

NON-GLOBAL LOGARITHMS TO 3, 4 AND 5 LOOPS, SYMBOLS AND THE POINCARE DISK

SCET XI

March 27, 2014

Matthew Schwartz
Harvard University

Based on arXiv:1403.4949 with Hua Xing Zhu

Five things I learned:

1. How **strong-energy ordering** works
2. Resummation which is (currently) beyond SCET
3. A hidden **symmetry** of soft functions
4. How to use **symbols** to compute integrals
5. That the hemisphere NGL to **5-loops** is

$$1 - \frac{\pi^2}{24} L^2 + \frac{\zeta(3)}{12} L^3 + \frac{\pi^4}{34560} L^4 + \left(-\frac{\pi^2 \zeta(3)}{360} + \frac{17 \zeta(5)}{480} \right) L^5 + \dots$$

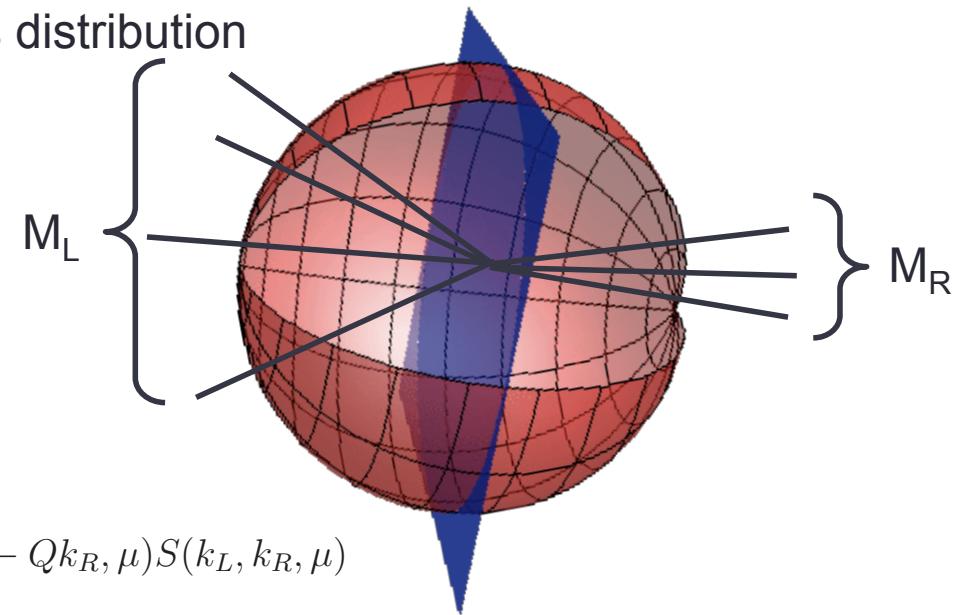
What are non-global logarithms?

The doubly-differential hemisphere mass distribution

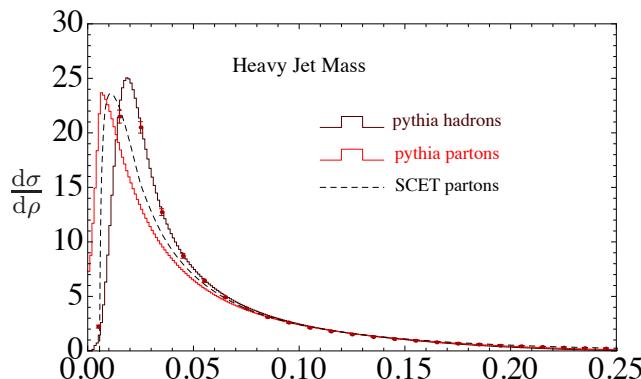
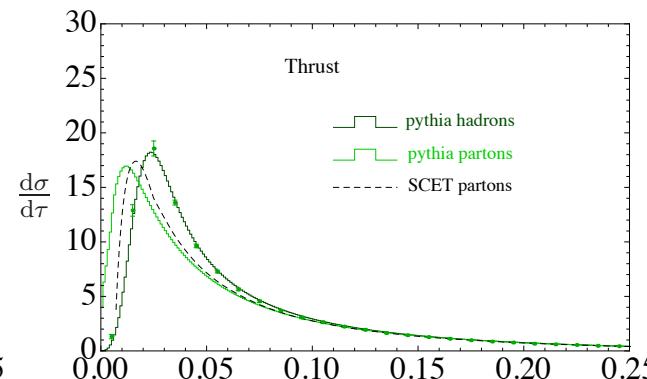
$$\frac{d^2\sigma}{dM_L^2 dM_R^2}$$

In SCET, factorization formula

$$\frac{d^2\sigma}{dM_L^2 dM_R^2} = H(Q^2, \mu) \int dk_L dk_R J(M_L^2 - Qk_L, \mu) J(M_R^2 - Qk_R, \mu) S(k_L, k_R, \mu)$$



- Valid as long as both M_L and $M_R \ll Q$
- Factorization formula use to resum thrust and heavy jet mass to NNNLL



What are non-global logarithms?

Soft function can be written as:

$$S(k_L, k_R, \mu) = S_\mu \left(\ln \frac{k_L}{\mu} \right) S_\mu \left(\ln \frac{k_R}{\mu} \right) S_f \left(\ln \frac{k_L}{k_R} \right)$$

Determined by RGE

Non-global piece
(no μ dependence)

- Thrust: depends only on $\tilde{s}_f(0)$
- Heavy jet mass: depends only on some moment $\frac{2}{\pi} \int_0^\pi \tilde{s}_{f2}(iL) \ln \left[2 \cos \left(\frac{L}{2} \right) \right] dL$
- Structure of $S_f(L)$ in general **complicated**
 - Calculated at **2-loops** in 1105.3767 and 1105.4628

$$\begin{aligned} & \left(\frac{\alpha_s}{4\pi} \right)^2 \left[-88 \text{Li}_3(-z) - 16 \text{Li}_4 \left(\frac{1}{z+1} \right) - 16 \text{Li}_4 \left(\frac{z}{z+1} \right) + 16 \text{Li}_3(-z) \ln(z+1) \right. \\ & \quad \left. + \frac{88 \text{Li}_2(-z) \ln(z)}{3} - 8 \text{Li}_3(-z) \ln(z) - 16 \zeta(3) \ln(z+1) + 8 \zeta(3) \ln(z) - \frac{4}{3} \ln^4(z+1) \right] + \dots \end{aligned}$$

The logarithmic terms in $S_f(L)$ are called **non-global logarithms** (NGLs):

$$\tilde{s}_f(L) = \sum_i c_i (\alpha_s L)^i + d_i \alpha_s (\alpha_s L)^i + \dots$$

Leading NGL

Subleading NGLs

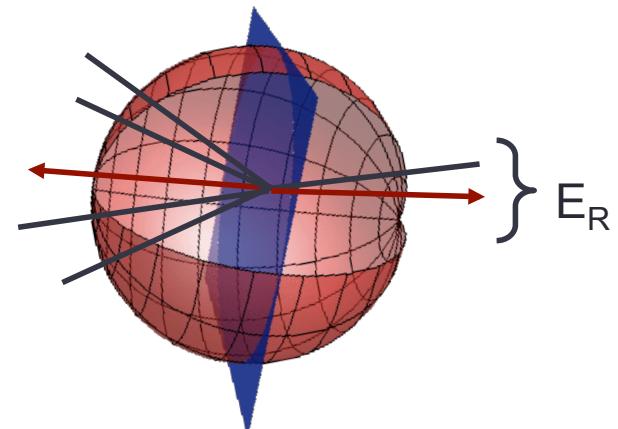
Hemisphere mass

- Non global logs are **single logs**: $(\alpha_s L)^n$
 - Collinear finite
- For **leading** NGL of hemisphere masses $L = \log(M_L/M_R)$
 - Can use $L = \log(Q/M_R)$ instead (integrate over M_L)
 - Can use energy instead of mass $L = \log(Q/E_R)$
 - Not kosher for collinear sensitive logs, but ok for NGLs
- **Large logs come from energy integrals**

$$\int_{E_2}^Q \frac{dE_1}{E_1} \int_{E_3}^Q \frac{dE_2}{E_2} \dots \int_{E_n}^Q \frac{dE_{n-1}}{E_{n-1}} = \frac{1}{n!} \ln^n \frac{Q}{E_n}$$

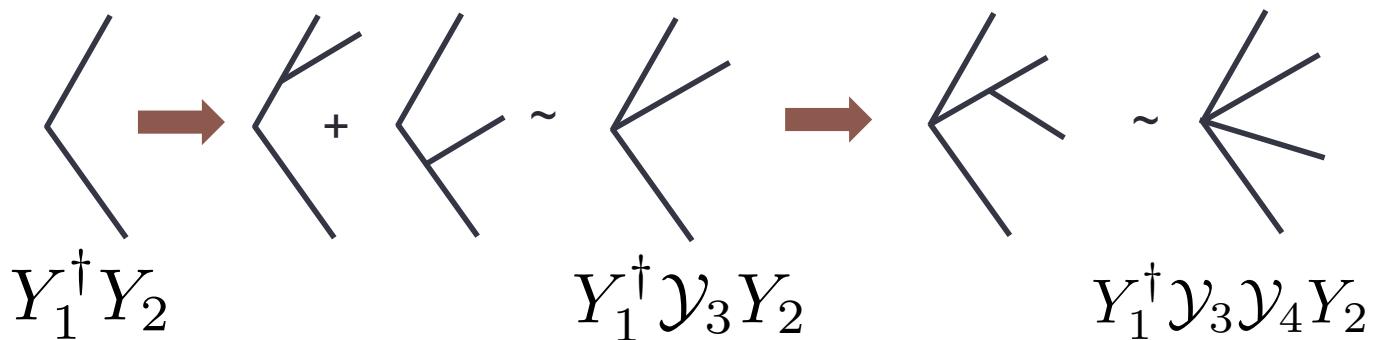
- Region where energies are not strongly ordered contributes finite part (subleading logs)

- E_R = energy of hardest gluon going right
 - $n-1$ emissions go left
 - **only softest 1 goes right**



Strong-energy ordering

- In SCET language: soft \rightarrow softer \rightarrow even softer ... \rightarrow softest
- Evolution in Wilson line operators space?



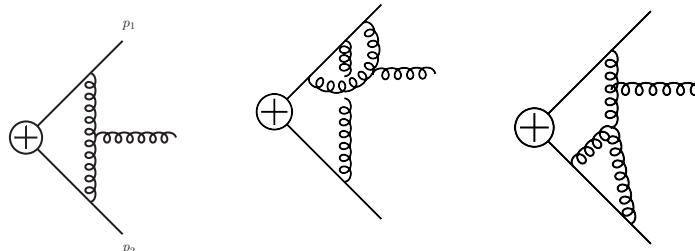
Real-emission matrix elements-squared simplify:

$$|\langle p_1 \cdots p_m | Y_a^\dagger Y_b | 0 \rangle|^2 = N_c^m g^{2m} \sum_{\text{perms of } 1 \cdots m} \frac{(p_a \cdot p_b)}{(p_a \cdot p_1) (p_1 \cdot p_2) \cdots (p_m \cdot p_b)}$$

Extra simplification at large N_c

Strong-energy ordering

Virtual and real-virtual emissions also simplify



Basic idea

- **Chop up virtual momenta** into energy-ordered regions

$$\begin{aligned}
 \frac{1}{\sigma_0} d\sigma_m = & \bar{\alpha} \frac{d\omega_1}{\omega_1} \frac{d\Omega_1}{4\pi} (\mathcal{W}_R + \mathcal{W}_V) \\
 & + \frac{\bar{\alpha}^2}{2!} \frac{d\omega_1}{\omega_1} \frac{d\Omega_1}{4\pi} \frac{d\omega_2}{\omega_2} \frac{d\Omega_2}{4\pi} (\mathcal{W}_{RR} + \mathcal{W}_{RV} + \mathcal{W}_{VR} + \mathcal{W}_{VV}) \\
 & + \frac{\bar{\alpha}^3}{3!} \frac{d\omega_1}{\omega_1} \frac{d\Omega_1}{4\pi} \frac{d\omega_2}{\omega_2} \frac{d\Omega_2}{4\pi} \frac{d\omega_3}{\omega_3} \frac{d\Omega_3}{4\pi} (\mathcal{W}_{RRR} + \mathcal{W}_{RRV} + \dots)
 \end{aligned}$$

- Virtual emissions have **same form** as real-emissions, with **opposite sign**
- Virtual emissions do **not** become new Wilson lines
- Virtual emissions are **not measured**

$$P_{ab}^1 = \frac{(ab)}{(a1)(1b)}$$

$$C_1 = \mathcal{P}_{ab}^{123} = \mathcal{W}_{RRR} = -\mathcal{W}_{RRV}$$

$$C_3 = \mathcal{P}_{ab}^1 \mathcal{P}_{ab}^{23} = -\mathcal{W}_{VRR} = \mathcal{W}_{VRV}$$

$$C_2 = \mathcal{P}_{ab}^{12} (\mathcal{P}_{a1}^3 + \mathcal{P}_{b1}^3) = \mathcal{W}_{RVV} = -\mathcal{W}_{RVR}$$

$$C_4 = \mathcal{P}_{ab}^1 \mathcal{P}_{ab}^2 \mathcal{P}_{ab}^3 = \mathcal{W}_{VVR} = -\mathcal{W}_{VVV}$$

a1 and b1 dipoles

Independent emissions

Derive leading NGL integrand

Integrate $W_{\text{RVR...}}$ against measurement function for right hemisphere mass

Two loops

$$S^{(2)}(\rho) = \bar{\alpha}^2 \int_{E_1 > E_2} 1_R 2_R \theta_{\rho < 1} \theta_{\rho < 2} (\mathcal{P}_{ab}^1 \mathcal{P}_{ab}^2) - \bar{\alpha}^2 \int_{E_1 > E_2} 1_L 2_R \theta_{\rho < 2} (\mathcal{P}_{ab}^{12} - \mathcal{P}_{ab}^1 \mathcal{P}_{ab}^2)$$

Global part

Non-global part

Three loops

$$S^{(3)}(\rho) = \bar{\alpha}^3 \int_{E_1 > E_2 > E_3} 1_R 2_R 3_R \theta_{\rho < 3} (-C_4) + \bar{\alpha}^3 \int_{E_1 > E_2 > E_3} 1_R 2_L 3_R \theta_{\rho < 3} (C_3 - C_4) + \bar{\alpha}^3 \int_{E_1 > E_2 > E_3} 1_L 2_R 3_R \theta_{\rho < 3} (C_2 - C_4) + \bar{\alpha}^3 \int_{E_1 > E_2 > E_3} 1_L 2_L 3_R \theta_{\rho < 3} (-C_1 + C_2 + C_3 - C_4)$$

- **Includes** collinear-divergent **global**-non-global cross terms
- Can subtract off using exponentiation
 - Need to use symmetries to know what to subtract

Four loops: a mess

- Hard to simplify

$$C_1 = \mathcal{P}_{ab}^{123} = \mathcal{W}_{RRR} = -\mathcal{W}_{RRV}$$

$$C_2 = \mathcal{P}_{ab}^{12} (\mathcal{P}_{a1}^3 + \mathcal{P}_{b1}^3) = \mathcal{W}_{RVV} = -\mathcal{W}_{RVR}$$

$$C_3 = \mathcal{P}_{ab}^1 \mathcal{P}_{ab}^{23} = -\mathcal{W}_{VRR} = \mathcal{W}_{VRV}$$

$$C_4 = \mathcal{P}_{ab}^1 \mathcal{P}_{ab}^2 \mathcal{P}_{ab}^3 = \mathcal{W}_{VVR} = -\mathcal{W}_{VVV}$$

Resummation of NGLs

1. Dasgupta-Salam (hep-ph/0104277, 2001)

- Large N_c monte carlo

$$\mathcal{S}(\alpha_s L) = \frac{1}{\sqrt{\Delta_{ab}(L)}} \sum_{\mathcal{C}|\mathcal{H}_R \text{ empty}}$$

Probability of configuration C

Run Monte Carlo

$$\mathcal{S}(\alpha_s L) \simeq \exp \left(-C_F C_A \frac{\pi^2}{3} \left(\frac{1 + (at)^2}{1 + (bt)^c} \right) t^2 \right)$$

2. Banfi-Marchesini-Smye (hep-ph/0206076, 2002)

$$E \partial_E G_{ab}(E) = \int \frac{d^2\Omega_k}{4\pi} \bar{\alpha}_s w_{ab}(k) [u(k) G_{ak}(E) \cdot G_{kb}(E) - G_{ab}(E)]$$

- Same assumptions as DS (strong-energy-ordering, leading NGL, large N)
- Supposedly equivalent
 - we give the first numerical check

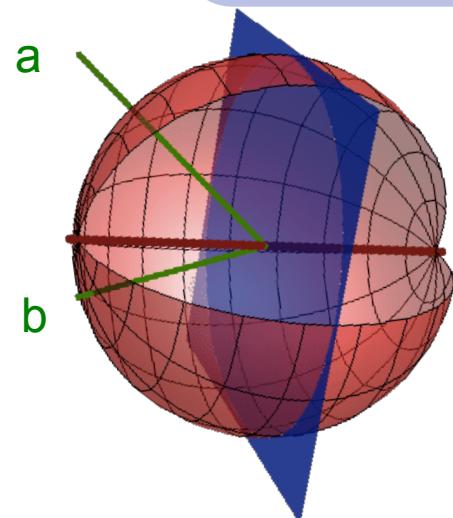
BMS equation

1. Start with strong-energy ordered integrand
2. Add measurement function
3. Take derivatives
4. Simplify with algebra
5. Add in virtual corrections
6. Divide by global term

$$\frac{(p_a \cdot p_b)}{(p_a \cdot p_1)(p_1 \cdot p_2) \cdots (p_m \cdot p_b)}$$

$$u(\{p_i\}) = \Theta\left(\rho Q - \sum_i 2(p_i \cdot n)\theta_R(p_i)\right)$$

$$\partial_L g_{ab}(L) = \int_{\text{left}} \frac{d\Omega_j}{4\pi} \mathcal{W}_{ab}^j [U_{abj}(L)g_{aj}(L)g_{jb}(L) - g_{ab}(L)]$$



$$U_{abj}(L) = \exp \left[L \int_{\text{right}} \frac{d\Omega_1}{4\pi} (\mathcal{W}_{ab}^1 - \mathcal{W}_{aj}^1 - \mathcal{W}_{jb}^1) \right]$$

$g_{ab}(L)$ gives the leading NGL
for the right hemisphere mass
from an ab dipole

We checked that this agrees with the SEO picture + global subtractions to 4 loops

Symmetries of BMS equation

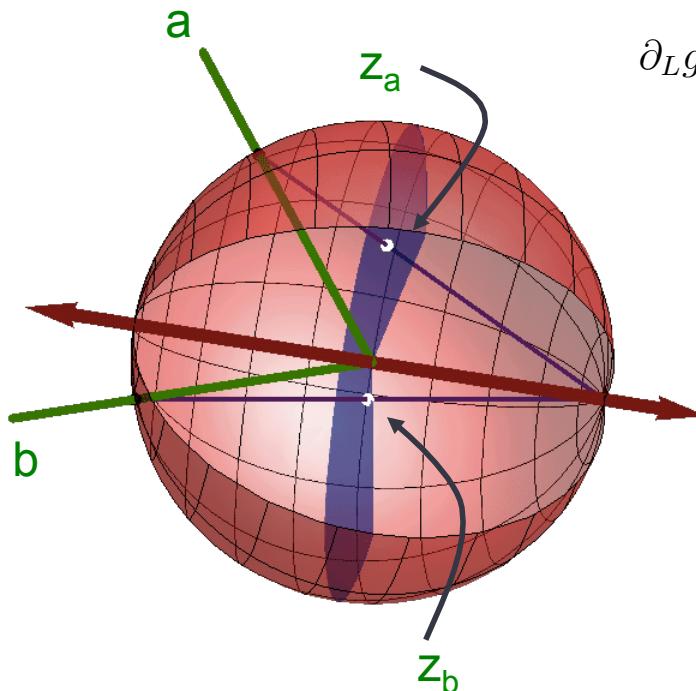
Performing the right-hemisphere integral (softest emission) exactly, BMS becomes

$$\partial_L g_{ab}(L) = \frac{1}{4\pi} \int_0^1 d\cos\theta_j \int_0^{2\pi} d\phi_j \frac{(ab)}{(aj)(jb)} \left[2^{L/2} \cos^L \theta_j \left\{ \frac{[ab]}{[aj][jb]} \right\}^{L/2} g_{aj}(L) g_{jb}(L) - g_{ab}(L) \right]$$

$$(ij) = 1 - \cos\theta_{ij}$$

Project onto unit disk $z = \frac{\sin\theta}{1 + \cos\theta} e^{i\phi}$

$$[ij] = (i\bar{j}) = 1 - \cos\theta_{i\bar{j}}$$



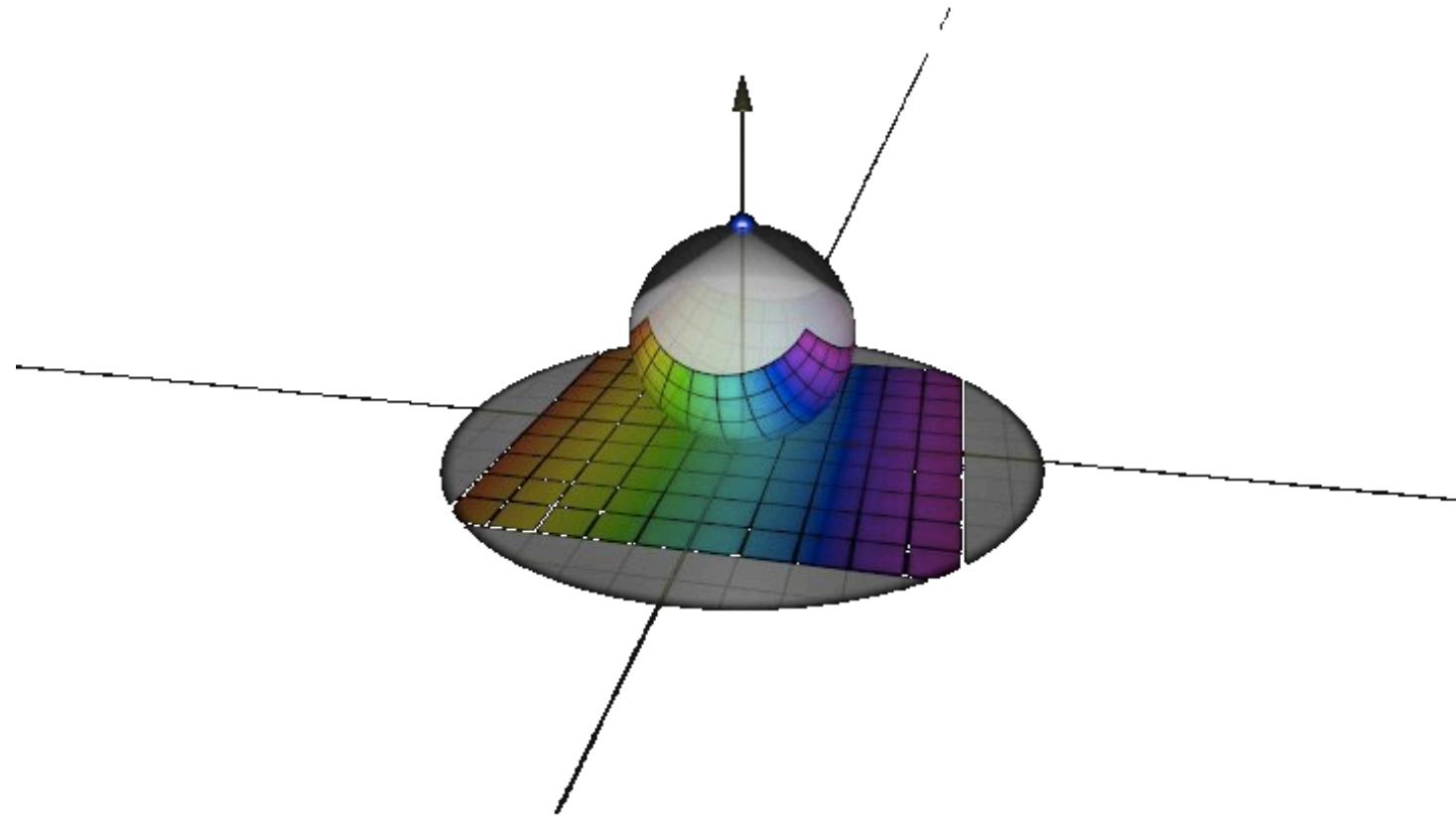
$$\partial_L g_{ab}(L) = \int_{|z|<1} \frac{dz_j d\bar{z}_j}{2\pi} \frac{|z_a - z_b|^2}{|z_a - z_j|^2 |z_j - z_b|^2} \times \left\{ \left[\frac{1 + \langle ab \rangle}{(1 + \langle aj \rangle)(1 + \langle jb \rangle)} \right]^{L/2} g_{aj}(L) g_{jb}(L) - g_{ab}(L) \right\}.$$

BMS equation respects hyperbolic metric on Poincare disk

$$\langle ij \rangle = \frac{|z_i - z_j|^2}{(1 - |z_i|^2)(1 - |z_j|^2)}$$

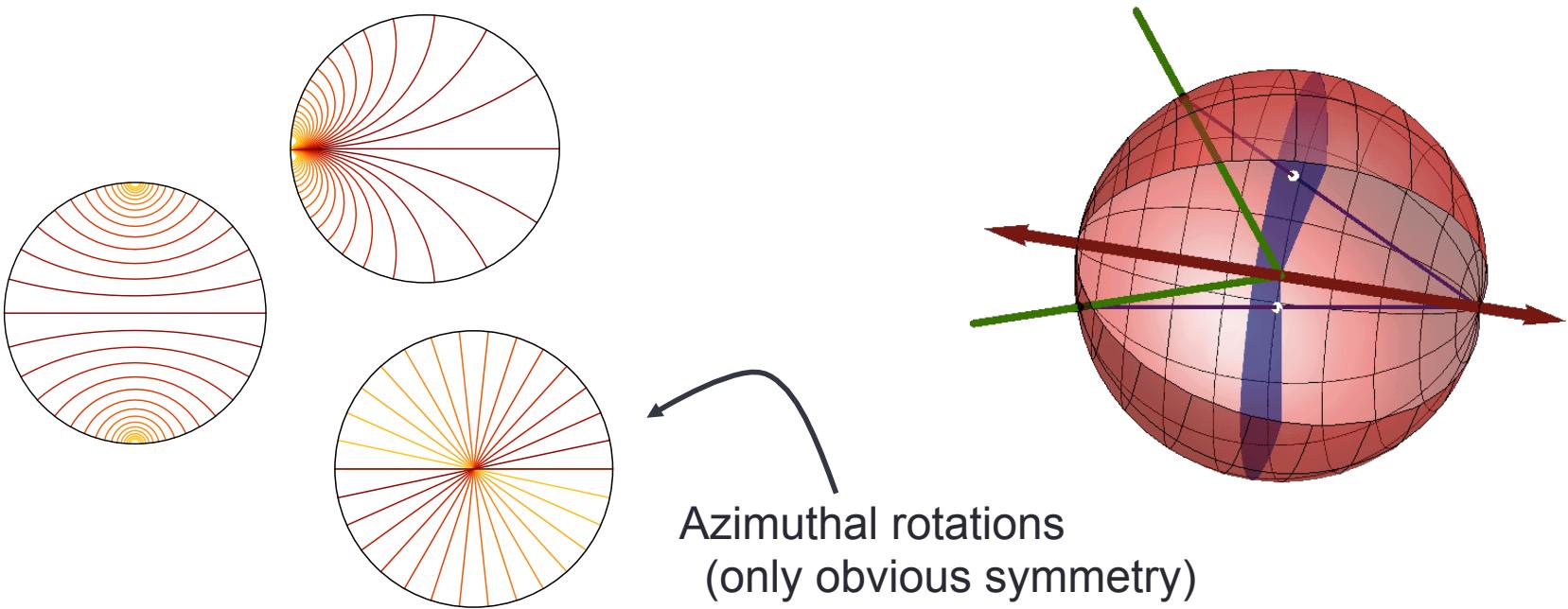
Isometry group is $PSL(2, \mathbb{R})$

Möbius transformations



Möbius symmetries

- Geodesics are circular arcs perpendicular to boundary
- Isometry group maps **geodesics** to **geodesics**



Instead of 4 angles for a, b : only 1 independent variable

$$g_{ab}(L) = g(\langle ab \rangle, L) = g\left(\frac{1 - \cos \theta_{ij}}{2 \cos \theta_i \cos \theta_j}, L\right)$$

Enormous simplification!

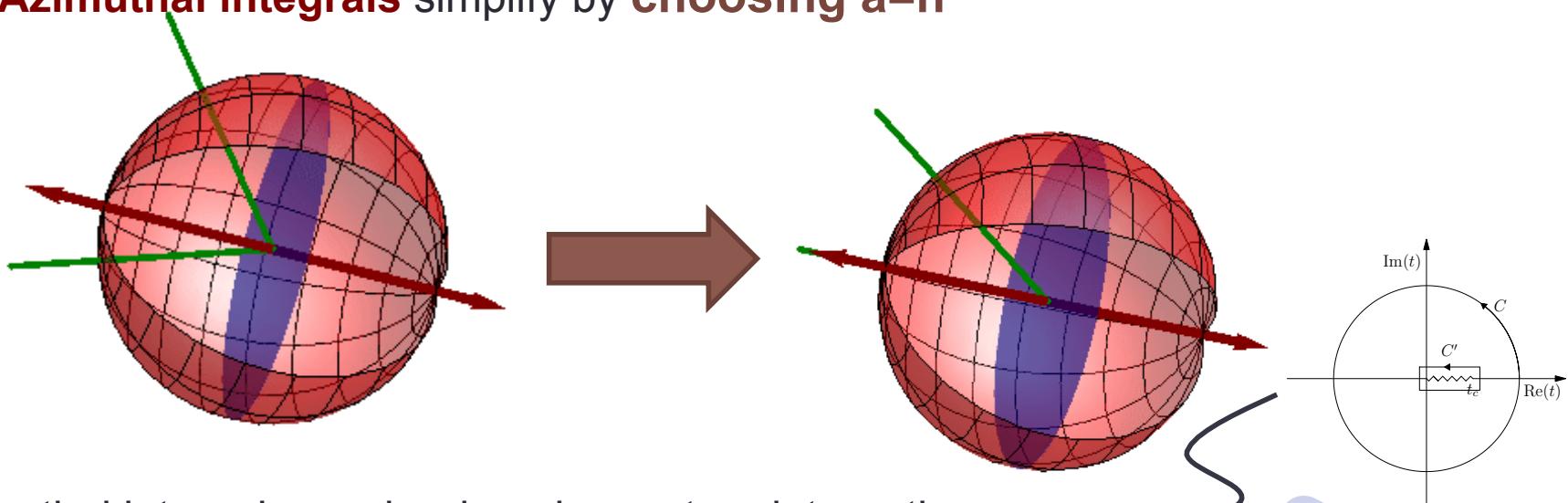
Now integrate

Iterative structure:

- 3-loop integrates over 2-loop, etc

$$\partial_L g_{\bar{n}b}^{(3)}(L) = \frac{1}{4\pi} \int_0^1 d \cos \theta_j \int_0^{2\pi} d\phi_j \frac{(\bar{n}b)}{(\bar{n}j)(jb)} \left[\frac{L^2}{2} (r_{\bar{n}b} - r_{\bar{n}j} - r_{jb})^2 + g_{\bar{n}j}^{(2)} + g_{jb}^{(2)} - g_{\bar{n}b}^{(2)} \right]$$

- At each order, 1 polar angle and 1 azimuthal angle integral
- Azimuthal integrals** simplify by **choosing a=n**



Azimuthal integrals can be done by contour integration:

$$\Phi_3 = \frac{1}{\cos \theta_b - \cos \theta_j} \left[\ln \frac{1 + \langle j\bar{n} \rangle}{1 + \langle b\bar{n} \rangle} \ln \frac{\langle j\bar{n} \rangle + \langle b\bar{n} \rangle + |\langle j\bar{n} \rangle - \langle b\bar{n} \rangle|}{2} \text{Li}_2(-\langle j\bar{n} \rangle) - \text{Li}_2(-\langle b\bar{n} \rangle) \right]$$

3-loops

Polar integrals

$$\Phi_3 = \frac{1}{\cos \theta_b - \cos \theta_j} \left[\ln \frac{1 + \langle j\bar{n} \rangle}{1 + \langle b\bar{n} \rangle} \ln \frac{\langle j\bar{n} \rangle + \langle b\bar{n} \rangle + |\langle j\bar{n} \rangle - \langle b\bar{n} \rangle|}{2} \text{Li}_2(-\langle j\bar{n} \rangle) - \text{Li}_2(-\langle b\bar{n} \rangle) \right]$$

Transcendentality weight 2

Hard to integrate over $d\cos\theta_j$

- Mathematica can do 3-loop, but not easily

$$g_{\bar{n}b}^{(3)}(L) = L^3 \left[\frac{\pi^2}{72} \ln(1 + u_1) - \frac{1}{24} \ln^2 u_1 \ln(1 + u_1) + \frac{1}{12} \ln u_1 \ln^2(1 + u_1) - \frac{1}{36} \ln^3(1 + u_1) \right.$$

$$\left. - \frac{1}{12} \ln u_1 \text{Li}_2(-u_1) + \frac{1}{12} \ln(1 + u_1) \text{Li}_2(-u_1) + \frac{1}{12} \text{Li}_3(-u_1) - \frac{1}{12} \text{Li}_3\left(\frac{1}{1 + u_1}\right) + \frac{\zeta(3)}{12} \right],$$

Transcendentality weight 3

- Mathematica **cannot** do 4-loop azimuth or 4-loop polar

Goncharov Polylogarithms

Classical Polylogarithms (CPLs)

$$\text{Li}_k(x) = \int_0^x \frac{dt}{t} \text{Li}_{k-1}(t)$$

$$G(w_1, \dots, w_n; x) = \int_0^x \frac{dt}{t - w_1} G(\underbrace{w_2, \dots, w_n}_\text{index}; t),$$

$$G(\underbrace{0, \dots, 0}_n; x) = \frac{1}{n!} \ln^n x$$

$$G(\underbrace{a, \dots, a}_n; x) = \frac{1}{n!} \ln^n \left(1 - \frac{x}{a}\right)$$

$$G(\underbrace{0, \dots, 0}_{n-1}, a; x) = -\text{Li}_n\left(\frac{x}{a}\right)$$

3-loop polar integral:

$$\frac{1}{L^3} g_{\bar{n}b}^{(3)}(L) = -\frac{1}{24} \int_0^\infty d\langle j\bar{n} \rangle \left(\frac{1}{\langle j\bar{n} \rangle} - \frac{1}{\langle j\bar{n} \rangle - \langle b\bar{n} \rangle} \right) \Phi_3(\langle b\bar{n} \rangle, \langle j\bar{n} \rangle)$$

Easy to integrate if we can write as GPLs with $\langle j\bar{n} \rangle$ in argument only

Symbols

- Introduced to physics by Goncharov, Spradlin, Vergu and Volovich
 - Dramatically simplified 2-loop 6 particle MHV amplitude in N=4 from 17 pages to 2 lines

$$R_6^{(2)}(u_1, u_2, u_3) = \sum_{i=1}^3 \left(L_4(x_i^+, x_i^-) - \frac{1}{2} \text{Li}_4(1 - 1/u_i) \right) - \frac{1}{8} \left(\sum_{i=1}^3 \text{Li}_2(1 - 1/u_i) \right)^2 + \frac{1}{24} J^4 + \frac{\pi^2}{12} J^2 + \frac{\pi^4}{72}$$

Symbol is a mapping to a **tensor algebra** over the group of **rational functions**

- Acts nicely on polylogarithms and iterated integrals

$$\text{Li}_k(x) = \int_0^x \frac{dt}{t} \text{Li}_{k-1}(t)$$

$$G(w_1, \dots, w_n; x) = \int_0^x \frac{dt}{t - w_1} G(w_2, \dots, w_n; t),$$

$$\mathcal{S}[\text{Li}_k(x)] = -(1 - x) \otimes \underbrace{x \otimes \dots \otimes x}_{k-1}$$

$$\mathcal{S}[G(a_1, \dots, a_n; x)] = \left(1 - \frac{x}{a_n}\right) \otimes \dots \otimes \left(1 - \frac{x}{a_1}\right)$$

- Maps constants to zero
- Two functions with the same symbol agree up to constants
 - For functions of uniform transcendentality, constants must be transcendental:

Transcendentality weight:

1

2

3

4

5

Constant:

π

$\zeta(2)$

$\pi^3, \zeta(3)$

$\pi\zeta(3), \zeta(4)$

$\zeta(5), \zeta(2)\zeta(3)$

Symbols

1. Original function: $\Phi_3 = \frac{1}{\cos \theta_b - \cos \theta_j} \left[\ln \frac{1 + \langle j\bar{n} \rangle}{1 + \langle b\bar{n} \rangle} \ln \frac{\langle j\bar{n} \rangle + \langle b\bar{n} \rangle + |\langle j\bar{n} \rangle - \langle b\bar{n} \rangle|}{2} \text{Li}_2(-\langle j\bar{n} \rangle) - \text{Li}_2(-\langle b\bar{n} \rangle) \right]$

2. Calculate its symbol: $\mathcal{S} [\Phi_3(u_1, u_2)|_{u_1 > u_2}] = u_1 \otimes (1 + u_2) - (1 + u_1) \otimes (1 + u_2) - u_2 \otimes (1 + u_2) + (1 + u_2) \otimes u_1 - (1 + u_2) \otimes (1 + u_1) - (1 + u_2) \otimes u_2 + 2[(1 + u_2) \otimes (1 + u_2)]$

3. Find GPLs in canonical form with same symbol

$$\begin{aligned} \Phi_3^G(u_1, u_2) = & G(0; u_1)G(-1; u_2) - G(-1; u_1)G(-1; u_2) \\ & - G(-1, 0; u_2) - G(0, -1; u_2) + 2G(-1, -1, u_2) \end{aligned}$$

4. Check numerically or with coproduct for missing transcendental numbers

$$\Phi_3(u_1, u_2)|_{u_1 > u_2} = \Phi_3^G(u_1, u_2) + c\pi^2$$

5. Integrate

$$\begin{aligned} \frac{1}{L^3} g_{\bar{n}b}^{(3)}(L) = & \frac{\pi^2}{36} G(-1; u_1) - \frac{1}{4} G(-1, -1, -1; u_1) \\ & + \frac{1}{4} G(-1, -1, 0; u_1) + \frac{1}{12} G(-1, 0, -1; u_1) - \frac{1}{12} G(-1, 0, 0; u_1) \end{aligned}$$

6. Convert back to classical polylogarithms:

$$\begin{aligned} x = \langle ab \rangle \\ \frac{1}{L^3} g_{ab}^{(3)}(L) = & \frac{\pi^2}{72} \ln(1 + x) - \frac{1}{24} \ln^2 x \ln(1 + x) + \frac{1}{12} \ln x \ln^2(1 + x) - \frac{1}{36} \ln^3(1 + x) \\ & - \frac{1}{12} \ln x \text{Li}_2(-x) + \frac{1}{12} \ln(1 + x) \text{Li}_2(-x) + \frac{1}{12} \text{Li}_3(-x) - \frac{1}{12} \text{Li}_3\left(\frac{1}{1+x}\right) + \frac{\zeta(3)}{12}, \end{aligned}$$

4-loops

$$x = \langle ab \rangle$$

$$\begin{aligned} \frac{1}{L^4} g_{ab}^{(4)}(L) = & \frac{\pi^2}{36} G(-1, -1; x) - \frac{\pi^2}{144} G(-1, 0; x) - \frac{3}{16} G(-1, -1, -1, -1; x) + \frac{3}{16} G(-1, -1, -1, 0; x) \\ & + \frac{1}{12} G(-1, -1, 0, -1; x) - \frac{1}{12} G(-1, -1, 0, 0; x) + \frac{1}{48} G(-1, 0, -1, -1; x) \\ & - \frac{1}{96} G(-1, 0, -1, 0; x) - \frac{1}{32} G(-1, 0, 0, -1; x) + \frac{1}{48} G(-1, 0, 0, 0; x) - \frac{\zeta(3)}{16} G(-1; x) \end{aligned}$$

We stopped at $g_{ab}(L)$ at 4-loops and $g_{n\bar{n}}(L)$ at 5-loops:

$$g_{n\bar{n}}(L) = 1 - \frac{\pi^2}{24} L^2 + \frac{\zeta(3)}{12} L^3 + \frac{\pi^4}{34560} L^4 + \left(-\frac{\pi^2 \zeta(3)}{360} + \frac{17 \zeta(5)}{480} \right) L^5 + \dots$$

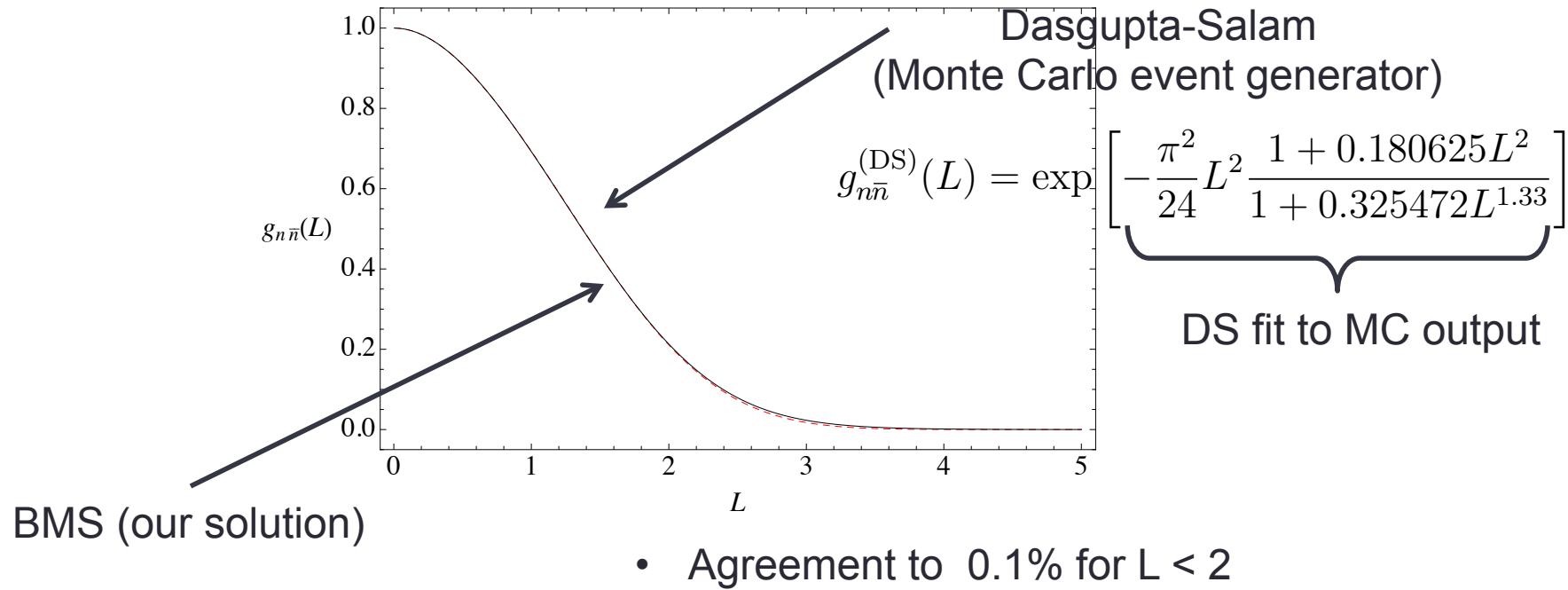
Resummation

$$\partial_L g_{ab}(L) = \frac{1}{4\pi} \int_0^1 d\cos\theta_j \int_0^{2\pi} d\phi_j \frac{(ab)}{(aj)(jb)} \left[2^{L/2} \cos^L \theta_j \left\{ \frac{[ab]}{[aj][jb]} \right\}^{L/2} g_{aj}(L) g_{jb}(L) - g_{ab}(L) \right]$$

BMS equation

Boundary condition is simple: $g_{ab}(0) = 1$

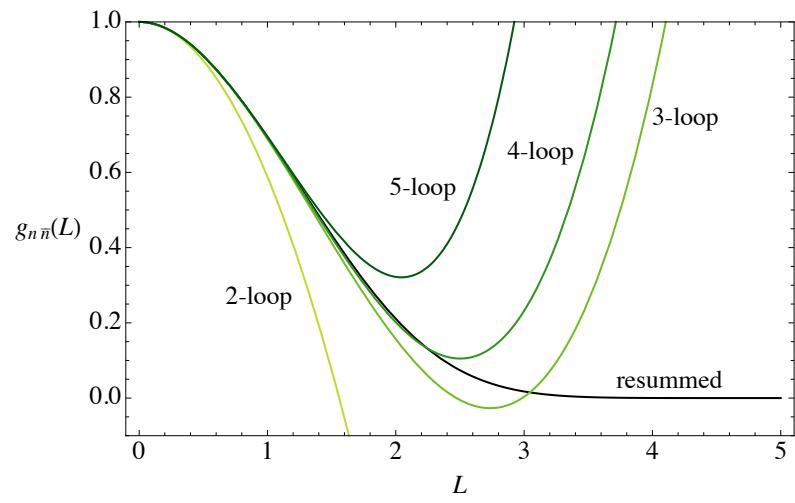
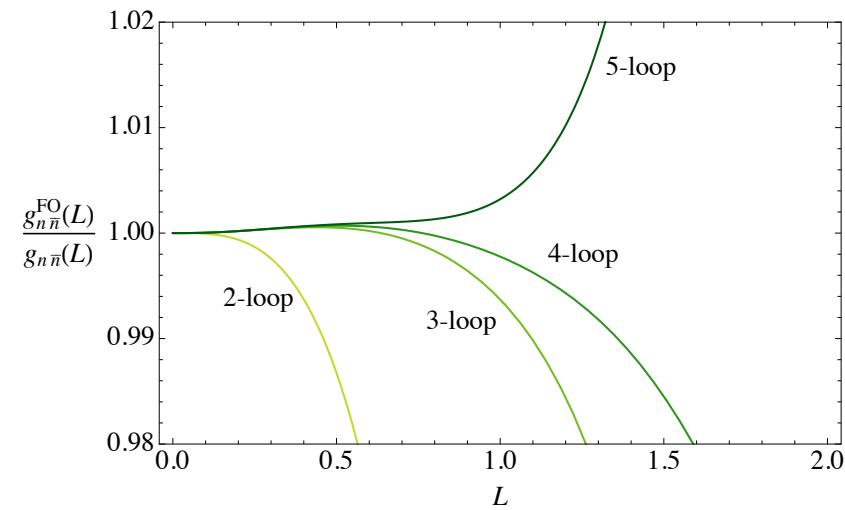
Can solve numerically by discretizing and integrating from $L=0$



Convergence

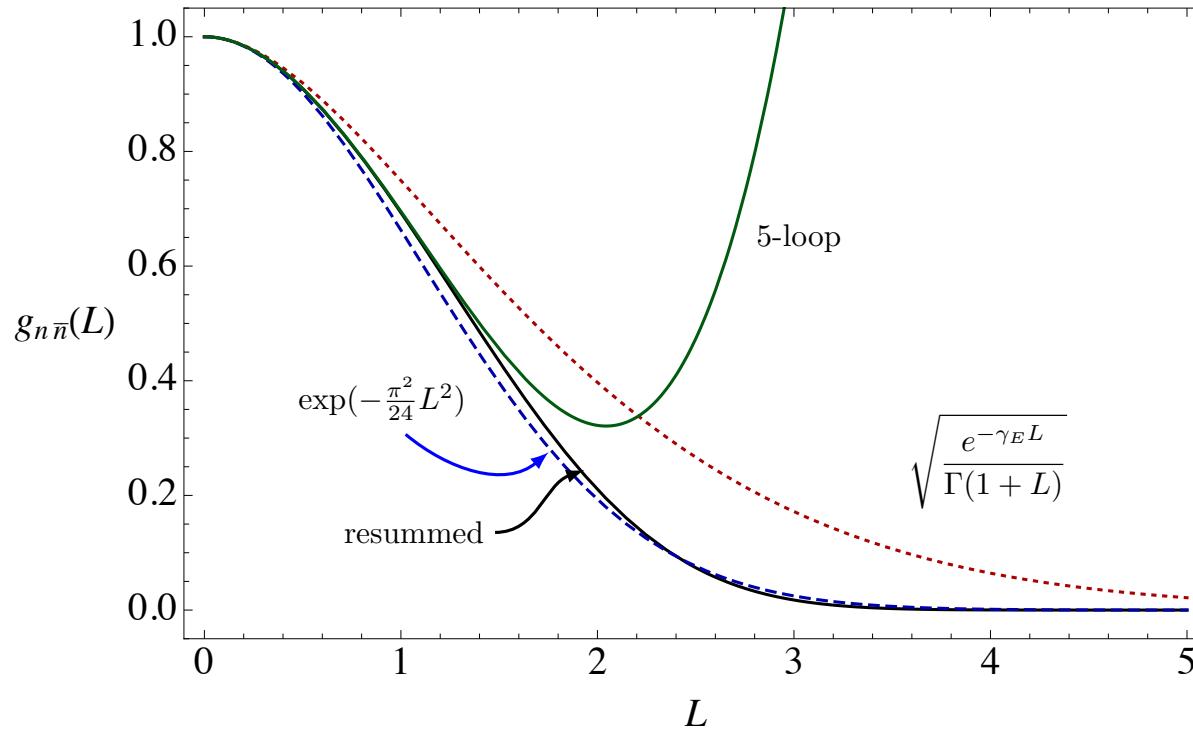
$$g_{n\bar{n}}(L) = 1 - \frac{\pi^2}{24}L^2 + \frac{\zeta(3)}{12}L^3 + \frac{\pi^4}{34560}L^4 + \left(-\frac{\pi^2\zeta(3)}{360} + \frac{17\zeta(5)}{480} \right) L^5 + \dots$$

$$g_{n\bar{n}}(L) = 1 - 0.411233512L^2 + 0.10017141L^3 + 0.0028185501L^4 + 0.0037694522L^5 + \dots$$



Seems to converge up to around $L=1$

Exponentiation

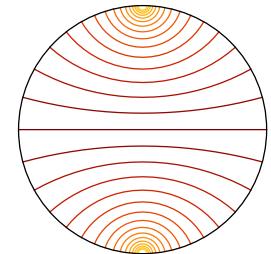


Exponential of 2-loop result has excellent agreement with resummed result

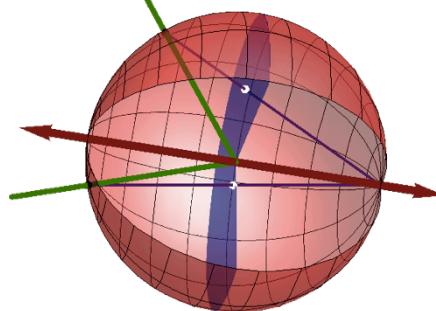
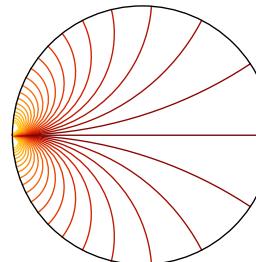
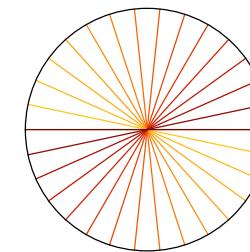
Very intriguing...

Summary

1. Strong-energy ordering lets us resum stuff SCET can't (so far)
 - Includes all real and virtual contributions
 - Easiest at large N
 - Leading non-global logs only (not systematically improvable)

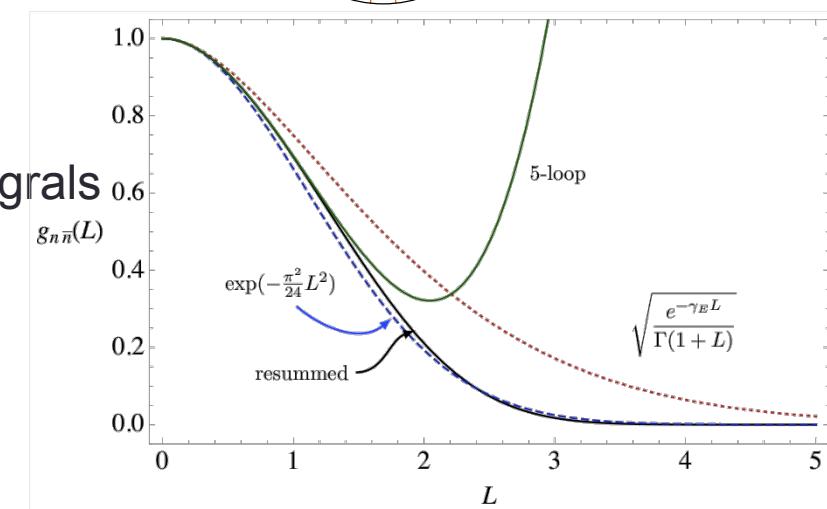


2. Leading NGL has a hidden **PSL(2,R)** symmetry
 - **Möbius transformations** of Poincaré disk



3. NGLs at each order involve iterated integrals

4. **Symbols** and Goncharov polylogarithms
 - Simplify expressions
 - Make polar integrals trivial



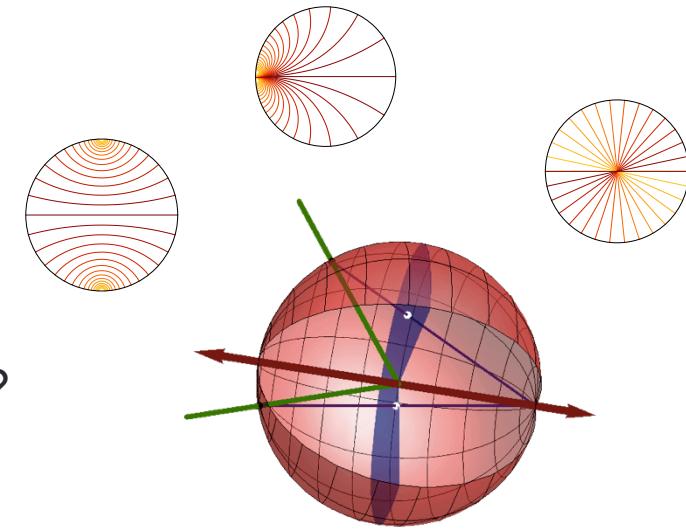
5. **Resummation** of leading NGL is possible

Questions

1. Can leading NGLs be resummed with Effective Field Theory?

$$\begin{array}{c} \leftarrow \rightarrow \\ Y_1^\dagger Y_2 \end{array} \quad \begin{array}{c} \leftarrow \\ Y_1^\dagger \mathcal{Y}_3 Y_2 \end{array} \quad \begin{array}{c} \rightarrow \\ Y_1^\dagger \mathcal{Y}_3 \mathcal{Y}_4 Y_2 \end{array}$$

2. **Physics** of $PSL(2, \mathbb{R})$?



3. Can the BMS equation be solved **analytically**?

4. Can **subleading NGLs** be resummed?

- Probably not with strong-energy-ordering

5. Do these symmetries/methods work for **non-hemisphere NGLs**?

- Yes, for out-of-jet energy

6. Does $\text{Exp}[2\text{-loop}]$ **always work** well?

- Important for phenomenology