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Five things | learned;

How strong-energy ordering works
Resummation which is (currently) beyond SCET
A hidden symmetry of soft functions

How to use symbols to compute integrals

That the hemisphere NGL to 5-loops is
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What are non-global logarithms?

The doubly-differential hemisphere mass distribution

f
d?o
| 2 2
In SCET, factorization formula L
A
AM2dM2

= H(Q* 1) /ddekRJ(MIz, — Qkp, ) J (Mg — Qkg, 1) S (k, kg, 1)

 Valid as long as both M, and M, << Q
* Factorization formula use to resum thrust and heavy jet mass to NNNLL
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What are non-global logarithms?

Soft function can be written as:

_ Non-global piece
Determined by RGE

(no u dependence)

. Thrust: depends only on S¢(0) - .
* Heavy jet mass: depends only on some moment — /0 Sy2(iL) In [2 cos(g)] dL
« Structure of S(L) in general complicated

» Calculated at 2-loops in 1105.3767 and 1105.4628

1 z
— 16Li
1) 614<z+1

2
(&) [—88L13(—z) — 16Liy (z .
— 8Li3(—2) In(z) — 16¢(3) In(z + 1) + 8¢(3) In(z) — %1114(2 +1) 4+

) + 16Li3(—2) In(z + 1)

+88Li2(—32) In(z)

The logarithmic terms in S¢(L) are called non-global Iogarlthms (NGLs):

S¢(L Z’das gL

Subleadlng NGLs




Hemisphere mass

« Non global logs are single logs: (a.L)"
» Collinear finite
* For leading NGL of hemisphere masses L = log( M,/Mg, )
« Can use L =1log(Q/Mg) instead (integrate over M,)
« Can use energy instead of mass L = log(Q/ER)
* Not kosher for collinear sensitive logs, but ok for NGLs
« Large logs come from energy integrals

/Q dE; /Q dE, “/Q dBny _ 1, ., Q
En—l n! En

* Region where energies are not strongly ordered contributes finite part
(subleading logs)

« Eg = energy of hardest gluon going right
* n-1 emissions go left
« only softest 1 goes right




Strong-energy ordering

* In SCET language: soft -> softer -> even softer ... -> softest
« Evolution in Wilson line operators space?

YlT Y5 YlJr VsYo IARNA L

Real-emission matrix elements-squared simplify:

mYTYO 2:Nm 2m (pa‘pb)
’<p1 p ‘a b‘ >| /cg pemélmm(pa,pl)(pl.pQ)...(pm.pb)

Extra simplification at large N,
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Strong-energy ordering

Virtual and real-virtual emissions also simplify

Basic idea E % g

« Chop up virtual momenta into energy-ordered regions

1 dw; dS2
—don = a2 S (W + W)

(oy) W1 4

5[2 dwl dQl dw2 ng
21 w1 47 Wa 47

n d_3dw1 dQl dwg dQQ dCU3 dQ3 (- 4+ .- )
3! wy 47 wy 4w ws 4w

» Virtual emissions have same form as real-emissions, with opposite sign

(Whgr + Wry + Wy + Wyy)

* Virtual emissions do not become new Wilson lines
* Virtual emissions are not measured
Cy = Poi® = Warr = ~Warv Cy = PaPiy = ~Wvrr = Wyny
Co=Pus (Par + Pin) = Wavy = =Wavn Ca = PYPLPE = Wova = —Wovy

a1l and b1 dipoles \/ Independent emissions



Derive leading NGL integrand

Integrate Wg,r against measurement function for right hemisphere mass

——/7

Three loops

Two loops
S (p

5(3) (P) + @3/ 1R2L3R9p<3 (C3 - 04)
E1>Ey>E3

+ C_YS/ 1L2R3R9p<3 (02 — 04) + @3/ 1L2L3R0p<3 (—Cl +Cy+ C5 — 04)
E1>FE>>FE3 E

1>Fo>FE3

* Includes collinear-divergent global-non-global cross terms
« Can subtract off using exponentiation
* Need to use symmetries to know what to subtract -
C1 =P,° = Wrrr = —Whkry
Four loops: a mess Cy= P12 (P + P2) = Wavy = Wy
* Hard to simplify )
Cy = PyPsy = —Wyrr = Wyry

Cy=PLPAPE = Wyygp = —Wyyy
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Resummation of NGLs

1. Dasgupta-Salam (hep-ph/0104277, 2001)

« Large N, monte carlo Probability of configuration C

/

8<aSL>=f(L) S R(L)

/

Sudakov factor

Run Monte Carlo

S(asL) ~ exp (—CFCA%Q (11 : ((‘232) t2)

C|Hgr empty

2. Banfi-Marchesini-Smye (hep-ph/0206076, 2002)

EaE Gab(E) = / d4§_‘_2k @swab(k) [u<k) Gak(E) ’ Gkb<E) o Gab(E)]

« Same assumptions as DS (strong-energy-ordering, leading NGL, large N)
« Supposedly equivalent
» we give the first numerical check



BMS equation .

7 (Pa - p1) (P1 - P2) - (P~ Do)

. Start with strong-energy ordered integrand
. Add measurement function

1
2
3. Take derivatives

4. Simplify with algebra ul({p}) = ©(pQ — 3 2(pi - n)0a(p))
5

6

. Add in virtual corrections
. Divide by global term \
dS; i
OLgar(L) = - We b [Uabi(L)9a;(L)gjs(L) — gap(L)]
left \
dQl

Uapj (L) = exp [L/ - (W;b W;j — W]lb)
right

9.5(L) gives the leading NGL
for the right hemisphere mass

from an ab dipole

We checked that this agrees with the SEO picture + global subtractions to 4 loops



Symmetries of BMS equation

Performing the right-hemisphere integral (softest emission) exactly, BMS becomes

L [T @) o g [ e P
il = g7 | ety | ot [2 Ao EC 9“”(”]

(ij) =1 — cosb;;
Project onto unit disk = — 1?253 e [ij] = (i) = 1 - cos b,

dz; dz; |20 — 25|
aLgoLb(L) :/ ’ /
pl<t 2T |z — 25?25 — 2

1+ (ab) Lz
- { [(1 Tt gy GeiBenlh) =g “b(L)} '

BMS equation respects hyperbolic metric on Poincare disk

(i) =

|2i — Zj|2

(T =TJz?) (A = [2]?)

Isometry group is PSL(2,R)



Mobius transformations
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Mobius symmetries

» (Geodesics are circular arcs perpendicular to boundary
* |sometry group maps geodesics to geodesics

Azimuthal rotations
(only obvious symmetry)

Instead of 4 angles for a,b: only 1 independent variable

gas(L) = g({ab), L) = g ( L= cosby L)

2 cos b; cos b’

Enormous simplification!



Now integrate

lterative structure:
» 3-loop integrates over 2-loop, etc

0 (3)(L) _ L /1d0089-/2ﬁd(b- (7b) Lz(r— — T — Tip)° + ) | g _ g
S an Jy T Sy T @Gy L2 e

« At each order, 1 polar angle and 1 azimuthal angle integral

« Azimuthal integrals simplify by choosing a=n

Azimuthal integrals can be done by contour integration:

11+, G+ ) — )
cos 0, — cos 0; 1+ (bn) 2

(I)gz

Lig(~ (j)) — Li2<—<bﬁ>>]



Polar integrals

(I)?’ - cos by i CoSs 9j [ln 1 _-||: EZZi tn <jﬁ> : <bﬁ> +2‘<Jﬁ> - <bﬁ>|Liz(_<jﬁ>) - Liz(_<bﬁ>)]
\ Y,
Y

Transcendentality weight 2

Hard to integrate over dcos6,
« Mathematica can do 3-loop, but not easily

2

, T 1 1 |
gT_(lb)(L) =L} w5 In(1+wuy) — o1 In? uy In(1 4 ) + 3 Inwuy In*(1 +uy) — o In*(1 + uy)

Y

| . 1 . 1. 1. 1 ¢(3)
— In Lis(— — In(1 Lis(— 5 lis(—u1) — 5L
S Inu, i ( u1)+12 n(1 4 u;)Lig( u1)+12 i3(—up) 2 13(1+u1)+ 12

\ J
Y

Transcendentality weight 3

 Mathematica cannot do 4-loop azimuth or 4-loop polar



Goncharov Polylogarithms

Classical Polylogarithms (CPLs) Goncharov Polylogarithms (GPLs)
Toodt
Lig(x / —le 1 ( G(wl,...,wn;az)z/o t_le(wg,...,wn;t),
1 index f
G(0, ..., 0;2) = —'lnnx
—— n! argument
Ga, -+ ,a;x) = %ln” (1— g)
G(0, - & 0,a;2) = —Li, <—>
3-loop polar integral:
L (3 L[> _ ( 1 1 ) N
— 0= L — d an = — O3 ((bn y \(JT

Easy to integrate if we can write as GPLs with (j7) in argument only



Symbols

 Introduced to physics by Goncharov, Spradlin, Vergu and Volovich
« Dramatically simplified 2-loop 6 particle MHV amplitude in N=4
from 17 pages to 2 lines  r®(u,us,us) = z(m v~ g Tia(1~1/u, >)

i=1
4

3 2
1 . 4y o,
_g (ZE:lLlQ(l—l/uz)) + — J 12] +5

Symbol is a mapping to a tensor algebra over the group of rational functions
* Acts nicely on polylogarithms and iterated integrals

Toodt
le / —_— le 1 G(w17 [N ,wn;l') — /0 t_ w1G<w27 e ,wn;t),
a xr
SLig(x)] = —(1—2) @2 ® - @z S[G(ay,. .. an: )]:(1_a_n)®...®(1_a_l)

k—1

« Maps constants to zero
« Two functions with the same symbol agree up to constants
» For functions of uniform transcendentality, constants must be transcendental:

Transcendentality weight: 1 2 3 4 3
Constant: T ((2)  w,¢3) w((3),¢(4) ¢(5),¢(2)¢(3)



Symbols

1. Original function: ®; = ! 1+ m)

" cos 6 — cos b, 1 + (bn)

2. Calculate its symbol: s [@,(u,u)l, o..] = w ® (1+us) — (1 +u1) @ (1 +us) — s ® (1 4+ 1up) + (1 + up) @y

—(I+u)@(14+u)— (14+u) @ua+2[(1 +ug) ® (14 uz)]

3. Find GPLs in canonical form with same symbol
@g(ul,uz) = G(O,Ul)G(—l, UQ) — G(—l,ul)G(—l,Ug)
— G(—1,0;uz) — G(0, —1;us) + 2G(—1, —1, uz)

4. Check numerically or with coproduct for missing transcendental numbers

D3 (uy, u2)|u1>u2 = <I>3G(u1, uz) + cm’

3) m

1 1
5. Integrate Titw (L) = 35G(=Liu) — 1G(=1, =1, ~T;u)

1 1 1
+ ZG(_L _17 07 U/l) + EG(_L 07 _17 ul) - EG(_]-J 0707u1)

-CC a

1 1 1
ﬁgii)(l/) =0 In(1+2x) — Y In®zIn(1 + ) + T Inzln*(1+z) — 36 In®(1 + )

1 . 1 . 1 . 1 . 1 3
T 19 In zLis(—z) + 1 In(1 + x)Lix(—x) + EL13(—$) — Eng (1 = :v) -F Cl(Q),
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r = (ab)

Lo —W—QG(—1 la) — 7T—ZG(—l 0: 2)
7 e e e A V'V i e

3 3
— 75011~ 1 —Lia) + = G(-1,~1, - 1,05)
G, 21,0, 215 2) — S G(=1,-1,0,0:2) + = G(=1,0, -1, —1: )

12 ) ) ) 7(1; 12 I ) Y 7x 48 9 9 9 7x

1 1 1 ¢(3)
CG(-1,0,-1,0:2) — —G(=1,0,0, —1: 2) + —CG(—1 ) — 2 G,
96G( ,0,—1,0; ) 32G( ,0,0, ,:U)—|—48G( ,0,0,0;x) T G(—1;x)

We stopped at gab(L) at 4-loops and gna(L) at 5-loops:

_ 7T_2 2 @ 3 ™ _WQC(3) 17¢(5) ' ;5
gn(L)=1— —L%+ L° + L—I—( 360 + 480>L

24 12 34560
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Resummation Bl/g

1 27 a a L/2
Orga(L) = %/0 d cos Gj/o do; (ai)?;b) [2!1/2 cos” 0; { [ag]l[)jb]} Ga;(L)gin(L) — gab(L)]

Boundary condition is simple: g.(0) = 1

Can solve numerically by discretizing and integrating from L=0

o— _  Dasgupta-Salam

(Monte Carto event generator)

0.8

| 2 2
| 0) 1y _ oy [T p2 14 0.180625L
08} gon (L) = P | =5 L Sa5ama 01
gna(l) | U )
04+ ] Y

DS fit to MC output

0.0k ]
0 1 2 3 4 5

BMS (our solution) g
 Agreementto 0.1% for L < 2
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Convergence
_ 5 C3) 3 ™ m2¢(3) | 17¢(5)\ .5
gnﬁ(L)_l—ﬂL +TL +34560L +(— 360 T 480 )L + ..

gua(L) = 1 —0.411233512L% + 0.10017141L% + 0.0028185501 L* + 0.0037694522L° + . . .

1.0

1.02

08" . 7
-loop 101}

0.6

gna(l)

g n ﬁ(L)
04 2un(L)

1.00}

0.2r

099!

resummed

0.0}

0 1 2 3 4 5 0.98!

Seems to converge up to around L=1
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Exponentiation

8n ﬁ(L)

Exponential of 2-loop result has excellent agreement with resummed result

Very intriguing...
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Summary
1. Strong-energy ordering lets us resum stuff SCET can’t (so far) %
* Includes all real and virtual contributions
 Easiest at large N \@
» Leading non-global logs only (not systematically improvable)

2. Leading NGL has a hidden PSL(2,R) symmetry
* . Mobius transformations of Poincare disk

,,,,,,,

3. NGLs at each order involve iterated integrals 0.65

gurll)
4. Symbols and Goncharov polylogarihms "

«  Simplify expressions 02
« Make polar integrals trivial 00

5. Resummation of leading NGL is possible



Questions

1. Can leading NGLs be resummed with Effective Field Theory?

(- € - & o

ViYe YisYs PERURA S %))))))\\\ &V///
=

2. Physics of PSL(2,R)?

@>>>>>)11(<<<<@

3. Can the BMS equation be solved anlaytically?

4. Can subleading NGLs be resummed?
* Probably not with strong-energy-ordering

5. Do these symmetries/methods work for non-hemisphere NGLs?
* Yes, for out-of-jet energy

6. Does Exp[2-loop] always work well?
* Important for phenomenology



