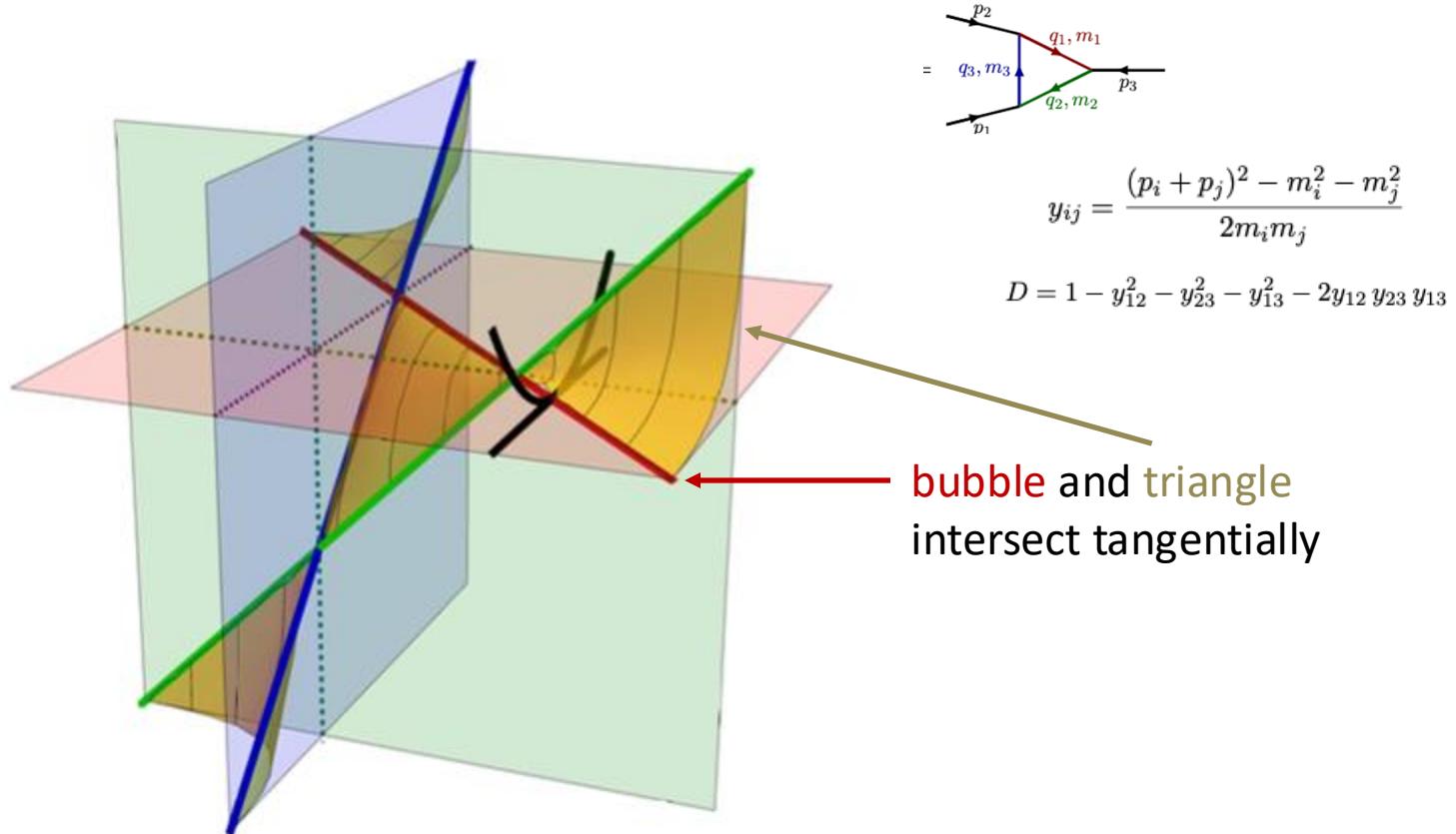
Tangential intersections

For the d=3 triangle, look at the Landau variety in the space of external kinematics



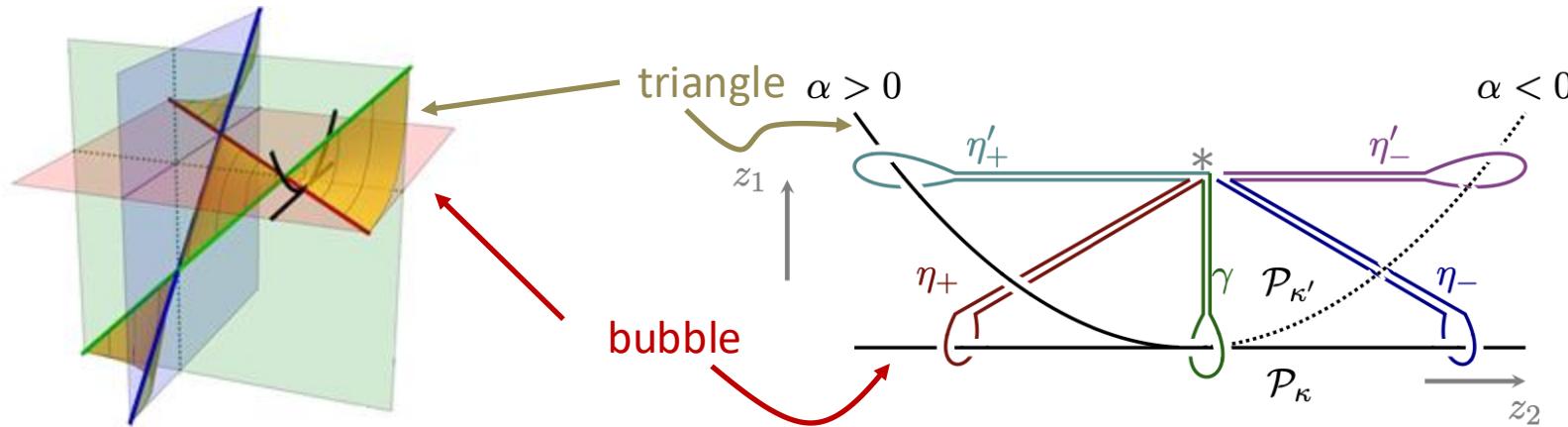
Tangential intersections

For the d=3 bubble, look at the Landau variety in the space of external kinematics for $\alpha > 0$



regions shown have $\alpha > 0$
(singularities are in the physical region)

Tangential intersections



We can consider monodromies around bubble and triangle

We want to take $(1 - \mathcal{M}_{D=0})(1 - \mathcal{M}_{y_{12}=1})I_{\triangleright}$

$$\mathcal{M}_{\eta'_+} \quad \mathcal{M}_{\eta_+}$$

no singularity for $\alpha < 0$
adding monodromy does nothing

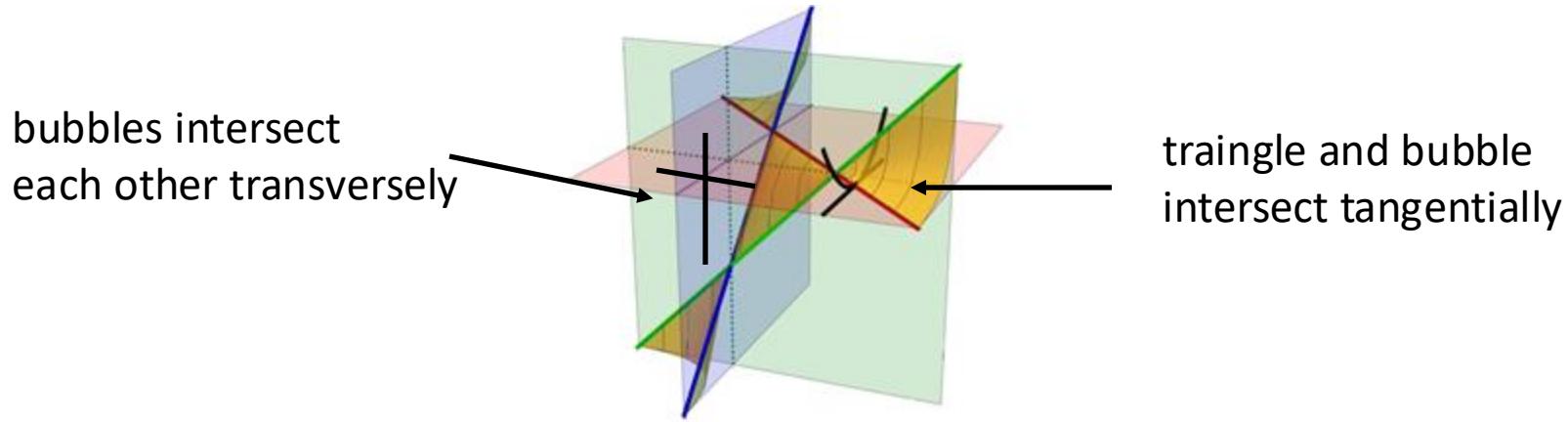
$$\mathcal{M}_{\eta'} I_G(p) = I_G(p).$$

We can show that

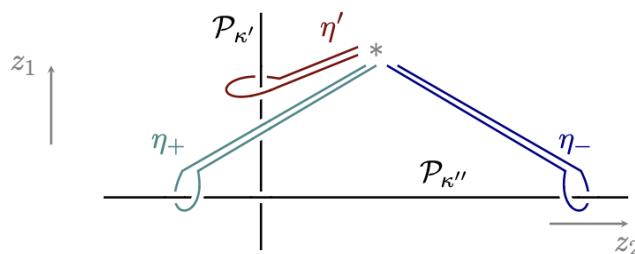
$$\eta'_+ \circ \eta_+ = \eta_+ \circ \eta'_- \quad \longrightarrow \quad \mathcal{M}_{\eta'_+} \circ \mathcal{M}_{\eta_+} \ I_G(p) = \mathcal{M}_{\eta_+} \circ \mathcal{M}_{\eta'_-} \ I_G(p) = \mathcal{M}_{\eta_+} \ I_G(p).$$

$$\longrightarrow \left(1 - \mathcal{M}_{\eta'_+}\right) \left(1 - \mathcal{M}_{\eta_+}\right) I_G(p) = \left(1 - \mathcal{M}_{\eta_+}\right) I_G(p)$$

Transversal intersections

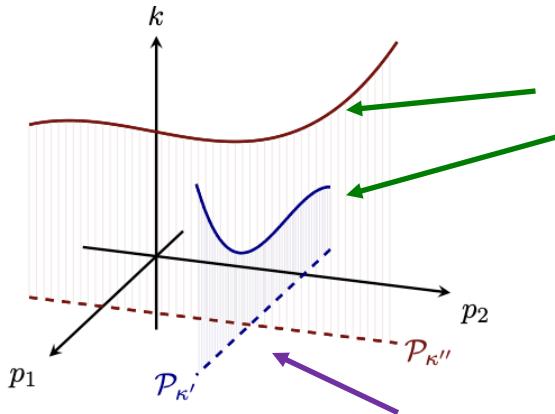


For transversal intersections, monodromies commute



Thm (Pham): $(1 - \mathcal{M}_{\mathcal{P}_{\kappa'}})(1 - \mathcal{M}_{\mathcal{P}_{\kappa''}})I_G(p) = (1 - \mathcal{M}_{\mathcal{P}_{\kappa''}})(1 - \mathcal{M}_{\mathcal{P}_{\kappa'}})I_G(p)$

Transversal intersections



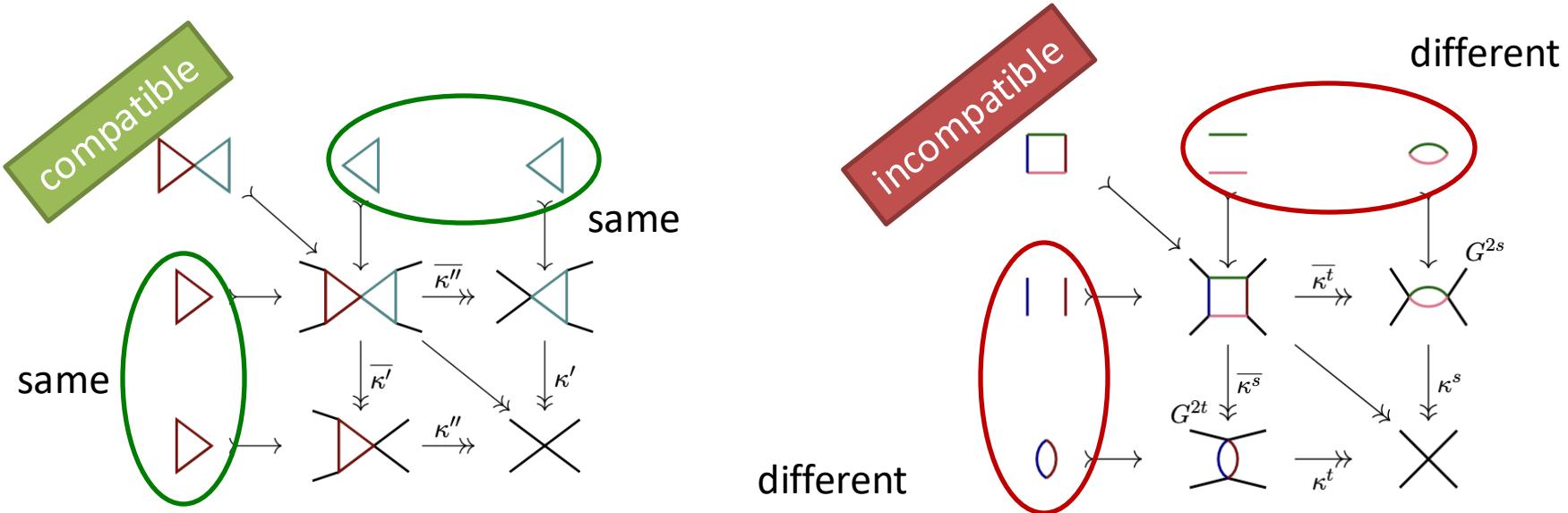
on-shell surfaces may not intersect in *internal momenta*

- vanishing cell from first monodromy doesn't intersect integration contour of second
- then sequential monodromy vanishes

$$(\mathbb{1} - \mathcal{M}_{P_{\kappa'}})(\mathbb{1} - \mathcal{M}_{P_{\kappa''}})I_G(p) = 0$$

Singular surfaces intersect transversally in *external momenta*

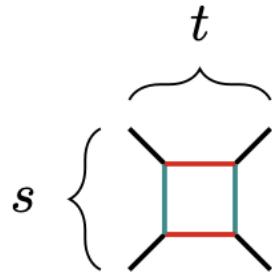
- Condition for internal intersection is
 - Landau equations for internal momenta can be solved simultaneously
 - Kernels of contractions are compatible (Pham)



Steinmann relations

No sequential discontinuities in partially overlapping channels in the physical region

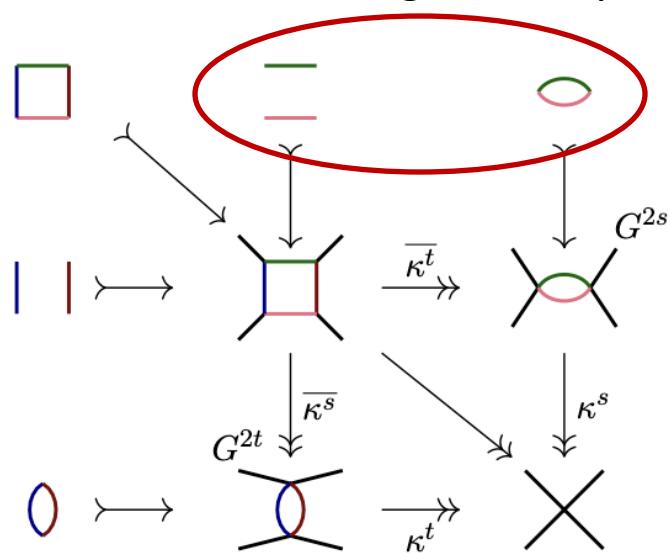
[Steinmann 1960, in German]



cannot have a term like

$$\log(s - 4m^2) \log(t - 4m^2)$$

Follows from the Pham diagram analysis

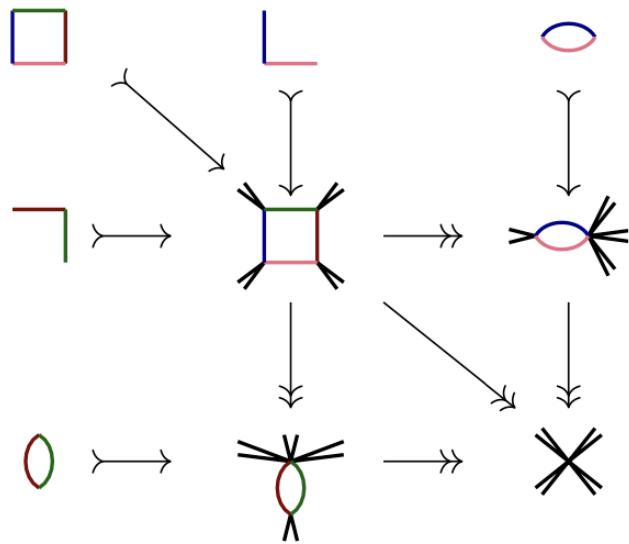


kernels are incompatible

$$(1 - \mathcal{M}_\text{circle}) (1 - \mathcal{M}_\text{cross}) I_G(p) = 0$$

Extended Steinmann relations

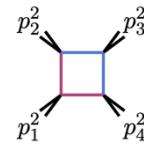
Compatible kernel condition more general



Box diagram
cannot have terms like

$$\log(p_1^2 - 4m^2) \log(p_3^2 - 4m^2)$$

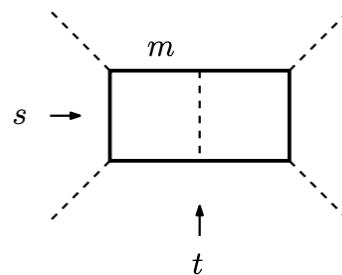
- channels are not partially overlapping



Bootstrap application

Can we bootstrap the two loop massive box graph?

MDS, Hannesdottir, McLeod, Vergu
in preparation



First computed in 2014
by Johannes Henn and Simon Caron-Huot

1. Identify possible singularities

physical singularities
(first symbol entry)

$$\begin{aligned} s &= 4m^2, \quad s \rightarrow \infty, \\ t &= 4m^2, \quad t \rightarrow \infty, \\ m^2 &= 0, \end{aligned}$$

unphysical singularities
(not first symbol entry)

$$\begin{aligned} s &= 0, \quad t = 0, \quad s + t = 0, \\ st + 4m^2s + 4m^2t &= 0. \end{aligned}$$

defining $u = -\frac{4m^2}{s}$, $v = -\frac{4m^2}{t}$. then singularities are $\{u,v\} = \{0,1,\infty\}$

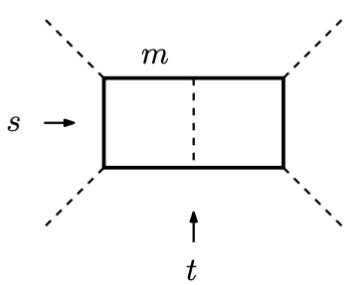
Bootstrap application

2. Identify possible letters:

- algebraic functions (with square roots) of singularities with no new singularities

$$\begin{aligned} L_1 &= u, & L_2 &= v, & L_7 &= \frac{\beta_v - 1}{\beta_v + 1}, & L_8 &= \frac{\beta_{uv} - 1}{\beta_{uv} + 1}, & u &= -\frac{4m^2}{s}, & v &= -\frac{4m^2}{t}, \\ L_3 &= 1 + u, & L_4 &= 1 + v, & L_9 &= \frac{\beta_{uv} - \beta_u}{\beta_{uv} + \beta_u}, & L_{10} &= \frac{\beta_{uv} - \beta_v}{\beta_{uv} + \beta_v}, & \beta_u &= \sqrt{1+u}, & \beta_v &= \sqrt{1+v}, \\ L_5 &= u + v, & L_6 &= \frac{\beta_u - 1}{\beta_u + 1}, & L_{11} &= 1 + u + v, & & \beta_{uv} &= \sqrt{1+u+v}. \end{aligned}$$

3. Impose Pham/Steinmann type constraints



Cannot have discontinuity in s then t

- $s = 4m^2$ is $1+u = L_3 = 0$
- $t = 4m^2$ is $1=v = L_4 = 0$

$$\begin{array}{c} L_3 \otimes L_4 \otimes ? \otimes ? \\ \cancel{L_4 \otimes L_3 \otimes ? \otimes ?} \end{array}$$

forbidden by Pham

Bootstrap application

Determine symbol

- 2-loop can have 4 terms in symbol
- $11 \text{ letters} - 11^4 = 14641$ possible terms
- symbol must be integrable = 2597 terms
- must be invariant under Galois symmetry $\sqrt{\bullet} \rightarrow -\sqrt{\bullet}$

integrable weight-four symbols	2597
Galois symmetry	306
vanishing $s \rightarrow 0$ limit	284
only $L_1, L_3, L_6, L_9, L_{10}$ in second entry after L_6	230
only $L_2, L_4, L_7, L_9, L_{10}$ in the second entry after L_7	213
only $L_1, L_3, L_6, L_9, L_{10}$ in second entry after L_3	182
only $L_2, L_4, L_7, L_9, L_{10}$ in the second entry after L_4	160
without L_2 or L_3 in last entry	102
without L_7 or L_{10} in last entry	83
without L_7 or L_{10} in second-to-last entry	73
no L_1, L_2, L_5, L_8 , or L_9 in the first entry	1

Steinmann/Pham constraints

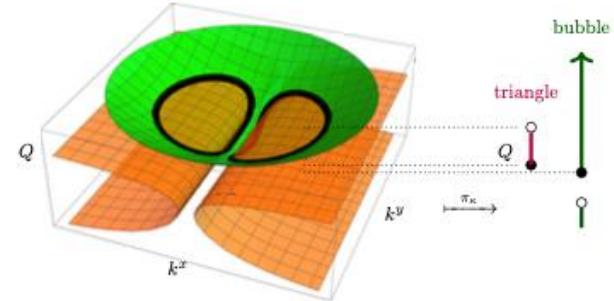
Final result completely determined (and agrees with Henn/Caron-Huot)

$$\begin{aligned}
 \mathcal{S}(\tilde{\mathcal{I}}_{\text{dbox}}) = & -L_6 \otimes \frac{L_1}{L_3} \otimes L_6 \otimes L_9 - L_6 \otimes \frac{L_1}{L_3} \otimes L_9 \otimes L_6 \\
 & + L_6 \otimes L_6 \otimes \frac{L_1 L_2}{L_3 L_5} \otimes L_9 + L_6 \otimes L_9 \otimes \frac{L_2}{L_5} \otimes L_9 + L_7 \otimes L_{10} \otimes \frac{L_2}{L_5} \otimes L_6 + L_7 \otimes L_{10} \otimes L_8 \otimes L_9 \\
 & + L_6 \otimes L_6 \otimes L_8 \otimes L_6 + L_6 \otimes L_9 \otimes L_8 \otimes L_9 + L_7 \otimes L_7 \otimes \frac{L_1}{L_5} \otimes L_9 + L_7 \otimes L_7 \otimes L_8 \otimes L_6.
 \end{aligned}$$

Summary

Geometric analysis is a powerful way to understand singularities of scattering amplitudes

1. Branch points are critical points of projection map
2. Picard-Lefshetz and Leray coboundary theory connect homotopy of paths in external momenta to homology of integration contours



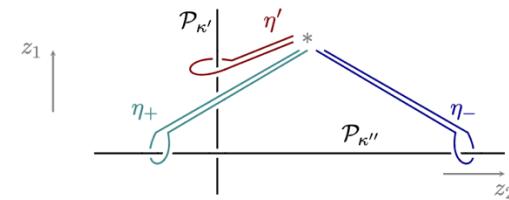
3. Geometric picture lets us prove general relations about sequential discontinuities

$\alpha > 0$ $\alpha < 0$ hierarchical case (tangential)

$$(1 - \mathcal{M}_{\mathcal{P}_{\kappa'}}) \cdots (1 - \mathcal{M}_{\mathcal{P}_{\kappa}}) I_G(p) = (1 - \mathcal{M}_{\mathcal{P}_{\kappa'}}) I_G(p)$$

non-hierarchical case (transversal)

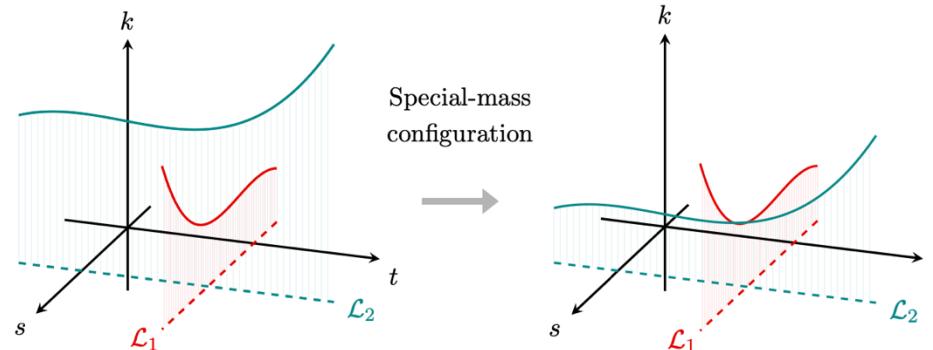
$$(1 - \mathcal{M}_{\mathcal{P}_{\kappa'}})(1 - \mathcal{M}_{\mathcal{P}_{\kappa''}}) I_G(p) = (1 - \mathcal{M}_{\mathcal{P}_{\kappa''}})(1 - \mathcal{M}_{\mathcal{P}_{\kappa'}}) I_G(p)$$



4. Provides powerful constraints useful for perturbative S-matrix bootstrap

Next steps

- Weaken assumptions
 - We assumed all masses were generic
 - Zero masses, or equal mass can make singularities overlap



49

- Study second-type (non-Landau) singularities

e.g. bubble in $d=3$

$$I_{\text{O}}(p) = \text{---}^p \text{---}^p = \frac{\sqrt{\pi}}{\sqrt{s}} \log \left(\frac{m_1 + m_2 + \sqrt{s}}{m_1 + m_2 - \sqrt{s}} \right)$$

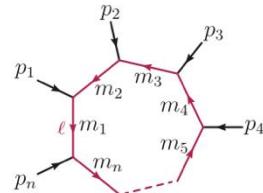
---^p (green circle with a red arrow) ---^p
 ---^p (green circle with a red arrow) ---^p
 ---^p (green circle with a red arrow) ---^p
 ---^p (green circle with a red arrow) ---^p

$p - k, m_2$
 k, m_1

- Not on physical sheet
- Still relevant to analytic structure of scattering amplitudes

Next steps

- Study more examples
 - All mass n-gon in n-dimensions (like bubble in 2d, triangle in 3d)



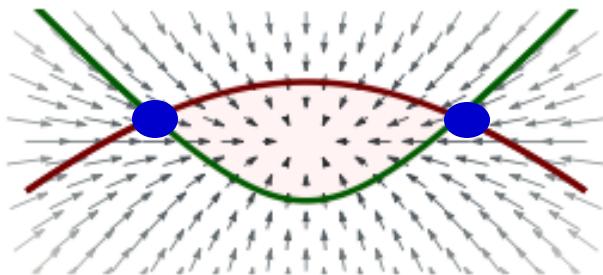
$$\mathcal{S}(I_n^{\text{one loop}}) \propto \frac{1}{\sqrt{\det y}} \sum \omega_{\{i_1, i_2\}}^\emptyset \otimes \omega_{\{i_1, i_2, i_3, i_4\}}^{\{i_1, i_2\}} \otimes \dots \otimes \omega_{\{1, \dots, n\}}^{\{i_1, \dots, i_{n-2}\}}$$

$$\text{cut}_J I_n^{\text{one loop}}(y) = \frac{(2\pi i)^{|J|}}{\sqrt{\det y}} \sqrt{\det y'} I_{n-|J|}^{\text{one loop}}(y')$$

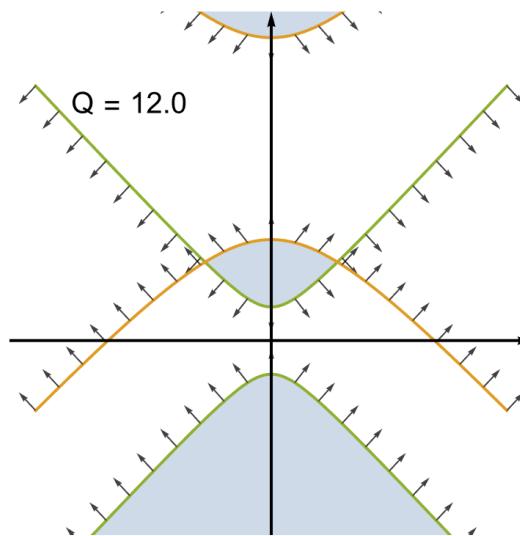
- Connect back to the finite S matrix
 - Can overlapping singularities tell us about factorization?
 - Does preserving Pham relations in the massless limit lead to a natural scheme for remainder functions?
 - What can be said non-perturbatively?

Older

In $d=2$, vanishing sphere (on-shell locus) is two points

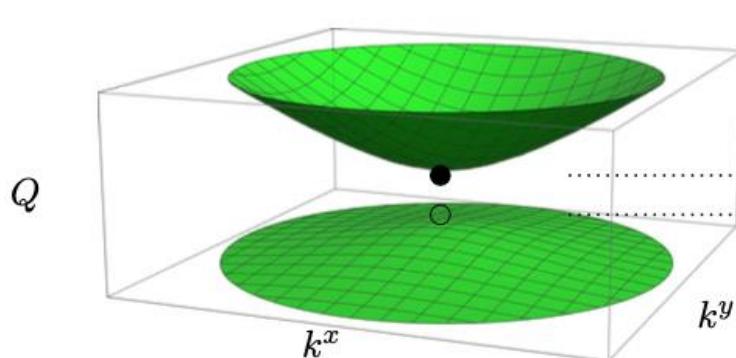
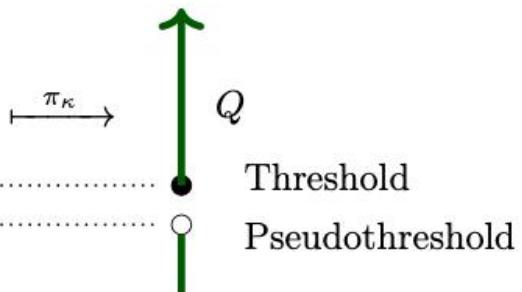


as Q varies points approach and retreat



$$s_1 = k_0^2 - \vec{k}^2 - m_1^2 = 0$$

$$s_2 = (Q - k_0)^2 - \vec{k}^2 - m_2^2$$



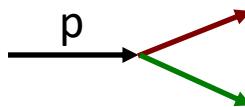
Example

Consider the simplest 1-loop diagram: the bubble in $d=2$

$$\begin{aligned}
 I_{\text{O}}(p) &= \text{---} \xrightarrow[p]{\text{---}} \text{---} = \lim_{\varepsilon \rightarrow 0^+} \int d^2 k \frac{1}{k^2 - m_1^2 + i\varepsilon} \frac{1}{(p - k)^2 - m_2^2 + i\varepsilon} \\
 &= \frac{-2\pi}{\sqrt{-(s - (m_1 - m_2)^2)}[s - (m_1 + m_2)^2]} \log \left(\frac{\sqrt{(m_1 + m_2)^2 - s} - i\sqrt{s - (m_1 - m_2)^2}}{\sqrt{(m_1 + m_2)^2 - s} + i\sqrt{s - (m_1 - m_2)^2}} \right)
 \end{aligned}$$

Even this diagram is remarkably rich, as we will see.

- At has a **normal threshold** branch cut starting at $s = s_N = (m_1 + m_2)^2$
 - For $s > s_N$ the on-shell process $p \rightarrow p_1 + p_2$ is allowed for physical on-shell momenta



- Tree-level process tells you about singularities of loop amplitudes
 - e.g., through optical theorem

$$\text{Im } \text{---} \xrightarrow[p]{\text{---}} \text{---} = \int d\Pi \left| \text{---} \xrightarrow[p]{\text{---}} \text{---} \right|^2$$

Example

Consider the simplest 1-loop diagram: the bubble in $d=2$

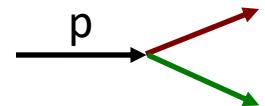
$$\begin{aligned}
 I_{\text{O}}(p) &= \text{---} \xrightarrow[p]{\text{---}} \text{---} = \lim_{\varepsilon \rightarrow 0^+} \int d^2 k \frac{1}{k^2 - m_1^2 + i\varepsilon} \frac{1}{(p - k)^2 - m_2^2 + i\varepsilon} \\
 &= \frac{-2\pi}{\sqrt{-(s - (m_1 - m_2)^2)}[s - (m_1 + m_2)^2]} \log \left(\frac{\sqrt{(m_1 + m_2)^2 - s} - i\sqrt{s - (m_1 - m_2)^2}}{\sqrt{(m_1 + m_2)^2 - s} + i\sqrt{s - (m_1 - m_2)^2}} \right)
 \end{aligned}$$

Even this diagram is remarkably rich, as we will see.

It has a branch cut starting at $s = s_N = (m_1 + m_2)^2$

- This is a **normal threshold**
 - For $s > s_N$ the on-shell process $p \rightarrow p_1 + p_2$ is allowed for physical on-shell momenta
 - Near normal threshold

$$I_{\text{O}}(p) : \longrightarrow -\frac{2\pi}{\sqrt{-4m_1 m_2(s - s_N)}} \ln(-1)$$



- It has a **pseudothreshold** branch cut starting at $s = s_P = (m_1 - m_2)^2$
 - Cannot be reached with physical momenta (real $s > 0$)
 - Near pseudothreshold

$$I_{\text{O}}(p) : \longrightarrow -\frac{2\pi}{\sqrt{4m_1 m_2(s - s_P)}} \ln(1) = 0$$

BACKUP

Absorption integrals

Optical theorem

$$\text{Im} \quad \text{Diagram with a loop} = \int d\Pi \left| \text{Diagram with a loop} \right|^2$$

All imaginary parts come from $i\varepsilon$ in propagators

$$\text{Im} \frac{1}{p^2 - m^2 + i\varepsilon} = 2\pi\delta(p^2 + m^2)$$

$$I_{\text{O}}(p) = \text{Diagram with a loop} = \int d^2k \frac{1}{k^2 - m^2 + i\varepsilon} \frac{1}{(p - k)^2 - m^2 + i\varepsilon}$$

Absorption integral

replace propagators with δ functions

$$A_{\text{O}}(s_0) = \text{Disc } I_{\text{O}}(p) = 2 \text{Im } I_{\text{O}}(p) = \int d^2k \delta(k^2 - m^2) \theta(k_0) [\delta(p - k)^2 - m^2] \theta(p_0 - k_0)$$

Cutkosky: The discontinuity of an integral is given by an absorption integral where all the cut lines are replaced by δ functions

$$\mathcal{A}_G^\kappa(p) = \int \prod_{c \in \widehat{C}(G)} d^d k_c \prod_{e \in E_{\text{int}}(G^\kappa)} (-2\pi i) \theta_*(q_e^0) \delta(q_e^2 - m_e^2) \prod_{e' \in E(G) \setminus E(G^\kappa)} \frac{1}{q_{e'}^2 - m_{e'}^2 + i\varepsilon}.$$

Im and Disc

Optical theorem

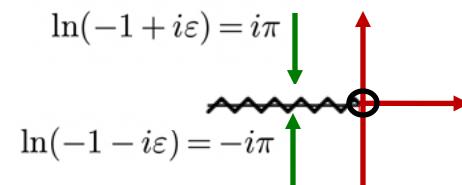
$$\begin{aligned}
 \text{Im} \quad & \text{Diagram: Two horizontal lines with arrows labeled } p \text{ meeting at a circle with a red arrow.} \\
 & = \int d\Pi \left| \text{Diagram: Two horizontal lines with arrows labeled } p \text{ meeting at a point with two outgoing green arrows} \right|^2 \\
 \text{Im} \quad & \text{Diagram: Two horizontal lines with arrows meeting at a vertex with a red shaded region.} \\
 & = \text{sum of all cuts} \quad \text{Diagram: Three terms showing different ways to cut the vertex with red and green lines, plus a continuation symbol.}
 \end{aligned}$$

- Imaginary part is a very coarse tool: cannot isolate individual branch points

Consider conventional definition of $\ln(z)$, e.g. in Mathematica

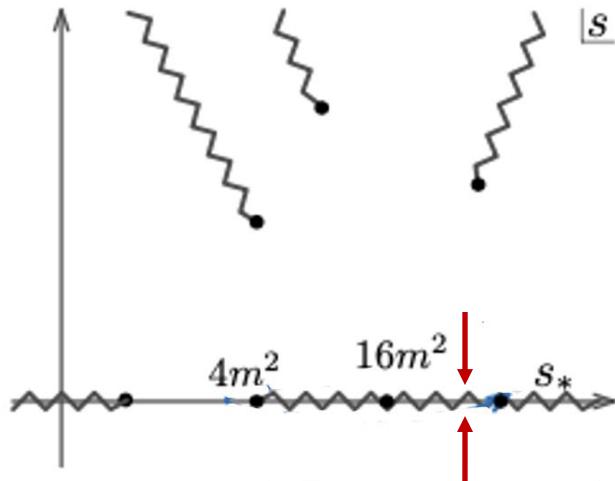
1. Imaginary part defined on negative real axis $\text{Im } \ln(-z) = i\pi$
2. Has a branch point at $z=0$ and a branch cut for $z < 0$
 - $\ln(z)$ is discontinuous across branch cut

$$\text{Disc}_z \ln z = \ln(z + i\varepsilon) - \ln(z - i\varepsilon) = 2\pi i \theta(z)$$



- Discontinuity is twice the imaginary part for $\ln(z)$

Challenges with Im



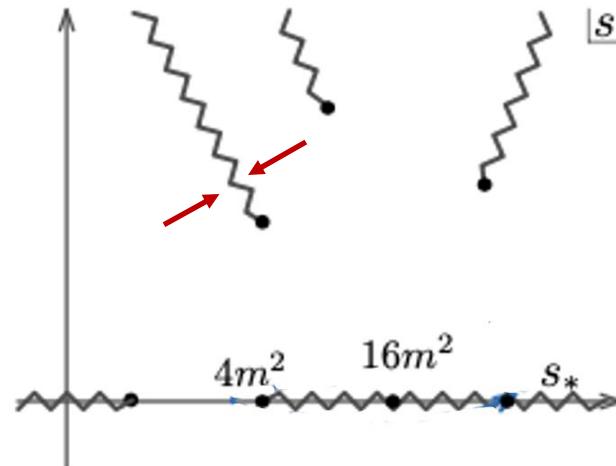
Imaginary part gives the total discontinuity

- Cannot distinguish overlapping branch cuts

$$\text{Im} \frac{1}{p^2 - m^2 + i\varepsilon} = 2\pi\delta(p^2 + m^2)$$

- Imaginary part is real

- Cannot find sequential discontinuities by taking imaginary part again



- To understand full analytic structure need to isolate each branch point/cut

- Absorption integral formula has non-analytic components

Example

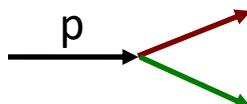
Consider the simplest 1-loop diagram: the bubble in $d=2$

$$\begin{aligned}
 I_{\text{O}}(p) &= \text{---} \xrightarrow[p]{p} \text{---} \text{---} \xrightarrow[p]{p} = \lim_{\varepsilon \rightarrow 0^+} \int d^2k \frac{1}{k^2 - m_1^2 + i\varepsilon} \frac{1}{(p - k)^2 - m_2^2 + i\varepsilon} \\
 &= \frac{-2\pi}{\sqrt{-[s - (m_1 - m_2)^2][s - (m_1 + m_2)^2]}} \log \left(\frac{\sqrt{(m_1 + m_2)^2 - s} - i\sqrt{s - (m_1 - m_2)^2}}{\sqrt{(m_1 + m_2)^2 - s} + i\sqrt{s - (m_1 - m_2)^2}} \right)
 \end{aligned}$$

Even this diagram is remarkably rich, as we will see.

It has a branch cut starting at $s = s_N = (m_1 + m_2)^2$

- This is a **normal threshold**
 - For $s > s_N$ the on-shell process $p \rightarrow p_1 + p_2$ is allowed for physical on-shell momenta

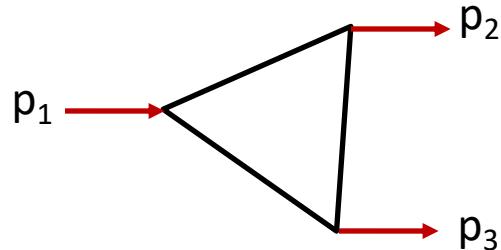


It has another branch cut starting at $s = s_N = (m_1 + m_2)^2$

- This is a **pseudo threshold**
 - Cannot be reached with physical momenta (real $s > 0$)

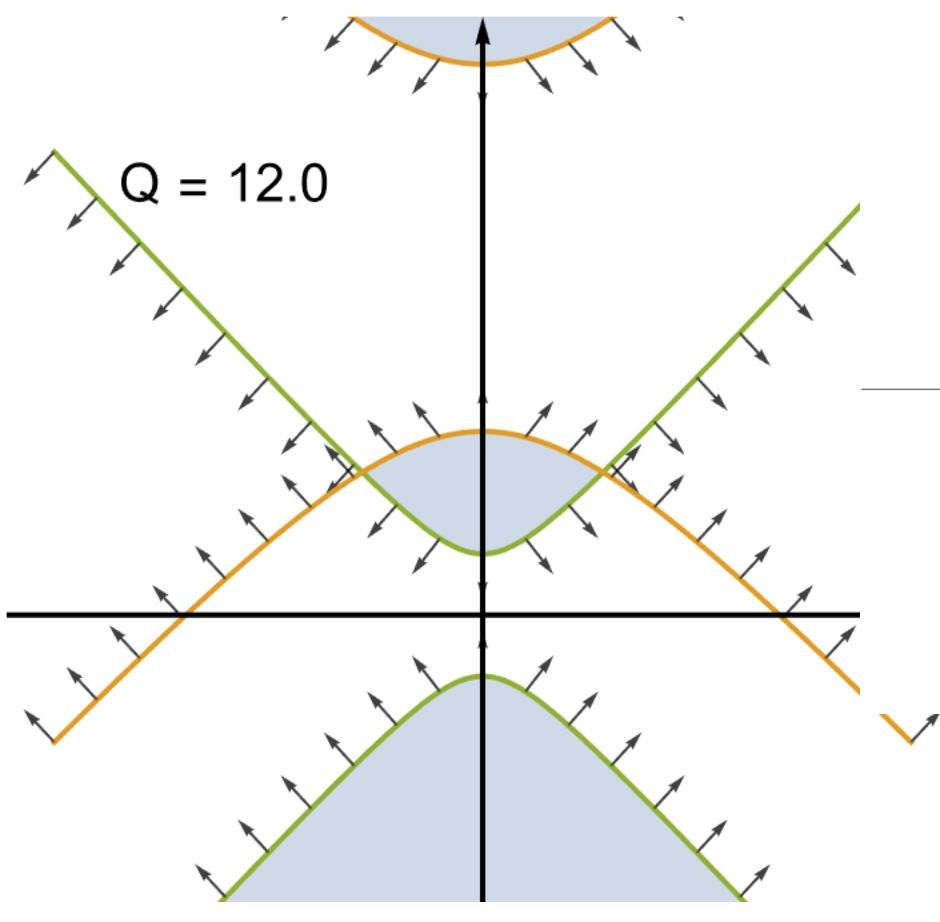
Example

Consider the 3-point diagram at 1-loop in a theory with massless internal lines:

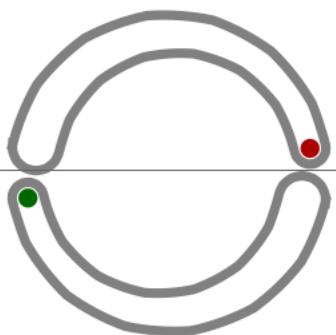


$$= \text{Li}_2(z) - \text{Li}_2(\bar{z}) + \frac{1}{2} \ln(z\bar{z}) \ln \left(\frac{1-z}{1-\bar{z}} \right)$$

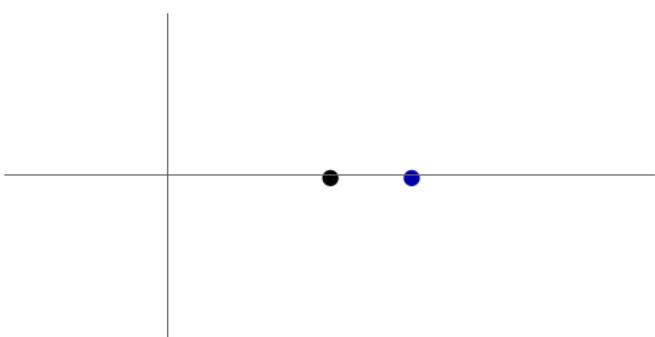
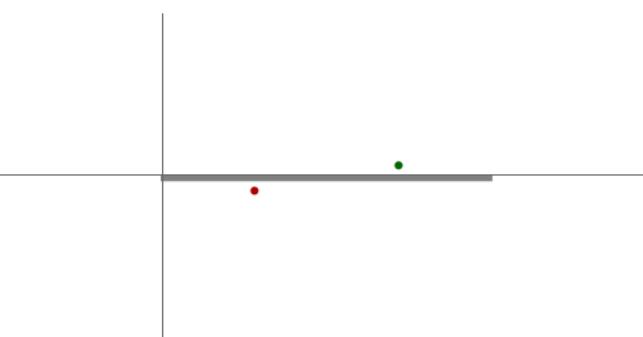
$$\text{with } z\bar{z} = p_2^2/p_1^2, \quad (1-z)(1-\bar{z}) = p_3^2/p_1^2$$



α



α



How did I get into this?

What about QCD or N=4 SYM theory?

- N=4 is supposed to be a beautiful simple theory with lots of symmetry
- **Why should an S matrix that doesn't exist have any symmetry?**

“Remainder functions” have nice properties: $R_n = \ln \left[\frac{\mathcal{M}_n}{\mathcal{M}_n^{\text{BDS}}} \right]$

[Bern, Dixon, Smirnov 2005]

BDS Anzatz:
$$\mathcal{M}_n^{\text{BDS}} = \exp \left[\sum_L \left((4\pi e^{-\gamma})^\epsilon \frac{g_s^2 N_c}{8\pi^2} \right)^L \left(f^{(L)}(\epsilon) M_n^{(1)}(L\epsilon) + C^{(L)} + E_n^{(L)}(\epsilon) \right) \right]$$

- R_n respects **dual conformal invariance** but violates **Steinmann relations**

BDS-like ansatz [Alday, Giotto, Maldacena 2009]

- violates **dual conformal invariance** but respects **Steinmann relations**

[Hannesdottir and MDS 2020]

Taking $H_A = H_{\text{SCET}}$ gives a finite S matrix for QCD and N=4

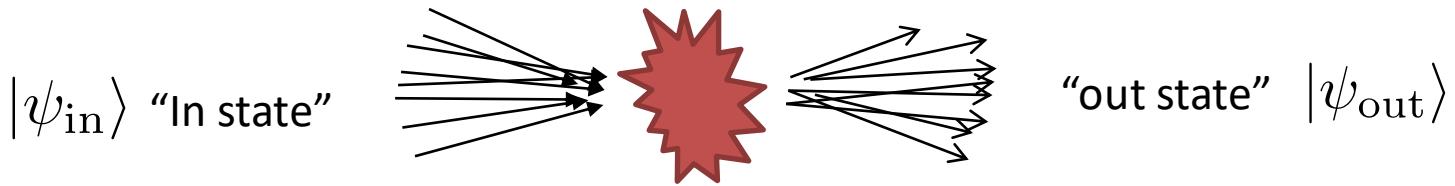
$$S = \lim_{t \rightarrow \infty} e^{iH_{\text{SCET}}t} e^{-iHt}$$

- S matrix elements are finite and agree with BDS-like remainder functions
 - Unifies coherent/dressed states, SCET, and modern amplitude calculations

What properties does the finite S matrix have?

How did I get into this?

The S matrix describes the scattering of particles



How is the S-matrix actually defined?

$$S \stackrel{?}{=} \lim_{t \rightarrow \infty} e^{-iHt}$$

- Doesn't exist: infinitely oscillating phase

$$S \stackrel{?}{=} \lim_{t \rightarrow \infty} e^{iH_0 t} e^{-iHt}$$

[Wheeler, Heisenberg 1960]

- Works for mass-gapped theory
- Infrared divergent in gauge theories

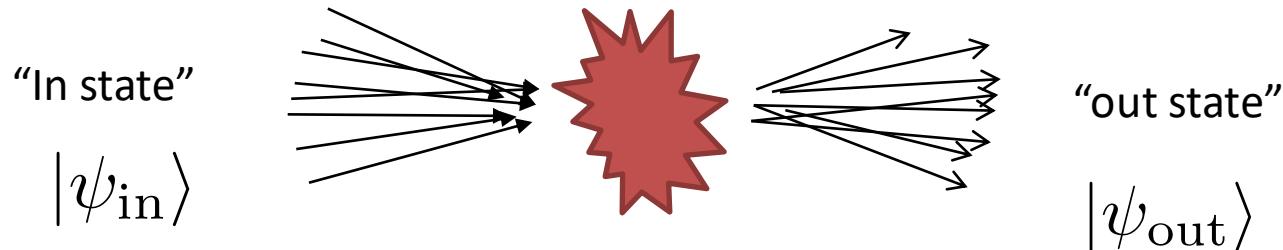
$$S \stackrel{?}{=} \lim_{t \rightarrow \infty} e^{iH_A t} e^{-iHt}$$

- H_A is the “asymptotic Hamiltonian”
 - Includes all long-range interactions, e.g. Coulomb phase

[Dollard 1970, Fadeev and Kulish 1970]

The S Matrix

The S matrix describes the scattering of particles



- S matrix been studied both **perturbatively** and **non-perturbatively**
- **Does it exist?**
 - Hard to prove
 - The usual definition only of S only works for theories with a mass gap
- **Is it unique?**
 - Strong constraints: unitarity, analyticity, causality, cluster-decomposition, etc.
 - The S matrix program of the 1950s-1960s studied this question
- **What constraints does it satisfy?**
 - Useful both perturbatively and non-perturbatively

Analyticity revisited

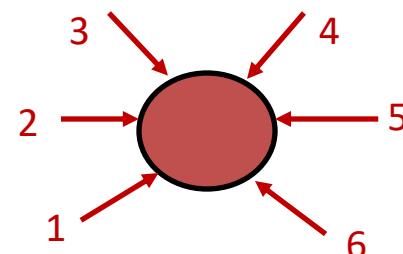
- The S matrix program from 1960s was never completed
 - Progress was slow
 - Quantum Field Theory was shown capable of explaining strong interactions
- Recent progress in perturbation theory has renewed interest in analytic structure
 - More “data” – explicit calculations
 - **Mathematics** of functions appearing in amplitudes (cluster algebras, etc.)
 - Very efficient ways to write down amplitudes,
 - Success in the perturbative S-matrix bootstrap
 - collinear limits, Regge limits, conformal invariance, **Steinmann relations**
 - N=4 SYM 6 point amplitude bootstrapped to 7 loops [Caron-Huot et al 1903.10890]

Steinmann relations are constraints on sequential discontinuities [Steinmann 1960]

possible term: $\ln(p_1 + p_2)^2 \ln(p_3 + p_4)^2$

not allowed (at any order): $\ln(p_1 + p_2 + p_3)^2 \ln(p_2 + p_3 + p_4)^2$

Why?

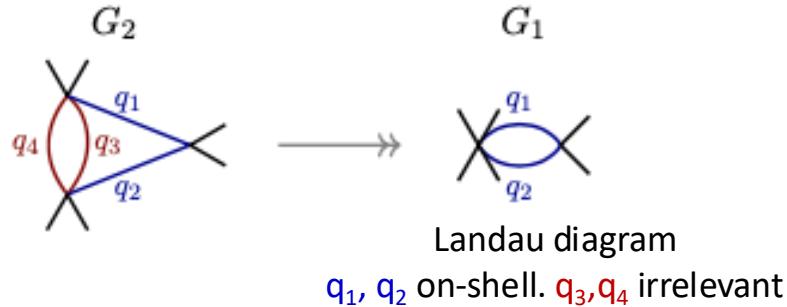


Landau diagrams

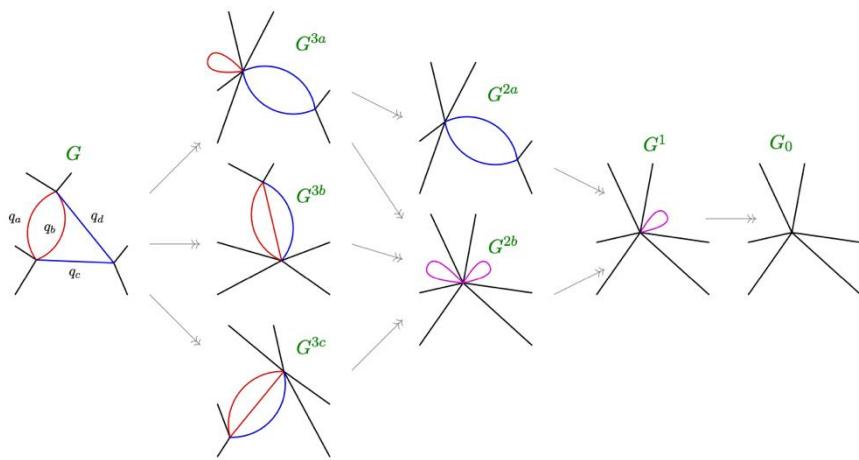
consider only the lines with $\alpha \neq 0$

1) Integrand is singular:

$$\ell = \sum_{e \in E_{\text{int}}(G)} \alpha_e (q_e^2 - m_e^2) = 0$$



8 Landau diagrams for the ice-cream cone graph



- These are all *possible* branch points (necessary condition only)
- Some diagrams may not be branch points (not a sufficient condition)

Pham interpretation

Landau equations

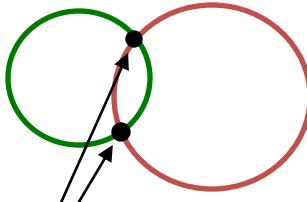
$$\ell = \sum_{e \in E_{\text{int}}(G)} \alpha_e (q_e^2 - m_e^2) = 0$$

$$\sum_{e \text{ in loop}} \pm \alpha_e q_e^\mu = 0$$

normal vectors of on-shell constraints $q^2 = m^2$ are linearly dependent

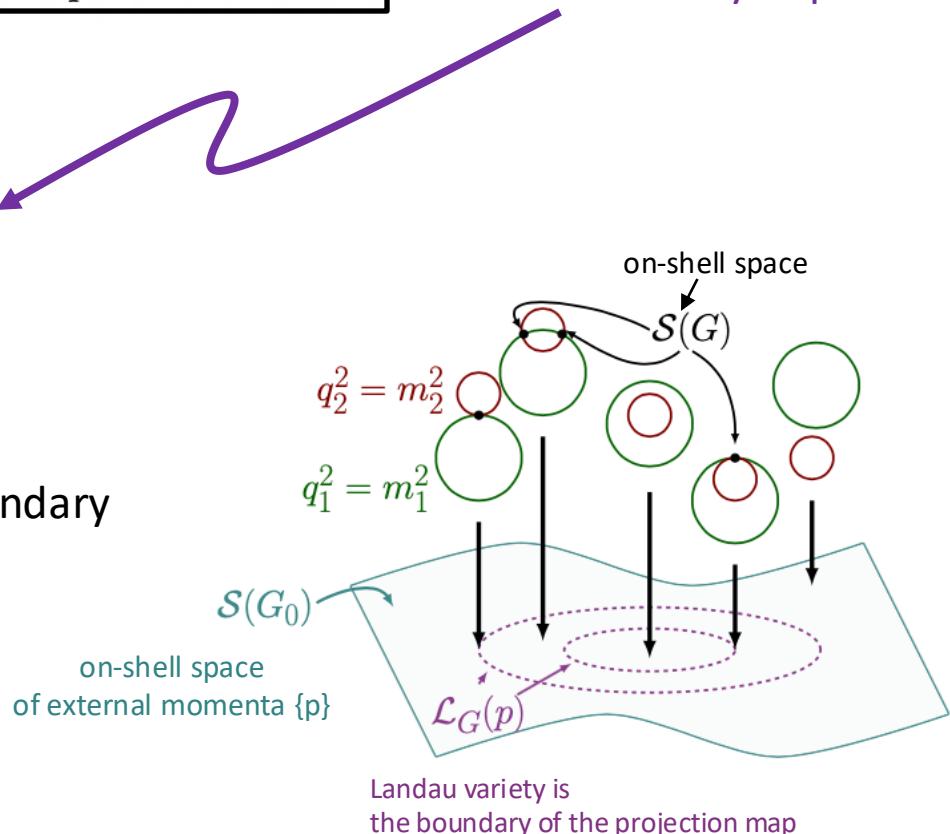
on-shell constraints (Euclidean $d=2$)

$$q_x^2 + q_y^2 = m_e^2$$



intersection satisfies both on-shell constraints

circles are tangent on boundary of space where circles intersect



Pham: Landau variety is the set of critical points of the projection map