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The S-matrix

* Isthe S matrix completely fixed by physical constraints? (causality, analyticity, etc.)?
e Key question of the 1960s, motivated by nuclear physics
e 1970s: Quantum Field Theory explained strong interactions
=S matrix program on hold for 40 years

e Recent progress in perurbation theory has renewed interested in analytic structure
* More “data” — explicit calculations
* Mathematics of functions appearing in amplitudes (cluster algebras, etc.)
e \Very efficient ways to write down amplitudes,
e Success in the perturbative S-matrix bootstrap
* collinear limits, Regge limits, conformal invariance, Steinmann relations
 N=4 SYM 6 point amplitude bootstrapped to 7 loops [caron-Huot et al 1903.10890]

Steinman relations are constraints on sequntial discontinuities [steinmann 1960

PN

possible term:  In(p; + p2)?In(p3 + ps)?

not allowed (at any order): In(p1 + p2 + p3)?In(p2 + p3 + pa)?

How can we understand constraints like this?



Example

Consider the simplest 1-loop diagram: the bubble in d=2

p—km :

o) = 2 i — d2k 1 1 - —27 ln\/-*-lmQ—s—z\/E
2 2 ; 2 2 :
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Even this diagram is remarkably rich, as we will see.

It has a normal threshold branch cut starting at s=4m?
* Fors>4m?the on-shell process p = p; +p, is allowed for physical on-shell momenta

—<

* Tree-level process tells you about singularities of loop amplitudes
* e.g., through optical theorem

m () - / an | ——<_

Not singular at the pseudthreshold s=0
* There is a branch point at s=0 accessible with complex momenta
* Does not correspond to anything physical happening
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Imaginary part is too blunt

Optical theorem

2
Im J’_Q_.L - / dIl ‘ 4p.<

Im = sum of all cuts + + +...
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Imaginary part gives the total discontinuity * To understand full analytic structure

e Cannot distinguish overlapping branch cuts need to isolate each branch point/cut



Branch points/cuts

Square root /T * Single valued on Riemann surface

* Not singular at x=0

* Sign ambiguity: /= =+i\/|z]
e Branch cut is projection of Riemann surface onto complex plane
* Discontinuity gives back the same function

|

1
Logarithm: In x
* Singular at x=0 T
* Phase ambiguity on negative real axis In (—z) =Inz £ i = |
e Riemann surface is infinite sheeted
e Discontinuity gives back a simpler function

Discln (z) =27i0(—x)
|
1

Disc \/z =2/x0(—z)




Absorption integrals

Cutkosky: The discontinuity of an integral is given by an absorption integral where all
the cut lines are replaced by 6 functions

K . 1
Asw = [ I ¢ I] emyodo@-m) [ g
ccl(G)  e€Em(G") ¢ €B(G)\E(Gr) ¢ ¢
e Cutkosky’s formula isolates individual - /'\ -
. o/
branch points/cuts |
A S * 0O and 6 functions make formula ambiguous for
complex momenta
e * Formula actually only applies for “principal”
s singularities, which include all physical ones
N SO \\'here does this formula come from?
What is the cleanest way to understand it?




Monodromies

+ 9 straight line ' 3
S dr [ contour
Ins= [ —. X I s — dr ‘3
T O > — - L%/ >
! 1 k vy X 1

equal to conventional definition of In s generalization to arbitrary contour y

e contour cannot pass through x=0 * contour cannot pass through x=0

« undefined for real s < 0 * s<0isok
* branch cut no longer exists
e called the maximal analytic continuation

* small deformations of contour cannot change the result
e contours classified by winding number around branch point x=0

difference between contours is monodromy = disc =im

| .Im‘. 8 . dx .
e\ o
| \"\ - o ~ )T “ Re « A A
\ ! l\\w A~ N | ) l
: ’ v CT \/ /’ = T >



Dilogarithm

Principal branch defined with straight line contours
* Singularities avoided counterclockwise S

Lis(s) = — f—ln (1—2x) fdi] 1_3:], _&)4..

Branch point at s=1
e discontinuity along the branch cut for s>1 computed via monodromy:

Disc Lis(s f dz dmﬂ — 2?1'@/ —=2miIns

\

Now branch point at s=0 is visible
* Branch point at s=0 is on second sheet

*  monodromy around s=1/
* monodromy around s=0 vanishes

Singularities encoded transparently with the symbol

flcflnsfdm1—3)_/1‘35_35 ‘13 S(Lig)=(;'8)®3

first discontinuity sequential discontinuity




Landau Equations

Associate a Feynman integral to a graph G

o) = [ II @ ]

ceC(G) e€ Eint (G)

numerator = 1 for simplicity
/ pa, My
]_ = 3, T

(ge(k, p)]” — m2 +ie

Go to Feynman parameters

o 1
Ic(p) = (Mint — 1)!/ H dﬂ-’e/ H ddl"hf.—ﬂ,t'ﬁ5 11— Z Qe
e 0 ecEm(G) ceC(C) (E;I-\EE) " ( e€Ein (G) )

# internal edges / - Z ae(qg o mg)

. fundamental cycles
internal edges o e€ By (G)

(independent loop momenta)

Where in the space of external momenta p is the graph singular?

A necessary condition for a singularity is that the integrand is singular (¢=0)

A

10d 1 : _ 10d 1 1
[2 m$_3+i€—n(—7—ze) A x(m—3)2+z‘s”\/g_°°

Not singular Singular

integration contour
pinched between poles



Landau Equations

IG(p)z(ﬂint—l)!/m 11 dcre/ H ddkcmﬁ(l— > ae)

RIS N (e) ccB(G) e€ Ein (G)

A necessary condition for a singularity is that the integrand is singular (¢=0)

b= Y gl —m?) =0 * every internal line is either

e€ By (G) on-shell (g?=m?) or a=0 or both

consider only the lines with az0

(8 Gy

e 1 71
a4 .} o ><:><
&2 iz

Landau diagram
d,, 9, on-shell. g5,q, irrelevant



Landau Equations

Ig(p)=(nim—1)!fnm 11 dae/ 11 ddkcmﬁ(l— » a:e)

-

e€Ein (G) ceC(G) e€ Eing (G)

A necessary condition for a singularity is that the integrand is singular (¢=0)

{ = Z ae(q? —m?) =0 e every internal line is either
€ By (G) on-shell (g?=m?) or a=0 or both

A necessary condition for a singularity of the integral is that there be double poles

9 . 3 2 o
for each loop k_: E QEE{QE m:)=0. qy=p — k.m2
= L (IR c p p
Double pole: €€ Eint (G~)

. . . = k,my
4 * since g, are linear in k_ =

I

—> > *a/=0 | Landauloop equations

einloop

integration contour
pinched between poles



Coleman-Norton interpretation

Landau equations (necessary and sufficient conditions for a branch point)

{ = Z ae(q® —m?) =0 Z taeq, =0

e€ B (G) einloop

4-momenta add up to zero after rescaling by a
/\ [Coleman and Norton 1965]

=

Landau diagram is interpreted as space-time diagram
* momenta are on-shell (classical)
* a, are the proper times for propagation

More physically: singularities due to classically allowed processes
e similar to optical thoerem



Pham interpretation

Landau (= ) alg—mi) =0 E - Eoeq =0
equations €€ By (G) einloop
on-shell constraints (Euclidean d=2) normal vectors of

on-shell constraints g?=m?
are linearly dependent

i

q:%—l_qg:me

/

intersection
satisfies both
on-shell constraints

circles are

tangent on boundary
of space where
circles intersect



Vanishing cycle

Mathematics Physics

S IV

consider integration contours in the space

singularity is pinched as e>0
£(G)\S(G) sHiariy 5 p

space of momenta with on-shell locus removed

Homology group is that of a plane with two holes
H1(R*\{paUpg})

When cirlces are tangent homology group shrinks ~ homology cycle h becomes trivial

H;(R*\p) Hadamard’s “vanishing cycle”



Homology and Homotopy

Integrals are functions f d 1
Ia(p) = 4%, :
of external momenta p ) Cel(;(IG) BEE(G) (ge(k,p)]* — m2 + ie

Homology: integration contours y and Y’ are homologous if y-y’ is a boundary of some space
Homotopy: homotopic paths in external momenta can be deformed into each other

Homotopy classes of paths in space of Homology classes in space of
external momenta determine discontinuities internal momenta
dx ) determines branch points
In,, s —In, /s= — = 21
&y &

N, . . _ l

These two concepts are connected through the Picard-Lefshetz theorem



1-loop example

Consider again the 1-loop bubble in d=2

p—k,my

. y 1 1
T = _P P__ = lim /dzk - ;
o(p) e—01 k2 —m? +ie (p — k)2 — m +ie’

k,my

Going to Feynman parameters

1

—iT
In(s) = lim do —
o(#) e»0t Jo  sa(l—a) —mia—mi(l—a)+ic =(
integrand is singular (¢ =0) at
s+m3—m3 £ /52— 2s(m? +m3) + (m§ — m3)? + ise on-shell locus

O = 2s

* necessary but not sufficient condition for singularities of integral

: : L . de ,
singularites require pinches, i.e. 7-=0 j two solutions

ma

. — 2 — 9 — ) —_
normal threshold s = (mi+m2)" —ie,  ax=""mmr +iesgn(mz —mi), | .| ation of branch points

pseudothreshold s = (mi —ma)* +ie,  ax= mz”izml —iesgn(my —my). | © solutions to Landau equations




Picard-Lefschetz Theorem

1 17

lols) = lm | do e 20 —m2( —a) +ie on-shell locus: a = a,
- /1 do g = 3T m3 —m? £ /s — 2s(m} + m3) + (mf — m$)? + ise
o [a—ai(s)lla—a_(s)] T 2s '
-

s a
two roots
for each s

somes
’,——‘\\\ /
\
| S e

normal threshold integration contour [0,1]
sy = (mq + mo)? in o space

What happens as we take a monodromy of s around s,?
* Poles a, move around too
*  Contour must move out of the way to avoid poles

S a




Picard-Lefschetz Theorem

Discontinuity
= difference between I(s) before and after analytic continuation
= monodromy of saround sy: (1 — #,_(, fmy)2) Io(50)

difference

initial integration contour final _ .
integration contour

integration contour

_ I/
A

/C

Picard-Lefschetz Theorem: .
deform difference contour

(1 - ‘ﬁf@z{mﬁrmﬂ”) Io(s0) = (e, ) /dI coboundary ¢
pak vanishing cell e (vanishing cycle)
monodromy integral over -

in exeternal momtena the coboundary M

kronecker index ='intersection number between integration contour
boundary

and vanishing cell -
& . (vanishing sphere)

P <e,h>=1 : :

° * cycle pinches (vanishes) at s=s,

e




Picard-Lefschetz Theorem

A= (]1—,@’3:3*)/&:%/{11,
h ¢

What’s the point?
1. treats integral and discontinuity of integral on the same footing

« Amplitude and its discontinuities have same integrand, different integration contours
2. formulais fully analytic: no 6 functions of 6 functions

coboundary ¢

vanishing cell e (me.ishing cycle) * Integral over VaniShing CYCIG can be done with CaUChy’S thm
oundary @ _ @
(vanishing sphere) '
272 ( dea dex )
= —— |\ IESa= — I'tSn—
S0 T a—as)(@—a-) T (a—ay)(a—a-)

e

resa=aof ()da =27 f(ap) = 2midad (o — ayp)

For >1d integrals, need Leray multivariate residue calculus / W = (gm')Q / resg, resg, w.
* Leads to Cutkosky’s formula 81690 o
—

Leray coboundary operator



lmaginary contours

Physicists like to keep +i€ in the interand and integration contour d*k real

h

X

real integration contour complex
complex poles vanishing cell
a(s)
We can deform reaI
% vanishing cell
complex /
integration contour real poles a.(s

Integrand is now real

No more is

d?k
Io(p) = /h (k2 — m3[(p — k)2 — mJ] Deformation doesn’t even have to be small



Momentum space

* More useful, and physical, to work in momentum space instead of a space

p—k,my

/ d%k
O —mll[(p k)2 — m3)

kml

In d=2 on-shell spaces are hyberbolas

5 \Q_»Q/
1
s1(p. k) = (K°)* — (k') —=mi, —

s3(p k) = (Q — K0)? — (K")2 — m3

~_ \

- “
// \\ _ k] _
/ _ N <<CS2
/S =120 % />>>\arrows indicate
s < complex part from +ie
// \\ * integration contour isreal plane
/>\\ //<\
N s . .
\\ // \\ // go to complex Integration contour
AN Z
W Y s must be real at some point
\\ // 4 * must pinch singular surface
N /
N %
D /




Vanishing cell/cycle/sphere

1. Define by s,>0 & s,>0

same as surface where all lines are on-shell
61 62 = SlnSZ

3. Define the vanishing cycle as the coboundary 6, 6, of the vanishing sphere

dkg A dky
1_-’#;.3: 7y 47 ) 2 ID — = 'E'.h
( (rr4maz) Tole) = —(e. ) 51620000e (K2 — mi][(p — k) — m3]
discontunity = integral over vanishing cycle

L for pesudothreshold
* integration region does not intersect vanishing cell
e discontinuity vanishes




Bubble in d=3

on-shell locus p— k,ms

- > In(p) = _.P p _ VT my +mg + /5
Sl—ko_k _ml_o O(p) —.—O—.— \/glog(m1+m2_\/§

7 k,m
s9=(Q —ko)? — k* —m3=0 T

(Q + m1 + m2)(Q — m1 — m2)(Q — m1 + m2)(Q + m1 — my)

magnitude of k: fixed: £/ =

4Q?

at fixed Q

e 2 points for d=2
e circle for d=3

-

Pham: branch points

are critical points of
Q projection map

vanishing A D
sphere

(on-shell space) Q ¢ Threshold

¢  Pseudothreshold




Triangle in d=3

_ [ 3 1
B /hd kS](’Pj k)sa(p, k)s3(p, k)

? Y12 + Y23 Y13 + v D Y23 + Y13 Y12 +ivVD Y13 + Y12 Y23 + iV D .
log | — ' +log | — - +log | — + m
4v D Y12 + Y23 y13 — iV D Y23 + Y13y12 — iV D Y13 + Y12 Y23 — 1V D

Zé;?ﬂi—mf—mf

Y = 2m;m j

D=1-yly— y3s — yis — 2y12 Y23 Y13

Landau variety /= Z ae(q2 —m?) =0 has 4 branches
e€ By (G)

3 bubble singularities 1 triangle singularity

 One of the a,=0 * Ala,>0
* corresponds toy;=1 * Corresponds to D=0

p2
q1, 1My
> : P3
g2, M2

Pl




Bubble singularity of the triangle

The on-shell space (vanishing sphere)
for the bubble at fixed external momenta Q =(p;)?= is a circle

p2
q1, ™M1
: : p3
q2, T2
p1

Absorption integral for the bubble singularity (y,,=1) of the triangle
i.e. monodromy around y;,=1 vanishing cycle

A;p(p) - (1 - Mylz=1) I = _<612:h>
Leray residue formula X 152_626161

= —(27ri)2(812, h)

w .
S vanishing sphere

ressg res; w
0201€e12

= —(27!‘@:)2(612, h)f d‘?’k

By1e1s (dS1 Adso)ss”

can write as an integral over the vanishing sphere



Sequential discontinuity

Now we want to take a discontinuity of Aff around the triangle singularity (D=0)

(1 - Ap=o) AS (p)

The on-shell space now has all 3 propagators on shell: s;=5,=5,=0

bubble

triangle

Fix Q (intersect with a plane) g = S

(vanishing cell)

region of integration domain
with s3>0

(vanishing sphere)

SlﬂSQ —_— ) /Sg

51FWSQFWU%
integration domain for bubble integral



Sequential discontinuity

<

030201 €123

vanishing )
sphere 3 6-functions

FEI for 3 cut lines

(1~ Ap0) A5 (p) = 21 ey, udresa)ean, ) |

63030201 €123 (dsl N d32)33

3 d’k 23

= (2mi) _ 4Tt
010203€123 dSl A d32 A d83 D

|

We get the same thing as if we just took a single triangle discontinuity:

d3k
(1 — Ap=0)I> = —(e123, h)
6162638382816123 518283

030201 €123 ds; Adsa A dss D

hierarchcial

Pham relation (]l o =///D=0) (]1 - %yu:l)ID = (]1 - %D=0) I> .




Contractions

A useful language for studying singularities of integrals is with graph contractions

removing legs and connecting vertices

C,\(\O(‘ \)e(\ce
ck 560\ q1 _ q1
e kerk = | | — G = q4 —~ Go:>©<a
q2 q2

kernel of contraction image of contraction

GSa

All Landau diagrams G
come from contractions /
of original graph

GBb




Hierarchical principle

Theorem 2 (Pham). For a series of contractions G — GX — --- — G* — Gy the relation

(1= ttp,) - (1= ttp, ) I6(p) = (1 — Atp, ) I (p) (6.2)

holds when Py, - - - Py correspond to principal Pham loci, and p is in the physical region.

O

|:ik(%{;<

N
=]

_<

e.g. (]l — ./ﬂpzo) (]l — .ﬁyuzl)fp = (]l — ﬂDZQ)ID.

A))

* “Principal” is a technical mathematical requirement about stable topological type
* Pham corrected subtlety in previous formulation of the “hierarchical principle”
[Landsdoff et al. 1966]



Tangential intersections

For the d=3 triangle, look at the Landau variety in the space of external kinematics

q1, My
= g3y
P3
q2, M3

lines are
intersections betwee
triangle and bubbles

™m

_ (pi+p)? - mi —m]
Yij = 2mtmj

D=1-yi—yds — vyl — 2y12 Y23 113

pillow region
and cones are D=0 (triangle)

planes are y;=%1 (bubbles)




Tangential intersections

For the d=3 bubble, look at the Landau variety in the space of external kinematics for a>0

(5 +03)? = m? = m

2m;m;

Yij =

D =1-yi — y3s — yis — 2y12 Y23 Y13

bubble and triangle
intersect tangentially

regions shown have a>0
(singularities are in the physical region)



Tangential intersections

(,__— triangle a>0 a<0
= \/__’\ / /
n, o= x D

We can consider monodromies around bubble and triangle

We want to take (1 - JﬂD:O) (1 - ///y12=1)11> no singularity for a<0
I I adding monodromy does nothing
.//fm My,

We can show that My I(p) = Ic(p).

nhony =npon. ==y My oMy, Ic(p) = My, o My 1@\ My, Ic(p).

— (1=, ) (1=t )Ic(p) = (1 —tt, ) Ic(p)




Transversal intersections

bubbles intersect

each othertransversely\ T

traingle and bubble
intersect tangentially

For transversal intersections, monodromies commute

Pn’ ’ 77’ 5
c/
[
i U
/ \
| .

Thm (Pham): (15, (1~ tp,, ) 1c(0) = (1~ ) (1~ 5, ) ()




Transversal intersections

\_/ on-shell surfaces may not intersect in internal momenta
— c - . 1y
T / * vanishing cell from first monodromy doesn’t intersect

integration contour of second

\g/‘,\b * then sequential monodromy vanishes
- P e K 1 - f) (1]- _ H)I -
o iy \'P ( Mp_ Mp , )1c(p) =0

Singular surfaces intersect transversaly in external momenta

e Condition for internal intersecton is
* Landau equations for internal momenta can be solved simultaneously
* Kernels of contractions are compatible (Pham)

A=

j><$ >< different I e ><

different



Steinmann relations

No sequential discontinuities in partially overlapping channels in the physical region

t [Steinmann 1960, in German]

T cannot have a term like

S { log(s — 4m?) log(t — 4m?)

Follows from the Pham diagram analysis

|—| kernels are incompatible

\ o (ﬂ - //fm) (ﬂ Ry )IG(p) =0
()
SF N b
o - X

b

|| —

|

O — -



Extended Steinmann relations

Compatible kernel condition more general

[ ] |

N\

o Box diagram
I I cannot have terms like
| | —%
l \;ﬁé log(pi — 4m?) log(p3 - 4m?)
O — \QA —

—

* channels are not partially overlapping

l
X



Bootstrap application

Can we bootstrap the two loop massive box graph?

First computed in 2014
s = ! by Johannes Henn and Simon Caron-Huot

1. Identify possible singularities

physical singularities
(first symbol entry)

s =4m?, s— 00,
t=4m?, t— oo,

2
m~ =0,

2
defining u:—4m,
S

unphysical singularities
(not first symbol entry)
s =0, t =0, s+t=0,
st +4m?s + 4m?*t = 0.

4m? . .
v=-—-. thensingularities are {u,v}={0,1,%°)



Bootstrap application

2. ldentify possible letters:
* algebraic functions (with square roots) of singularities with no new singularities

4m? 4m?
/B'U_]' }B’U/b‘_l u:—_ e —
L :'LL, L — s _L = — — b v .
1 2 = 7 3, +1’ 8 Bow+ 1’ s t
L3:1+u, L4:1+'U, /8 —/8 }9 _/8
L — uv ’Lt., L — uv ‘U,
L5:u+v Lﬁzﬁu_]_ ’ ﬁuv-’_ﬁu 1 ﬁuv"‘ﬁv ﬁu:\,-].-l-u, 61):V1+Ua
Bu+1 Ly =1+u+wv, Buw =V1tu+uv.

3. Impose Pham/Steinmann type constraints
Cannot have discontinuity in sthen t

m: e s=4m?isl1l+u=L3=0
s — e t=4m?isl=v=14=0

/ " forbidden by Pham
Ly M? ® 7




Bootstrap application

Determine symbol

* 2-loop can have 4 terms in symbol

o 11 letters—11% = 14641 possible terms

* symbol must be integrable = 2597 terms

* must be invariant under Galois symmetry ve — —Ve

integrable weight-four symbols 2597

Galois symmetry 306

vanishing s — 0 limit 284

only L1, L3, Le, Ly, L1p in second entry after L 230 .

only Ly, Ly, Ly, Lo, Lo in the second entry after Ly| 213 | St€inmann/Pham
only L1, L3, Lg, Lo, L1o in second entry after L; 182 constraints
only Lz, L4, L7, Lo, L1p in the second entry after L4 | 160

without Lz or L3 in last entry 102

without L7 or Ly in last entry 83

without L7 or L in second-to-last entry 73

no Ly, Ly, Ls, Ls, or Lg in the first entry 1

Final result completely determined (and agrees with Henn/Caron-Huot)
. Ly Ly
S(Zapox) = L ® — @ Le @ Lo — Le ® — ®@ Lg ® Lg
L3 L3

L
+L6®L6®§1§2 ®L9+L6®L9®%®Lg +L;®L1y® 22 ® L+ Ly ® L1y ® Lg ® Ly
345 5

Ls
+ L ® L ®Lg® Lg+ Lg® Lo ® Lg ® Lg +L7®L7®%®L9+L7®L7®L8®L6.
5 .



Summary

Geometric analyis is a powerful way to understand singularities of scattering amplitudes

1. Branch points are critical points of projection map

2. Picard-Lefshetz and Leray coboundary theory
connect homotopy of paths in external momenta
to homology of integration contours

S a

3. Geometric picture lets us prove general relations about sequential discontinuities

az0 ~ «<0 hierarchical case (tangential)
N4 (1= ttp,) - (1 - tp, ) Ia(p) = (1~ 3, ) I ()
_(( ,,,,,,,, R \_
non-hierarchical case (transversal) Po|

:3 1 =
(11 — Jff'P,ﬁ;) (11 - J//P&H)IG(P) = (]1 — ‘/ffpnu) (]1 - ‘/ﬂ’Pﬁ;)IG(p) ”/ N_

4. Provides powerful constraints useful for perturbaive S-matrix bootstrap



Next steps

* Weaken assumptions
* We assumed all masses were generic

e Zero masses, or equal mass can make singularities overlap

k

\—/ Special-mass
EE—

configuration

S E1>

k

e Study second-type (non-Landau) singularities

e.g. bubble in d=3

p_kamQ

Io(p) = p( )p zglog(ziizztﬁ)

k, m1

* Not on physical sheet

* Still relevant to analytic structure of

scattering amplitudes



Next steps

e Study more examples
* All mass n-gon in n-dimensions (like bubble in 2d, triangle in 3d)

one loop %] {i1,i2} {1, s8n-2}
S(I?'L ) oc /det y Zw{’il,’ig} ® w{‘il,ig,ig,i4} ® ® w{l,...,n}
NEl
1 (2mi) 1
cuty I;"* *P(y) = dety’ ™" (y')

Vdety

Connect back to the finite S matrix
* Can overlapping singularities tell us about factorization?
* Does preserving Pham relations in the massless limit lead to a natural scheme
for remainder functions?
* What can be said non-perturbatively?



Older



In d=2, vasnishing sphere (on-shell locus) is two points

1{ri'rr.l___.-

';' ..i'#f'. .,If.’_f F 1_ 'l. h‘ L. 'ir
A W

,;’.:44'1;11».\.‘1%\1_
slzkg—kQ—m%zo

SQZ(Q—]C())Q—EQ—’ITL%

as Q varies points approach and retreat

PN

A

Q

¢ Threshold
¢  Pseudothreshold




Example

Consider the simplest 1-loop diagram: the bubble in d=2

p _kﬂmQ
1 1
Io(p) = £ P = lim [ d%
O(p) ———Oi E_I)I(I)1+ k2 — m% + i (p _ k-)? _ m% 4 ge
k,mq
_ —2m log Vi +m2)2 — s —iy/5 — (m1 — ma)?
V=[5 — (m1 — mg2)?][s — (m1 + ma)?] V(mi +m2)? — s +iy/s — (my —my)?

Even this diagram is remarkably rich, as we will see.

* At has a normal threshold branch cut starting at s = sy = (my + mg)2
* For s> s, the on-shell process p - p; +p, is allowed for physical on-shell momenta

L.<
* Tree-level process tells you about singularities of loop amplitudes
* e.g., through optical theorem

m 2 =/dH L

2




Example

Consider the simplest 1-loop diagram: the bubble in d=2

p _kﬂmQ
1 1
Io(p) = £ P = lim [ d%
O(p) ———Oi E_I)I(I)1+ k2 — m% + i (p _ k-)? _ m% 4 ge
k,mq
_ —2m log Vi +m2)2 — s —iy/5 — (m1 — ma)?
V=[5 — (m1 — mg2)?][s — (m1 + ma)?] V(mi +m2)? — s +iy/s — (my —my)?

Even this diagram is remarkably rich, as we will see.

It has a branch cut startingat s = sy = (m1 + m2)2

* This is a normal threshold
* For s> s, theon-shell process p & p; +p, is allowed for physical on-shell momenta

* Near normal threshold D
2
Io(p) ! > d In(—1) :

- \/—4m1m2(s — SN)

It has a pseudothreshold branch cut starting at s =sp = (m; — ms)?

e Cannot be reached with physical momenta (real s>0, )

* Near pseudothreshold
21

olp)i— i

In(1)=0




BACKUP



Absorption integrals

Optical theorem

~O+ - [

All imaginary parts come from ie in propagators  Im D2 —m2+ic = 27T5(P2 E ’mg)

1
Io(p) = < ) 2
o /dk m2+zs(p k)2 —m?2+ie

k,m
Absorption integral replace propagators with 6functionsj j

A8(so) =Disc In(p)=2Im Io(p) =/d2k5(k2 —m2)0(ko)[6(p — k)2 — m?|0(po — ko)

Cutkosky: The discontinuity of an integral is given by an absorption integral where all
the cut lines are replaced by 6 functions

IT a% [ (-2m)6u(ed)s@-m2) ] 2 12

CEé(G) e€ Eint (G*) ¢’ €E(G)\E(G*) qer — My, + 1€




Im and Disc

Optical theorem

Im P P = /dH‘ 4p<
! ~ \ ~ il
Im —< = sum of all cuts { + —C + {

~ TN

* Imaginary partis a very coarse tool: cannot isolate individual branch points

Consider conventional definition of In(z), e.g. in Mathematica

1. Imaginary part defined on negative real axis Imln(—z)=/ir
2. Has a branch point at z=0 and a branch cut for z<0

. . In(—1+1ig)=1inm
* In(z) is discontinuous across branch cut l

Disc,Inz =In(z + i) — In(z — ie) =27wib(2) el )= 1

* Discontinuitiy is twice the imaginary part for In(z)



Challenges with Im

A i« S A LLR S
ER EE/
-~

4m2 16m21 s dm2 16m? s
A 3 1 * e : *
Imaginary part gives the total discontinuity * To understand full analytic structure
e Cannot distinguish overlapping branch cuts need to isolate each branch point/cut
1
Im =278 (p? + m?)

p?—m?+ie
* Imaginary part is real
e Cannot find sequential discontinnuties by taking imaginary part again

e Absorption integral formula has non-analytic components



Example

Consider the simplest 1-loop diagram: the bubble in d=2

p_kamQ
1 1
I :.p( ).p = i d’k
o(p) v k2 —m?2+ic(p—k)?> —m2 +ie
_ _ -2 o vV (m1 +mg)? — s —iy/s — (m1 — ma)?
/=[5 — (m1 — ma)2][s — (m1 + m2)?] ° \ /(1 + ma)? — s + in/5 — (m1 — ms)?

Even this diagram is remarkably rich, as we will see.
It has a branch cut startingat s = sy = (my + m2)2

e This is a normal threshold
* For s> sy theon-shell process p & p, +p, is allowed for physical on-shell momenta

4p<
It has another branch cut startingat s = sy = (m1 + m2)2

e Thisis a pseudo threshold
e Cannot be reached with physical momenta (real s>0, )



Example

Consider the 3-point diagram at 1-loop in a theory with massless internal lines:

—>p2
p = Li Lis(2) + = In(22) In | ——2
1 = Lia(2) — 12(2)+§ n(zz)In 11— >
& p; with zz = p3/pt, (1-2)(1-2)=p3/pi
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How did | get into this?

What about QCD or N=4 SYM theory?
 N=4is supposed to be a beautiful simple theory with lots of symmetry
*  Why should an S matrix that doesn’t exist have any symmetry?

]

“Remainder functions” have nice properties: R, = ln[MBDS

[Bern, Dixon, Smirnov 2005]

: L
BDS Anzatz: MEDS — exp [Z ((47]_6_7)5 9%) (f(L)(E)MTgl)(Le) L oW 4 ET(?”L)(E))]

L

* R, respects dual conformal invariance but violates Steinmann relations

BDS-like ansatz [Alday, Giotto, Maldacena 2009]
* violates dual conformal invariance but respects Steinmann relations

[Hannesdottir and MDS 2020]

Taking H, = Hecergives a finite S matrix for QCD and N=4
S = lim e*!IsceTto—tHt
t— oo
* S matrix elements are finite and agree with BDS-like remainder functions

* Unifies coherent/dressed states, SCET, and modern amplitude calculations

What properties does the finite S matrix have?



How did | get into this?

The S matrix describes the scattering of particles

% /
|¢in> “In state” 7* % “out state” |tout )
How is the S-matrix actually defined?

* Doesn’t exist: infinitiely oscillating phase

?
S— lime™
t— o0

1 Ht

? . .
S — lim e*Hotg—tHt
t— o0 [Wheeler, Heisenberg 1960]

* Works for mass-gapped theory
* Infrared divergent in gauge theories

1Hat,—1Ht

g
S— lime e

t— oo
° HA is the ”asymptotic Ha miltonian” [DO”ard 1970, Fadeev and Kulish 1970]
* Includes all long-range interactions, e.g. Coulomb phase



The S Matrix

The S matrix describes the scattering of particles

“In state” > * % “out state”
‘ win>

|wout>

S matrix been studied both perturbatively and non-perturbatively
Does it exist?
e Hard to prove
* The usual definition only of S only works for theories with a mass gap

Is it unique?
e Strong constraints: unitarity, analyticity, causality, cluster-decomposition, etc.
* The S matrix program of the 1950s-1960s studied this question

What constraints does it satisfy?
» Useful both pertubatively and non-perturbatively



Analyticity revisited

* The S matrix program from 1960s was never completed
* Progress was slow
* Quantum Field Theory was shown capable of explaining strong interactions

e Recent progress in perurbation theory has renewed interested in analytic structure
* More “data” — explicit calculations
* Mathematics of functions appearing in amplitudes (cluster algebras, etc.)
e \Very efficient ways to write down amplitudes,
e Success in the perturbative S-matrix bootstrap
* collinear limits, Regge limits, conformal invariance, Steinmann relations
* N=4SYM 6 point amplitude bootstrapped to 7 100pS [caron-Huot et al 1903.10890]

Steinman relations are constraints on sequntial discontinuities(Steinmann 1960]

_ 3 4
possible term: In(p; + p2)?In(ps + pa)? \ /
not allowed (at any order):In(p1 + p2 + p3)?In(ps + p3 + p4)?

| N

Why? 6



Landau diagrams

consider only the lines with az0

1) Integrand is singular:
(2 1

0

2 2
t= Z aﬁ('?(:’ - m(:) =1 71
e€ By (G) % .} — ><:><
q2 ]

Landau diagram
d,, 0, on-shell. g,q, irrelevant

8 Landau diagrams for the ice-cream cone graph

(not a sufficient condition)

%@ e These are all possible branch points
qﬂ (necessary condition only)
%% * Some diagrams may not be branch points



Pham interpretation

Landau equations

normal vectors of
(= Y g —md) =0 E Faeq, =0 mm) on-shell constraints g2=m?
€€ Eint (G) einloop are linearly dependent

on-shell constraints (Euclidean d=2)

G+ q;=

on—sf:(ell space
(@)
G © TR

intersection circles are 5
S(Gy)

o ,
satls:eﬁ both _ tangent on boundary n=m
on-shell constraints . space where
on-shell space ............ '
of external momenta {p}

circles intersect

Landau variety is
the boundary of the projection map

Pham: Landau variety is the set of critical points of the projection map
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