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Five things I learned: 

1.  How strong-energy ordering works 

2.  Resummation which is (currently) beyond SCET 

3.  A hidden symmetry of soft functions 

4.  How to use symbols to compute integrals 

5.  That the hemisphere NGL to 5-loops is 
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Figure 5: Comparisons of the complete, resummed, leading NGL series for the hemisphere
mass distribution, g

nn

(L), to its fixed-order approximation at up to 5 loops. The resummed
distribution is computed by numerically solving the BMS equation. The fixed order analytical
expansions are given in Eq. (141). On the left, the numerical solution is labelled “resummed”.
The right plot shows the fixed order approximations relative to this resummed result in the region
0 < L < 2.

Finally, using the analytic results for the opposite hemisphere and same hemisphere NGLs
up to and including 4 loops, we can calculate the hemisphere NGLs through 5 loops. The result
is

g
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Numerically, it can be written as

g
nn

(L) = 1� 0.411233512L2 + 0.10017141L3 + 0.0028185501L4 + 0.0037694522L5 + . . . (142)

Note that the 5-loop coe�cient is actually larger than the as the 4-loop coe�cient. Perhaps this
is because the 4-loop coe�cient is unusually small. In any case, it suggests that the series may
not be convergent beyond L = 1. Plots of the approximations of g

nn

(L) at up to 5 loops and a
comparison to the exact (that is, numerically resummed) result are shown in Fig. 5. We discuss
the calculation of the resummed result in the next section.

8 Resummation

An exact solution to the hemisphere BMS equation, Eq. (62), would resum the leading hemi-
sphere NGL. While we cannot solve this equation analytically, finding a numerical solution is
straightforward. Before discussing the numerically approach, we explore an iterative approach
to the resummed solution, finding an exact solution in the first nontrivial case.
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The doubly-differential hemisphere mass distribution 

MR 
ML 

of the 2-loop thrust and heavy jet mass distributions, and compares to previous numerical
estimates. Section 6 gives the full integrated hemisphere soft function which is compared to
previous conjectures. The asymptotic form of this distribution, which exhibits non-global logs,
is discussed in Section 7. Section 8 has some comments on predicting higher order terms with
non-Abelian exponentiation. Conclusions and implications are discussed in Section 9.

2 Event Shapes and Factorization in SCET

The hemisphere soft function appears in the factorization theorem for the hemisphere mass
distribution. The hemispheres are defined with respect to the thrust axis. Thrust itself is
defined by

T = max
n

(∑
i |pi · n|∑

i |pi|

)
, (2)

where the sum is over all momentum 3-vectors pi in the event. The thrust axis is the unit 3-
vector n that maximizes the expression in parentheses. We then define the light-like 4-vectors
nµ = (1,n) and n̄µ = (1,−n). In the dijet limit T → 1 and it is therefore more convenient to
define τ = 1− T as the thrust variable so that τ is small in the dijet limit.

Once the thrust axis is known, we divide the event into two hemispheres defined by the
plane perpendicular to the thrust axis. We define P µ

L and P µ
R to be the 4-vector sum of all of the

radiation going into each hemisphere and ML =
√

P 2
L and MR =

√
P 2
R to be the hemisphere

invariant masses. When both ML and MR are small compared to the center-of-mass energy,
Q, the hemisphere mass distribution factorizes into [8]

1

σ0

d2σ

dM2
LdM

2
R

= H(Q2, µ)

∫
dkLdkRJ(M

2
L −QkL, µ)J(M

2
R −QkR, µ)S(kL, kR, µ) . (3)

Here, σ0 is the tree level total cross section. H(Q2, µ) is the hard function which accounts for
the matching between QCD and SCET. J(p2) is the inclusive jet function which accounts for
the matching between an effective field theory with soft and collinear modes to a theory with
only soft modes. Finally, the object of interest, S(kL, kR, µ) is the hemisphere soft function,
which is derived by integrating out the remaining soft modes.

In the threshold limit (small hemisphere masses), the thrust axis aligns with the jet axis
and thrust can be written as the sum of the two hemisphere masses,

τ =
M2

L +M2
R

Q2
+O

(
M4

L,R

Q4

)
(4)

Heavy jet mass ρ is defined to be the larger of the two hemisphere masses, normalized to the
center of mass energy Q,

ρ =
1

Q2
max(M2

L,M
2
R). (5)

When ρ is small, both hemisphere masses are small and the event appears as two pencil-like,
back to back jets.
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In SCET, factorization formula  

•  Valid as long as both ML and MR << Q 
•  Factorization formula use to resum thrust and heavy jet mass to NNNLL 
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Figure 9: Hadronization and mass corrections with pythia. The theoretical prediction using
pythia at the hadron level with massive quarks and the parton level with massless quarks is
compared to data and to the 4thorder theoretical prediction using SCET. For thrust, pythia
agrees remarkably well with the data, while for heavy jet mass, there is a substantial discrep-
ancy especially in the fit region, which is zoomed in on in the bottom panels.

between the thrust and heavy jet mass αs fits after correcting with either Monte Carlo than
without. Thus, although we cannot justify correcting the theory curve with either Monte
Carlo, we confirm that the hadronization uncertainties listed in Table 1, which were taken
from [18], span reasonable Monte-Carlo simulated variations due to hadronization and quark
mass effects.

To understand why the power corrections come out so differently for thrust and heavy jet
mass, we compare pythia at the parton and hadron levels to the 4thorder SCET prediction
(N3LL + NNLO), and to the aleph data at 91.2 GeV in Figure 9. From the top two panels,
we see that in the peak region, in both cases the parton-level theory prediction comes out
somewhere between the parton and hadron level Monte Carlo. However, in the bottom two
panels, which zoom in near the fit region, the difference between the two event shapes is much
more dramatic. For heavy jet mass, the SCET curve is above the data, while partonic pythia
is below it and hadronic pythia is even farther below. In contrast, for thrust, all of the curves
are much closer and the power corrections, as modeled by pythia are a much smaller effect.
It is clear that pythia has trouble handling both event shapes simultaneously.

An alternative to using Monte Carlo simulations to simulate hadronization is to model
the power corrections directly with effective field theory. As discussed in [22], hadronization
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As is well known, the doubly di↵erential cross section in the two hemisphere masses factorizes
in the limit that both masses are small [12, 14, 15, 52–54],

d2�

dm
L

dm
R

= H (Q, µ)

Z
dk

L

dk
R

J(m2

L

� k
L

Q, µ)J(m2

R

� k
R

Q, µ)S(k
L

, k
R

, µ) (2)

The µ dependence of all these functions is known to 3 loops at fixed order and has been resummed
to the next-to-next-to-next-to-leading logarithmic level (N3LL). This resummation only accounts
for the global logarithms. For some observables, such as thrust T all the logs are global. For
thrust, when ⌧ = 1� T ⇡ 0 then ⌧ ⇡ 1

Q

2 (m2

L

+m2

R

) and Eq. (2) reduces to [54]

d�

d⌧
= H(Q, µ)

Z
dkdkJ(⌧ � k

Q
, µ)J(⌧ � k

Q
, µ)S

T

(k, µ) (3)

with S
T

(k, µ) = S(k, k, µ). In this case, each function has only one scale and all the logs can be
resummed. In contrast, if there are multiple scales, like m

R

, m
L

and Q, one cannot resum all the
large logarithms so simply. To see the di�culty more clearly, we can write the soft function as

S(k
L

, k
R

, µ) = S
µ

(ln
k
L

µ
)S

µ

(ln
k
R

µ
)S

f

(ln
k
L

k
R

) (4)

Because S
µ

(L) depends on µ, its large logarithms can be resummed using the renormalization
group. S

f

(L) on the other hand is some finite function whose resummation is more subtle. The
non-global logarithms are those contained in S

f

(L). Note that thrust is only sensitive to S
f

(0),
so these non-global logarithms do not inhibit resummation of logs of thrust.

There are no double logarithms in S
f

(L). Instead S
f

has single logarithms, of the form
(↵

s

L)n and subleading logarithms, of the form (↵m

s

L)n with m > 1. The coe�cient of the 2-
loop leading non-global logarithm was computed in Ref. [37], where it was found S

f

(L)|
leading

=

� �
↵s
2⇡

�
2

L2

⇣
C

F

C
A

⇡

2

3

⌘
. The complete form of S

f

(L) at 2 loops was computed in Refs. [14, 15],

revealing subleading logarithms in both the C
F

C
A

and n
f

T
F

C
F

color structures, as well non-
singular pieces. When L is large but ↵2

s

L is small, the leading non-global logarithms domi-
nate. Unfortunately, resumming the leading logarithms is not as simple as writing S

f

(L) =

exp
h
� �

↵s
2⇡

�
2

L2

⇣
C

F

C
A

⇡

2

3

⌘i
. Although the non-global logs do exponentiate in this way, due to

non-Abelian exponentiation, at each order in perturbation theory, new maximally non-Abelian
color structures appear which also scale like (↵

s

L)n. For example, at 3 loops, as we will see, there
is a term ⇠ (↵

s

L)3C
F

C2

A

which is not contained in the exponentiated 2-loop result.
A number of simplifications facilitate the extraction of the leading non-global logarithm to

high orders. First, one can consider a simpler observable, the right-hemisphere mass. By inte-
grating inclusively over the left hemisphere, logs of mR

mL
are replaced by logs of mR

Q

. In particular,
the coe�cients of these logs are exactly the same in the left-right hemisphere case and the right
hemisphere case. In addition, removing the restriction m

L

⌧ Q probes the hard multijet region,
which is outside of the validity of the factorization formula in Eq. (2). This is ordinarily dan-
gerous: the left-hemisphere integral contributes something proportional to ↵

s

with no logarithm,

4

Soft function can be written as: 

Determined by RGE 
Non-global piece 

•  Thrust: depends only on  
•  Heavy jet mass: depends only on some moment 
•  Structure of Sf(L) in general complicated 

•  Calculated at 2-loops in 1105.3767 and 1105.4628  

=
2

π

∫ π

0

s̃f 2(iL) ln

[
2 cos(

L

2
)

]
dL . (28)

Again, we have no physical explanation of the intriguing integral definition in the second line.
This projection also simplifies with a polynomial soft function. For example, with Eq (21)

cS2ζ = 4ζ3c
S
2L + (−8π2ζ3 + 48ζ5)c

S
2Q . (29)

The prediction from SCET for DC(ρ) with its explicit dependence only on cS2ρ and cS2ζ is given
in Appendix C. There are only three color structures which depend on cS2ζ at all.

In order to extract the L dependence of s̃f 2(L), we could attempt to fit cS2ζ with the shapes
of the NNLO distributions. An alternative, as pursued by Hoang and Kluth in [22], is to use
the other event shapes beyond thrust and heavy jet mass at NLO. These authors considered
a weighted sum of the jet masses, τα = 2

1+α(αM
2
L + M2

R)/Q
2. This form leads to a singular

distribution which depends on s̃f 2(lnα), hence combining event shapes with different α can
probe the entire function s̃f 2(L). Their fits show good agreement with the form

s̃f(L) = 1 +
(αs

4π

)
cS1 +

(αs

4π

)2 [
cS2 + cS2LL

2
]
, (30)

which they have argued is likely to be the exact 2-loop soft function. We will therefore assume
this form of the soft function as well, in order to proceed with the N3LL+NNLO αs fits. 2

With this soft function and the thrust fit values in Eq. (18), our fit for cS2ρ translates into
a fit for cS2L (cf. Eq.(22) with cS2Q = 0) The result is

cS2L = (0± 2)C2
F + (−5.8± 1.5)CFCA + (−2.2± 1)CFTFnf . (31)

Using a similar technique, but imposing the constraint from non-Abelian exponentiation,
Hoang and Kluth found results consistent with ours

cS2L = (0)C2
F + (−6.5± 2)CFCA + (1.3± 2)CFTFnf (Hoang and Kluth) (32)

Note that for cS2L, the C
2
F coefficient comes out to be consistent with the prediction from non-

Abelian exponentiation. Since cS2L comes from the difference between the values extracted from
thrust and the values extracted from heavy jet mass, the systematic problem with event 2

may be cancelling in the difference. Thus, we will inflate our uncertainties on cS2L by only a
factor of 2.

In summary, for the rest of this paper, we will take

s̃f(L) = 1 +
(αs

4π

)
cS1 +

(αs

4π

)2 [
cS2 + cS2LL

2
]

(33)

cS2 =
π4

2
C2

F + (−60± 10)CFCA + (43± 5)CFTFnf (34)

2 There is a subtlety about these τα event shapes because of non-global logarithms [30]. For example, for
very large or small α, these event shapes reduce to the left or right hemisphere mass, which are known to have
non-global logs. Since τα → 0 forces the massless dijet threshold, in which the SCET factorization theorem
is derived, only up to corrections of order lnα, it is not completely clear that SCET will reproduce all of the
α-dependence of the singular terms in τα.
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Writing

s̃f (L) = 1 +
(αs

4π

)
s̃f 1(L) +

(αs

4π

)2
s̃f 2(L) + · · · , (15)

the one-loop result is that
s̃f 1(L) = −CFπ

2 . (16)

The authors of [22] also observed that s̃f(L) is constrained by the non-Abelian exponentiation
theorem. Non-Abelian exponentiation implies constraints on powers of logarithms of µ in
the full soft function. These constraints are satisfied by the explicit solution, since s̃µ(L, µ)
is an exponential. The theorem also restricts the Cn

F color structure in the soft function to
be completely determined by the one-loop result, Eq. (16). Beyond this, however, s̃f(L) is
unconstrained. It may even have more general dependence on L than logarithms. To determine
s̃f (L), we must calculate the soft function perturbatively. The one-loop calculation has been
done but the two-loop calculation, which is required for N3LL resummation, has not.

A simple alternative to calculating s̃f(L) at NNLO is to extract projections of s̃f(L) from
numerical comparisons to event shape calculations in full QCD. For example, thrust is only
sensitive to s̃f(0). Writing

s̃f (0) = 1 +
(αs

4π

)
cS1 +

(αs

4π

)2
cS2 + · · · , (17)

and comparing to Eq. (16), we see that cS1 = −CFπ2. The two-loop constant was determined
numerically in [11] with the use of the event 2 program [28]. The result is

cS2 = (58± 2)C2
F + (−60± 1)CFCA + (43± 1)CFTFnf (Becher and Schwartz) (18)

This is in conflict with the prediction from non-Abelian exponentiation, which requires the
C2

F factor be 1
2π

4C2
F = 48.7C2

F . The two-loop constant was also determined in [22], using the
same technique but imposing non-Abelian exponentiation. They found

cS2 =
π4

2
C2

F + (−59 ± 2)CFCA + (44± 3)CFTFnf (Hoang and Kluth) (19)

The two results agree, except for the C2
F term. Indeed, the C2

F term seems to indicate a
disagreement between the numerical results of the event 2 program and the prediction from
non-Abelian exponentiation. Since the uncertainty in Eq (18) is too small to explain this
disagreement, it is reasonable also to expect the other color structures to be off. We should
therefore allow for a systematic uncertainty on these fits in addition to what is presented,
which is essentially a statistical uncertainty associated with the fit. We discuss this more
below.

Event shapes other than thrust are sensitive to the form of s̃f(L), not just s̃f (0). This can
be seen, for example, by the form of the heavy jet mass distribution in Eq. (10). For N3LL
resummation, the fixed order expansion is required to α2

s. The contribution at this order
involving s̃f(L) requires at most s̃f 2(L), with the jet and hard functions at their tree-level
values. Thus, the required projection of the s̃f(L) for heavy jet mass is

cS2ρ = s̃f 2(∂η1 − ∂η2)
e−γEη1

Γ(η1 + 1)

e−γEη2

Γ(η2 + 1)

∣∣∣∣
η1=η2=0

=
1

π

∫ π

0

s̃f 2(iL)dL . (20)
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To check the Hoang-Kluth ansatz, the easiest approach is to look at the contribution of
s̃f (xL, xR) to R(X, Y, µ), which we called Rf (X/Y ). For the Hoang-Kluth ansatz, the result
is

Rf (z)
Hoang-Kluth = cS2 + cS2L(ln

2 z −
π2

3
). (52)

The values of cS2 and cS2L which get right the singular parts of the thrust and heavy jet mass
distributions are given in Eqs. (41) and (42) with cS2L = 3

π2 (cS2 − cS2ρ).
The exact answer, at order α2

s is

Rf (z) =
π4

2
C2

F +

[
−88Li3(−z)− 16Li4

(
1

z + 1

)
− 16Li4

(
z

z + 1

)
+ 16Li3(−z) ln(z + 1)

+
88Li2(−z) ln(z)

3
− 8Li3(−z) ln(z)− 16ζ(3) ln(z + 1) + 8ζ(3) ln(z)−

4

3
ln4(z + 1)

+
8

3
ln(z) ln3(z + 1) +

4

3
π2 ln2(z + 1)−

4

3
π2 ln2(z)−

4 (3(z − 1) + 11π2(z + 1)) ln(z)

9(z + 1)

−
506ζ(3)

9
+

16π4

9
−

871π2

54
−

2032

81

]
CFCA +

[
32Li3(−z)−

32

3
Li2(−z) ln(z)

+
8(z − 1) ln(z)

3(z + 1)
+

16

9
π2 ln(z) +

184ζ(3)

9
+

154π2

27
−

136

81

]
CFnfTF (53)

This is clearly very different from the Hoang-Kluth form.

7 Asymptotic behavior and non-global logs

The factorization theorem is valid in the dijet limit when the hemisphere masses are small
compared to Q; however, there is no restriction on the relative size of the two masses. In
addition to logarithms ln ML,R

µ required by RG invariance, there may be logarithms of the

form ln ML

MR
that enter at order α2

s. These logarithms cannot be predicted by RG invariance
and are known as non-global logarithms. Salam and Dasgupta have shown that non-global logs
appear in distributions such as the light jet mass. They argued that in the strongly-ordered

soft limit, when ML " MR " Q, the leading non-global log should be −(αs

4π )
2 4π2

3 CFCA ln2 M2

L

M2

R

in full QCD. This double log was reproduced in [30].
Non-global logs must be present in SCET, since for small ML and MR, the entire distri-

bution is determined by soft and collinear degrees of freedom. The non-global logs cannot
come from the hard function, which has no knowledge of either mass, or the jet function, since
each jet function knows about only one mass. Thus, they must come from the soft function.
Moreover since, by definition, they are not determined by RG invariance, they must be present
in the µ-independent part, Rf (X/Y ) of the integrated hemisphere soft function, R(X, Y, µ).
This function was given explicitly in Eq. (53).

To see the non-global logs in Rf(z) we can simply take the limit z → ∞. Note that
Rf (z) = Rf(
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z ) so this is also the limit z → 0. The asymptotic limit of Rf (z) for large or
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To check the Hoang-Kluth ansatz, the easiest approach is to look at the contribution of
s̃f (xL, xR) to R(X, Y, µ), which we called Rf (X/Y ). For the Hoang-Kluth ansatz, the result
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Rf (z)
Hoang-Kluth = cS2 + cS2L(ln

2 z −
π2

3
). (52)
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π2 (cS2 − cS2ρ).
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s is

Rf (z) =
π4

2
C2

F +

[
−88Li3(−z)− 16Li4

(
1

z + 1

)
− 16Li4

(
z

z + 1

)
+ 16Li3(−z) ln(z + 1)

+
88Li2(−z) ln(z)

3
− 8Li3(−z) ln(z)− 16ζ(3) ln(z + 1) + 8ζ(3) ln(z)−

4

3
ln4(z + 1)

+
8

3
ln(z) ln3(z + 1) +

4

3
π2 ln2(z + 1)−

4

3
π2 ln2(z)−

4 (3(z − 1) + 11π2(z + 1)) ln(z)

9(z + 1)

−
506ζ(3)

9
+

16π4

9
−

871π2
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−

2032

81
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CFCA +
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32Li3(−z)−
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3
Li2(−z) ln(z)

+
8(z − 1) ln(z)

3(z + 1)
+

16

9
π2 ln(z) +

184ζ(3)

9
+

154π2

27
−

136

81

]
CFnfTF (53)

This is clearly very different from the Hoang-Kluth form.
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The factorization theorem is valid in the dijet limit when the hemisphere masses are small
compared to Q; however, there is no restriction on the relative size of the two masses. In
addition to logarithms ln ML,R

µ required by RG invariance, there may be logarithms of the

form ln ML

MR
that enter at order α2

s. These logarithms cannot be predicted by RG invariance
and are known as non-global logarithms. Salam and Dasgupta have shown that non-global logs
appear in distributions such as the light jet mass. They argued that in the strongly-ordered

soft limit, when ML " MR " Q, the leading non-global log should be −(αs

4π )
2 4π2

3 CFCA ln2 M2

L

M2

R

in full QCD. This double log was reproduced in [30].
Non-global logs must be present in SCET, since for small ML and MR, the entire distri-

bution is determined by soft and collinear degrees of freedom. The non-global logs cannot
come from the hard function, which has no knowledge of either mass, or the jet function, since
each jet function knows about only one mass. Thus, they must come from the soft function.
Moreover since, by definition, they are not determined by RG invariance, they must be present
in the µ-independent part, Rf (X/Y ) of the integrated hemisphere soft function, R(X, Y, µ).
This function was given explicitly in Eq. (53).

To see the non-global logs in Rf(z) we can simply take the limit z → ∞. Note that
Rf (z) = Rf(

1
z ) so this is also the limit z → 0. The asymptotic limit of Rf (z) for large or

18

+ … 

which are known up to α3
s. The finite part s̃f(L), until now, has been known only to αs. This

Laplace form leads to a simple expression for the integrated soft function in SCET [12]

R(X, Y, µ) = s̃(∂η1 , ∂η2 , µ)

(
X

µ

)η1 e−γEη1

Γ(η1 + 1)

(
Y

µ

)η2 e−γEη2

Γ(η2 + 1)

∣∣∣
η1=η2=0

. (48)

The µ-dependent terms in the order α2
s integrated soft function calculated in this way agree

exactly with the µ-dependent terms in R(X, Y, µ). In fact, it is helpful to separate out those
terms. To that end, we write the α2

s terms as

R(X, Y, µ) =
(αs

4π

)2
[
Rµ

(
X

µ
,
Y

µ

)
+Rf

(
X

Y

)]
, (49)

where Rµ(X/µ, Y/µ) is the part coming directly from the s̃µ(L) terms and Rf (X/Y ) is the
remainder, which comes from s̃f (xL, xR). The result for Rµ(X/µ, Y/µ) is

Rµ

(
X

µ
,
Y

µ

)
=

[

8 ln4 X

µ
−

20

3
π2 ln2 X

µ
+ 16 ln2 X

µ
ln2 Y

µ

+ 64ζ3 ln
XY

µ2
+ 8 ln4 Y

µ
−

20

3
π2 ln2 Y

µ
−

28π4

45

]

C2
F

+

[
88

9
ln3 X

µ
+

4

3
π2 ln2 X

µ
−

268

9
ln2 X

µ
−

22

9
π2 ln

XY

µ2
+

808

27
ln

XY

µ2

− 28ζ3 ln
XY

µ2
+

88

9
ln3 Y

µ
+

4

3
π2 ln2 Y

µ
−

268

9
ln2 Y

µ
+

352ζ3
9

−
4π4

9
+

268π2

27

]

CFCA

+

[

−
32

9
ln3 X

µ
+

80

9
ln2 X

µ
+

8

9
π2 ln

XY

µ2
−

224

27
ln

XY

µ2

−
32

9
ln3 Y

µ
+

80

9
ln2 Y

µ
−

128ζ3
9

−
80π2

27

]

CFTFnf . (50)

The part of the soft function not determined by RG-invariance is represented entirely
by s̃f (xL, xR). This function is µ-independent and can only depend on the ratio xL/xR by
dimensional analysis. Moreover, it is symmetric in xL ↔ xR, since the hemisphere soft function
is symmetric in kL ↔ kR. Hoang and Kluth claimed [15] that it should only have logarithms,
and up to order α2

s, only have ln0 and ln2 terms. Their ansatz was that

s̃f(xL, xR)
Hoang-Kluth = 1 +

(αs

4π

)
cS1 +

(αs

4π

)2

[cS2 + cS2L ln
2 xL

xR
], (51)

with cS1 = −CFπ2 already known.
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s̃f (L) =
X

i

ci(↵sL)
i + di↵s(↵sL)

i + · · ·
The logarithmic terms in Sf(L) are called non-global logarithms (NGLs): 

Leading NGL Subleading NGLs 

What are non-global logarithms? 

(no µ dependence) 



Hemisphere mass 
March 27, 2014 

•  Non global logs are single logs: (αsL)n 
•  Collinear finite 

•  For leading NGL of hemisphere masses L = log( ML/MR ) 
•  Can use L = log(Q/MR) instead (integrate over ML) 
•  Can use energy instead of mass  L = log(Q/ER) 

•  Not kosher for collinear sensitive logs, but ok for NGLs 
•  Large logs come from energy integrals 

ER 

•  ER = energy of hardest gluon going right 
•  n-1 emissions go left 
•  only softest 1 goes right 

Z Q

E2

dE1

E1

Z Q

E3

dE2

E2
· · ·

Z Q

En

dEn�1

En�1
=

1

n!
lnn

Q

En

•  Region where energies are not strongly ordered contributes finite part 
 (subleading logs)  
 

Matthew Schwartz 
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•  In SCET language: soft -> softer -> even softer … -> softest 
•  Evolution in Wilson line operators space? 

~ ~ 

Y †
1 Y2 Y †

1 Y3Y2 Y †
1 Y3Y4Y2

3 Strong energy ordering

In this section, we review the structure of the real, virtual and real-virtual integrands relevant
for the leading non-global logarithm at large N

c

limit [55]. While simplifications arising from
the strong-energy-ordering (SEO) limit have been known for decades, we try to provide more
explicit details than we have found in the literature. Hopefully, our exposition will clarify the
set of approximations going into the NGL calculation. A reader already familiar with SEO can
skip this section.

3.1 Real emission

To begin, consider the cross section for emission of m gluons o↵ classical quark sources in the aµ

and bµ directions. The di↵erential cross section for real-emission is then

1

�
0

d�
m

=
1

m!
d�

m

��M1···m
ab

��2 (9)

where �
0

is the tree-level cross section and the phase space is

d�
m

=
mY

i=1

d3p
i

(2⇡)3 2!
i

=
mY

i=1

!
i

d!
i

4⇡2

d⌦
i

4⇡
(10)

In the limit that the energy of the gluons is strongly ordered, at large N
c

the matrix-element
squared can be written as [55]

��M1···m
ab

��2 =
��hp

1

· · · p
m

��Y †
a

Y
b

�� 0i��2 = Nm

c

g2m
X

perms of 1···m

(p
a

· p
b

)

(p
a

· p
1

) (p
1

· p
2

) · · · (p
m

· p
b

)
(11)

It does not matter if E
1

� E
2

� · · · � E
m

or if the gluons are ordered in some other permutation;
because they are identical particles, the matrix element is independent of the gluon labels.

To simplify cross section formula, it is helpful to pull out the energies from the dot-products,
by writing

(ij) ⌘ p
i

· p
j

!
i

!
j

= 1� cos ✓
ij

(12)

where ✓
ij

is the angle between the directions ~p
i

and ~p
j

. Then we define the radiator function as

W1···m
ab

=
(ab)

(a1)(12) · · · (mb)
(13)

and
P1···m

ab

=
X

perms of 1···m

W1···m
ab

(14)

so that ��M1···m
ab

��2 = Nm

c

g2m
1

!2

1

· · ·!2

m

P1···m
ab

(15)

6

Real-emission matrix elements-squared simplify: 

Extra simplification at large Nc 

+ 
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Virtual and real-virtual emissions also simplify 

Basic idea 
•  Chop up virtual momenta into energy-ordered regions 

 
•  Virtual emissions have same form as real-emissions, with opposite sign 
•  Virtual emissions do not become new Wilson lines 
•  Virtual emissions are not measured 

Another way to understand the connection between real and virtual is to use that in a
su�ciently inclusive cross section, the large logarithm from real emission must be exactly canceled
by virtual corrections. Thus we should be able to represent the virtual contributions as integrals
over momenta of exactly the same form as the real emissions. For example, at 1 loop, we would
have

d�
V

= �d�
R

/ �Ng2
1

!2

1

P1

ab

(26)

Let us abbreviate this with
W

R

= P1

ab

, W
V

= �W
R

(27)

For an observable which is not totally inclusive, like the hemisphere mass, there will be an
incomplete cancellation between the real and virtual corrections, leaving a large logarithm.

For more general notation, let us write W
RV ···R to indicate that the hardest gluon, 1, is real,

the second hardest, 2, is virtual and so on down to the softest, m, which in this case is real.
Thus, for example, at ↵2

s

, the di↵erential cross section can be written as, using Eq. (16)

1

�
0

d�
m

= ↵̄
d!

1

!
1

d⌦
1

4⇡
(W

R

+W
V

)

+
↵̄2

2!

d!
1

!
1

d⌦
1

4⇡

d!
2

!
2

d⌦
2

4⇡
(W

RR

+W
RV

+W
V R

+W
V V

)

+
↵̄3

3!

d!
1

!
1

d⌦
1

4⇡

d!
2

!
2

d⌦
2

4⇡

d!
3

!
3

d⌦
3

4⇡
(W

RRR

+W
RRV

+ · · · ) (28)

For two emissions, the gluons can be either real or virtual. If both are real, we get the
expression in Eq. (21):

W
RR

= P12

ab

= P1

ab

⇥P2

a1

+ P2

1b

⇤
(29)

This holds for either !
1

� !
2

or !
2

� !
1

. If the harder gluon is real and the softer gluon
is virtual, the real emission establishes the (a1) and (1b) dipoles, which then each contribute a
virtual contribution. So we have

W
RV

= �P1

ab

⇥P2

a1

+ P2

1b

⇤
(30)

On the other hand, if the harder gluon (1) is virtual, then the virtual graph does not produce
any new dipoles. So we get �P1

ab

for the first emission, but have only the original ab dipole to
produce subsequent emissions. This dipole then produces the real emission and we have

W
V R

= �P1

ab

P2

ab

(31)

If both the harder and softer gluon are virtual, then the ab dipole produces both, each get a
minus sign, and we find

W
V V

= P1

ab

P2

ab

(32)
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a vanishing diagram is depicted in Fig. 2. We note that the external soft-gluon momentum
only enters the loop integral through q · p1. However, the invariance of the integral under

the rescaling of p1 and p2 demands that a factor of
(

µ2(p1·p2)
(q·p1)(q·p2)

)ε
must be generated per loop.

This is impossible for this diagram, leading to the conclusion that it must vanish.

p1

p2

FIG. 1: Non-vanishing diagram for soft gluon emission at one-loop. Solid line are
quark/anti-quark lines in the high energy limit.

FIG. 2: Diagram which vanishes in dimensional regularization.

FIG. 3: Tree-level diagrams for single soft gluon emission.

We calculate the interference between the one-loop non-zero diagram, Fig. 1, and the
tree-level diagrams in Fig. 3. The one-loop eikonal function can then be extracted from the
one-loop integral in the interference term, which, after some simplification, reads

S(1)
12 (q) = i4g2sCA(p1 · p2)µ

2ε

∫

dDk

(2π)D
1

[2k · p1][2(q − k) · p2][k2][(k − q)2]
, (6)

where the Feynman prescription i0+ is implicitly understood for all propagators in square
brackets, for example, [k2] ≡ k2 + i0+. Carrying out the loop integral, we reproduce the
one-loop eikonal function in Eq. (3).

5

FIG. 4: Two-loop non-vanishing diagrams for single soft gluon emission.

(a) (b)

FIG. 5: Examples of diagrams which vanish identically.

B. Two-loop soft-gluon current

As explained above, the two-loop eikonal function S(2)
12 (q) can be extracted from the

calculation of the non-vanishing diagrams at two-loop level, as depicted in Fig. 4. The
grey blobs represent all possible two-point and three point insertions, where no eikonal
approximation is made. We include Nf flavour of massless fermions and Ns flavour of
massless scalar in the blob, besides the gluon. In QCD, Nf = 5, Ns = 0. Before describing
the calculation of these diagrams, we comment on the diagrams that vanish identically.
There are two classes of vanishing diagrams. The first class vanishes due to color or Lorentz
algebra. An example of it is depicted in Fig. 5a. The second class vanishes because the
corresponding loop integral is scaleless, as in Fig. 5b. Because of the vanishing of these two
classes of diagrams, the actual number of diagrams that need to be evaluated is significantly
reduced.

We now come to the actual evaluation of the non-zero diagrams in Fig. 4. We cal-
culate the interference terms between the tree-level diagrams in Fig. 3 and the two-loop

6
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Independent emissions a1 and b1 dipoles 

Thus there are 2 independent integrands

B
1

= P12

ab

= W
RR

= �W
RV

(33)

B
2

= P1

ab

P2

ab

= W
V V

= �W
V R

(34)

At order ↵3

s

, we construct the real and virtual integrands in the same iterative way. For
example, the contribution with all gluons virtual comes from 3 uncorrelated emissions from the
(ab) dipole, each with a minus sign:

W
V V V

= �W1

ab

W2

ab

W3

ab

(35)

When the hardest gluon is real and the second is virtual, we get �P12

ab

as above. Since the second
gluon is virtual, it does not produce a new dipole, so the 3rd emission comes from the (a1) and
(2b) dipoles only. Thus we find

W
RV R

= �W
RV V

= �P12

ab

�P3

a1

+ P3

b1

�
(36)

In total at order ↵3

s

, there are 4 independent integrands:

C
1

= P123

ab

= W
RRR

= �W
RRV

(37)

C
2

= P12

ab

�P3

a1

+ P3

b1

�
= W

RV V

= �W
RV R

(38)

C
3

= P1

ab

P23

ab

= �W
V RR

= W
V RV

(39)

C
4

= P1

ab

P2

ab

P3

ab

= W
V V R

= �W
V V V

(40)

Summing all eight contributions gives zero, as expected since there can be no large logarithms
in an inclusive cross section. The procedure for constructing the real and virtual contributions
to |M|2 to arbitrary order should now be clear by generalizing these examples.

4 The non-global hemisphere mass integral

The procedure defined in the previous sections provide the real and virtual contributions to
|M|2 in the SEO approximation. To construct an observable, we have to integrate these matrix
elements against a measurement function. Since virtual gluons are never measured, this function
is only sensitive to the gluons which are real. In this section, we work out the integrand at up to
3 loops and outline the procedure for higher loops. Above 3 loops, we find it simpler to extract
the NGL integrand using the BMS equation, as explained in the next section.

To avoid dealing with distributions, we work with the cumulant right-hemisphere mass defined
as ⇢ = MR

Q

. We then have

S(⇢) =
1

�
0

Z
Q

0

dm
L

Z
⇢Q

0

dm
R

d2�

dm
L

dm
R

(41)

10

Thus there are 2 independent integrands

B
1

= P12

ab

= W
RR

= �W
RV

(33)

B
2

= P1

ab

P2

ab

= W
V V

= �W
V R

(34)

At order ↵3

s

, we construct the real and virtual integrands in the same iterative way. For
example, the contribution with all gluons virtual comes from 3 uncorrelated emissions from the
(ab) dipole, each with a minus sign:

W
V V V

= �W1

ab

W2

ab

W3

ab

(35)

When the hardest gluon is real and the second is virtual, we get �P12

ab

as above. Since the second
gluon is virtual, it does not produce a new dipole, so the 3rd emission comes from the (a1) and
(2b) dipoles only. Thus we find

W
RV R

= �W
RV V

= �P12

ab

�P3

a1

+ P3

b1

�
(36)

In total at order ↵3

s

, there are 4 independent integrands:

C
1

= P123

ab

= W
RRR

= �W
RRV

(37)

C
2

= P12

ab

�P3

a1

+ P3

b1

�
= W

RV V

= �W
RV R

(38)

C
3

= P1

ab

P23

ab

= �W
V RR

= W
V RV

(39)

C
4

= P1

ab

P2

ab

P3

ab

= W
V V R

= �W
V V V

(40)

Summing all eight contributions gives zero, as expected since there can be no large logarithms
in an inclusive cross section. The procedure for constructing the real and virtual contributions
to |M|2 to arbitrary order should now be clear by generalizing these examples.

4 The non-global hemisphere mass integral

The procedure defined in the previous sections provide the real and virtual contributions to
|M|2 in the SEO approximation. To construct an observable, we have to integrate these matrix
elements against a measurement function. Since virtual gluons are never measured, this function
is only sensitive to the gluons which are real. In this section, we work out the integrand at up to
3 loops and outline the procedure for higher loops. Above 3 loops, we find it simpler to extract
the NGL integrand using the BMS equation, as explained in the next section.

To avoid dealing with distributions, we work with the cumulant right-hemisphere mass defined
as ⇢ = MR

Q

. We then have

S(⇢) =
1

�
0

Z
Q

0

dm
L

Z
⇢Q

0

dm
R

d2�

dm
L

dm
R

(41)

10

Thus there are 2 independent integrands

B
1

= P12

ab

= W
RR

= �W
RV

(33)

B
2

= P1

ab

P2

ab

= W
V V

= �W
V R

(34)

At order ↵3

s

, we construct the real and virtual integrands in the same iterative way. For
example, the contribution with all gluons virtual comes from 3 uncorrelated emissions from the
(ab) dipole, each with a minus sign:

W
V V V

= �W1

ab

W2

ab

W3

ab

(35)

When the hardest gluon is real and the second is virtual, we get �P12

ab

as above. Since the second
gluon is virtual, it does not produce a new dipole, so the 3rd emission comes from the (a1) and
(2b) dipoles only. Thus we find

W
RV R

= �W
RV V

= �P12

ab

�P3

a1

+ P3

b1

�
(36)

In total at order ↵3

s

, there are 4 independent integrands:

C
1

= P123

ab

= W
RRR

= �W
RRV

(37)

C
2

= P12

ab

�P3

a1

+ P3

b1

�
= W

RV V

= �W
RV R

(38)

C
3

= P1

ab

P23

ab

= �W
V RR

= W
V RV

(39)

C
4

= P1

ab

P2

ab

P3

ab

= W
V V R

= �W
V V V

(40)

Summing all eight contributions gives zero, as expected since there can be no large logarithms
in an inclusive cross section. The procedure for constructing the real and virtual contributions
to |M|2 to arbitrary order should now be clear by generalizing these examples.

4 The non-global hemisphere mass integral

The procedure defined in the previous sections provide the real and virtual contributions to
|M|2 in the SEO approximation. To construct an observable, we have to integrate these matrix
elements against a measurement function. Since virtual gluons are never measured, this function
is only sensitive to the gluons which are real. In this section, we work out the integrand at up to
3 loops and outline the procedure for higher loops. Above 3 loops, we find it simpler to extract
the NGL integrand using the BMS equation, as explained in the next section.

To avoid dealing with distributions, we work with the cumulant right-hemisphere mass defined
as ⇢ = MR

Q

. We then have

S(⇢) =
1

�
0

Z
Q

0

dm
L

Z
⇢Q

0

dm
R

d2�

dm
L

dm
R

(41)

10

Thus there are 2 independent integrands

B
1

= P12

ab

= W
RR

= �W
RV

(33)

B
2

= P1

ab

P2

ab

= W
V V

= �W
V R

(34)

At order ↵3

s

, we construct the real and virtual integrands in the same iterative way. For
example, the contribution with all gluons virtual comes from 3 uncorrelated emissions from the
(ab) dipole, each with a minus sign:

W
V V V

= �W1

ab

W2

ab

W3

ab

(35)

When the hardest gluon is real and the second is virtual, we get �P12

ab

as above. Since the second
gluon is virtual, it does not produce a new dipole, so the 3rd emission comes from the (a1) and
(2b) dipoles only. Thus we find

W
RV R

= �W
RV V

= �P12

ab

�P3

a1

+ P3

b1

�
(36)

In total at order ↵3

s

, there are 4 independent integrands:

C
1

= P123

ab

= W
RRR

= �W
RRV

(37)

C
2

= P12

ab

�P3

a1

+ P3

b1

�
= W

RV V

= �W
RV R

(38)

C
3

= P1

ab

P23

ab

= �W
V RR

= W
V RV

(39)

C
4

= P1

ab

P2

ab

P3

ab

= W
V V R

= �W
V V V

(40)

Summing all eight contributions gives zero, as expected since there can be no large logarithms
in an inclusive cross section. The procedure for constructing the real and virtual contributions
to |M|2 to arbitrary order should now be clear by generalizing these examples.

4 The non-global hemisphere mass integral

The procedure defined in the previous sections provide the real and virtual contributions to
|M|2 in the SEO approximation. To construct an observable, we have to integrate these matrix
elements against a measurement function. Since virtual gluons are never measured, this function
is only sensitive to the gluons which are real. In this section, we work out the integrand at up to
3 loops and outline the procedure for higher loops. Above 3 loops, we find it simpler to extract
the NGL integrand using the BMS equation, as explained in the next section.

To avoid dealing with distributions, we work with the cumulant right-hemisphere mass defined
as ⇢ = MR

Q

. We then have

S(⇢) =
1

�
0

Z
Q

0

dm
L

Z
⇢Q

0

dm
R

d2�

dm
L

dm
R

(41)
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P 1
ab =

(ab)

(a1)(1b)

Matthew Schwartz 
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Our notation is defined so that gluon 1 is much harder than gluon 2. Therefore ✓
⇢<1

✓
⇢<2

= ✓
⇢<2

.
For the same reason, we can drop the symmetry factor 1/2!, since only one energy ordering is
picked out for the phase space integral. We can then write S(2)(⇢) suggestively as

S(2)(⇢) = ↵̄2

Z

E1>E2

1
R

2
R

✓
⇢<1

✓
⇢<2

�P1

ab

P2

ab

�� ↵̄2

Z

E1>E2

1
L

2
R

✓
⇢<2

�P12

ab

� P1

ab

P2

ab

�
(50)

The first term here is the global contribution with both gluons going right but uncorrelated. If
we average the first integral over the same thing with E

2

> E
1

, we can drop the energy ordering
and have simply

↵̄2

Z

E1>E2

1
R

2
R

✓
⇢<2

�P1
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P2

ab

�
=

↵̄2
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Z
1
R

2
R

✓
⇢<1

✓
⇢<2

P1

ab

P2

ab

=
1

2

⇥
S(1) (⇢)

⇤
2

, (51)

which agrees with the second-order expansion of exp
�
S(1) (⇢)

�
. The second term in Eq. (50)

when integrated gives the leading non-global logarithm. Explicitly,

S
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=� ↵̄2

Z

E1>E2

1
L

2
R

✓
⇢<2

�P12

ab

�W1

ab

W2

ab

�

=� ↵̄2

Z
Q

0

d!
2

!
2

Z

right

d⌦
2

4⇡
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!
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� ⇢Q
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⇥

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24
ln2 ⇢+ less singular terms (52)

This integrand is exactly that given by Eq. (8) of Ref. [37].
A simplifying observation is that because the non-global integral has no collinear singularities,

we can replace the ✓ function on hemisphere mass with a simpler one on energy: ✓
⇣
!
2

� ⇢Q

2(n2)

⌘
!

✓(!
2

� ⇢). The di↵erence produces only subleading terms. This is not allowed in the global
logarithmic terms because unregulated collinear divergences would arise, but is allowed for non-
global ones.

The first new result here is the 3-loop integrand. Following the same procedure outlined
above, we find
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2
L

3
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✓
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(�C
1

+ C
2

+ C
3

� C
4

) (53)

with C
1

, C
2

, C
3

and C
4

given in Eqs. (37). To find the 3-loop NGLs, we have to remove the global
logarithms. To find the purely 3-loop contribution, we should also remove the exponentiation of

12

Our notation is defined so that gluon 1 is much harder than gluon 2. Therefore ✓
⇢<1

✓
⇢<2

= ✓
⇢<2

.
For the same reason, we can drop the symmetry factor 1/2!, since only one energy ordering is
picked out for the phase space integral. We can then write S(2)(⇢) suggestively as

S(2)(⇢) = ↵̄2

Z

E1>E2

1
R

2
R

✓
⇢<1

✓
⇢<2

�P1

ab

P2

ab

�� ↵̄2

Z

E1>E2

1
L

2
R

✓
⇢<2

�P12

ab

� P1

ab

P2

ab

�
(50)

The first term here is the global contribution with both gluons going right but uncorrelated. If
we average the first integral over the same thing with E

2

> E
1

, we can drop the energy ordering
and have simply

↵̄2

Z

E1>E2

1
R

2
R

✓
⇢<2

�P1

ab

P2

ab

�
=

↵̄2

2

Z
1
R

2
R

✓
⇢<1

✓
⇢<2

P1

ab

P2

ab

=
1

2

⇥
S(1) (⇢)

⇤
2

, (51)

which agrees with the second-order expansion of exp
�
S(1) (⇢)

�
. The second term in Eq. (50)

when integrated gives the leading non-global logarithm. Explicitly,

S
(2)

NG

=� ↵̄2

Z

E1>E2

1
L

2
R

✓
⇢<2

�P12

ab

�W1

ab

W2

ab

�

=� ↵̄2

Z
Q

0

d!
2

!
2

Z

right

d⌦
2

4⇡

Z
Q

!2

d!
1

!
1

Z

left

d⌦
1

4⇡
✓

✓
!
2

� ⇢Q

2(n2)

◆

⇥


(nn)

(n1)(12)(2n)
+

(nn)

(n2)(21)(1n)
� (nn)

(n1)(1n)

(nn)

(n2)(2n)

�

=� ↵̄2

⇡2

24
ln2 ⇢+ less singular terms (52)

This integrand is exactly that given by Eq. (8) of Ref. [37].
A simplifying observation is that because the non-global integral has no collinear singularities,
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� ⇢). The di↵erence produces only subleading terms. This is not allowed in the global
logarithmic terms because unregulated collinear divergences would arise, but is allowed for non-
global ones.

The first new result here is the 3-loop integrand. Following the same procedure outlined
above, we find
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with C
1

, C
2

, C
3

and C
4

given in Eqs. (37). To find the 3-loop NGLs, we have to remove the global
logarithms. To find the purely 3-loop contribution, we should also remove the exponentiation of

12

Two loops 

Three loops 

Thus there are 2 independent integrands

B
1

= P12

ab

= W
RR

= �W
RV

(33)

B
2

= P1

ab

P2

ab

= W
V V

= �W
V R

(34)

At order ↵3

s

, we construct the real and virtual integrands in the same iterative way. For
example, the contribution with all gluons virtual comes from 3 uncorrelated emissions from the
(ab) dipole, each with a minus sign:

W
V V V

= �W1

ab

W2

ab

W3

ab

(35)

When the hardest gluon is real and the second is virtual, we get �P12

ab

as above. Since the second
gluon is virtual, it does not produce a new dipole, so the 3rd emission comes from the (a1) and
(2b) dipoles only. Thus we find

W
RV R

= �W
RV V

= �P12

ab

�P3

a1

+ P3

b1

�
(36)

In total at order ↵3

s

, there are 4 independent integrands:

C
1

= P123

ab

= W
RRR

= �W
RRV

(37)

C
2

= P12

ab

�P3

a1

+ P3

b1

�
= W

RV V

= �W
RV R

(38)

C
3

= P1

ab

P23

ab

= �W
V RR

= W
V RV

(39)

C
4

= P1

ab

P2

ab

P3

ab

= W
V V R

= �W
V V V

(40)

Summing all eight contributions gives zero, as expected since there can be no large logarithms
in an inclusive cross section. The procedure for constructing the real and virtual contributions
to |M|2 to arbitrary order should now be clear by generalizing these examples.

4 The non-global hemisphere mass integral

The procedure defined in the previous sections provide the real and virtual contributions to
|M|2 in the SEO approximation. To construct an observable, we have to integrate these matrix
elements against a measurement function. Since virtual gluons are never measured, this function
is only sensitive to the gluons which are real. In this section, we work out the integrand at up to
3 loops and outline the procedure for higher loops. Above 3 loops, we find it simpler to extract
the NGL integrand using the BMS equation, as explained in the next section.

To avoid dealing with distributions, we work with the cumulant right-hemisphere mass defined
as ⇢ = MR

Q

. We then have

S(⇢) =
1

�
0

Z
Q

0

dm
L

Z
⇢Q

0

dm
R

d2�

dm
L

dm
R

(41)
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Four loops: a mess 
•  Hard to simplify 

Global part Non-global part 

•  Includes collinear-divergent global-non-global cross terms 
•  Can subtract off using exponentiation 

•  Need to use symmetries to know what to subtract 

Integrate WRVR… against measurement function for right hemisphere mass 
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1. Dasgupta-Salam (hep-ph/0104277, 2001) 

•  Large Nc monte carlo 

a
b

a
b

HRHL HRHL

D1

!

Figure 2: Left: the kind of diagram which must be considered in the calculation of S.
Right: the same diagram represented in the large-NC limit, with gluons shown as pairs
of colour lines and quarks as single colour lines.

Such a branching pattern can be very naturally implemented using a Monte Carlo
algorithm. At first sight one might envisage calculating the two factors in (14) sepa-
rately, using the FC to generate the distribution of radiation for each new configuration.
However because of the collinear divergence along the direction of the quark in HR,
only a tiny fraction of events would be free of emissions in HR and so contribute to the
sum in (14). The sum would therefore have a large relative error, which would translate
to a large absolute error on S because of the division by the small quantity

√
∆ab(L).

Instead a more efficient procedure involves moving the division by
√

∆ab(L) directly
into the calculation of the PC. This can be achieved using a modified radiation intensity,
F̃C (for both the emissions and the virtual corrections),

F̃C(θ, φ) = FC(θ, φ) − Fab(θ, φ)Θ(θ) , (16)

where one subtracts out the radiation intensity Fab which would have been produced by
the original qq̄ pair (in the large-NC limit). One calculates quantities P̃C using analogs
of eqs. (12) and (13) with FC replaced by F̃C and then S is simply given by

S(αsL) =
∑

C|HR empty

P̃C(L) . (17)

It should be kept in mind that since F̃C is negative in certain regions of phase space
one loses a strict probabilistic interpretation for the P̃C. Nevertheless the sum over
configurations is well-defined and meaningful.

The exact details of the Monte Carlo algorithm are given in the appendix. Here we
restrict ourselves to giving a parameterisation for S obtained by fitting to the Monte
Carlo results:

S(αsL) " exp

(
−CFCA

π2

3

(
1 + (at)2

1 + (bt)c

)
t2
)

, (18)

with

t(αsL) =
1

2π

∫ 1

e−L

dx

x
αs(xQ) =

1

4πβ0
ln

1

1 − 2β0αsL
, (19)

6

resolution scale L (i.e. not resolving gluons with energies less than Qe−L). Given PC,
the probability PC′ of a configuration C′ with one extra gluon with scale L′ > L, polar
angle θ′ and azimuth φ′ is (see for example [15])

PC′(L′) = ᾱs(L
′)∆C(L, L′) FC(θ

′, φ′)PC(L) , (12)

where the form factor is given by

ln ∆C(L, L′) = −

∫ L′

L

dL′′

∫
dcos θ dφ ᾱs(L

′′) FC(θ, φ) , (13)

and FC(θ, φ) describes the angular and colour-structure of the radiation pattern from
configuration C. The angular integrations in (13) diverge whenever the angle is collinear
to one of the emitting particles. In practice it is therefore convenient to introduce an
angular cutoff ε to regulate these divergences both in the real emissions and the virtual
corrections.

We obtain S by calculating the probability of there being no emissions in HR down
to a scale L, divided by the corresponding probability had the only source of emissions
been the original qq̄ pair. This gives

S(αsL) =
1

√
∆ab(L)

∑

C|HR empty

PC(L) , (14)

where the sum runs over all configurations C which contain no emissions in HR.

3.1 Large-NC limit and Monte Carlo implementation

In practice two considerations make it difficult to implement the above approach ana-
lytically. One is that the colour algebra involved in the determination of FC becomes
progressively more complicated as the number of gluons increases. The other problem
is simply that the treatment of the geometry of the many large-angle gluon ensem-
ble quickly becomes prohibitive. The first problem can be partially solved by taking
the large-NC limit. To address the issue of the geometry we shall use a Monte Carlo
approach.

In the large-NC limit, one can represent gluons by pairs of colour-anticolour lines,
as illustrated in figure 2. When squaring the amplitude one ignores contributions that
in terms of their colour flow are topologically non-planar, because they are suppressed
by powers of 1/N2

C [16]. As a result, for an ensemble of n gluons, FC just reduces to a
sum of independent emission intensities from n + 1 independent dipoles:

FC(θk, φk) =
∑

dipoles−ij

2CA

(1 − cos θik)(1 − cos θkj)
. (15)

When the dipole ij radiates a gluon k it splits into two dipoles, ik and kj. Thus the
dipole structure is determined by the history of the gluon branching.

5

Sudakov factor 

Probability of configuration C 

2. Banfi-Marchesini-Smye (hep-ph/0206076, 2002) 

dipole momenta papb. This distribution depends on the direction of papb with respect

to the e+e− thrust axis and on the geometry of the interjet region Cout, i.e. on θin in
(2.2). To obtain the evolution equation we use

E∂E

{

W (pak1 . . . knpb)
n
∏

i=1

Θ(E−ωi)

}

=
n
∑

!=1

Eδ(E−ω!) wab(k!)

·

{

W (pak1 . . . k!)
!−1
∏

i=1

Θ(E−ωi)

}

·

{

W (k! . . . knpb)
n
∏

i=!+1

Θ(E−ωi)

}

,

(4.1)

where

wab(k) =
(papb)

(pak)(kpb)
=

1 − cos θab

(1 − cos θak)(1 − cos θkb)
. (4.2)

We then deduce the basic equation (ν = E−1
out dependence is understood)

E∂E Gab(E) =

∫

d2Ωk

4π
ᾱswab(k) [u(k) Gak(E) · Gkb(E) − Gab(E)] . (4.3)

Here we have added virtual corrections, the last term in the square bracket, to
the same order as the real emission contributions, see [7]. This evolution equation

corresponds to soft dipole emission with energy ordering. Since wab(k) effectively
constrains k into the angular region within the ab dipole, (4.3) also implies angular
ordering (after azimuthal averaging). Large angle regions are correctly taken into

account.

It is convenient to write (4.3) in the form

E∂E Gab(E) = −E∂E R(0)
ab (E) · Gab(E)

+

∫

d2Ωk

4π
ᾱswab(k) u(k) [ Gak(E) · Gkb(E) − Gab(E) ] ,

(4.4)

with R(0)
ab (E) the SL Sudakov radiator for the bremsstrahlung emission

R(0)
ab (E) =

∫ E

0

dω

ω

∫

d2Ωk

4π
ᾱs wab(k) [1 − u(k)] = ∆ · rab , (4.5)

where ∆ depends on E, Eout and rab on the geometry of the interjet region (2.2)

∆ =

∫ E

0

dω

ω
ᾱs

[

1 − e−ω/Eout
]

, rab =

∫

Cout

d2Ωk

4π
wab(k) . (4.6)

Here we have used [1−u(k)] = [1−e−ω/Eout ] Θout(k) which entails that, in the un-

observed jet region Cin, the infrared and collinear singularities of wab(k) are fully
cancelled between real and virtual contributions.

6

Run Monte Carlo  

•  Same assumptions as DS (strong-energy-ordering, leading NGL, large N) 
•  Supposedly equivalent 

•  we give the first numerical check 
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1.  Start with strong-energy ordered integrand 
2.  Add measurement function 
3.  Take derivatives  
4.  Simplify with algebra 
5.  Add in virtual corrections 
6.  Divide by global term 

The solution to the BMS equation are a set of functions G
ab

(L) indexed by lightlike directions
aµ and bµ (equivalently angles ⌦

a

and ⌦
b

on the 2-sphere). These functions, when evaluated at

L = bL ⌘ N
c

↵
s

⇡
ln

1

⇢
, (60)

give all the single (global and non-global) logarithms of the hemisphere mass from a color dipole
in aµ and bµ directions. In particular, the hemisphere mass NGLs are in G

nn

(bL). There are addi-
tional single logarithms coming from the 1-loop running of ↵

s

. These can be easily included [37],
so we simply ignore them for simplicity.

To extract just the NGLs, following BMS we write

G
ab

(L) = g
ab

(L) exp

✓
�L

Z

right

d⌦
j

4⇡
Wj

ab

◆
, (61)

which leads to

@
L

g
ab

(L) =

Z

left

d⌦
j

4⇡
Wj

ab

[U
abj

(L)g
aj

(L)g
jb

(L)� g
ab

(L)] , (62)

with

U
abj

(L) = exp


L

Z

right

d⌦
1

4⇡

�W1

ab

�W1

aj

�W1

jb

��
. (63)

The boundary conditions on the BMS equation are that g
ab

(0) = G
ab

(0) = 1 for all a and b.
Importantly, this boundary condition respects any symmetry acting on a and b.

Before exploring the perturbative solution to the BMS equation, let us quickly consider the
symmetries of g

ab

(L) for di↵erent a and b. The directions a and b can be arbitrary angles
(✓

a

,�
a

) and (✓
b

,�
b

) on 2-sphere. There is an obvious cylindrical symmetry with respect to the
hemisphere axis which makes g

ab

(L) only depend on �
b

� �
a

. Thus one would think there are
three degrees of freedom in g

ab

(L). Remarkably however, the BMS equation contains a hidden
PSL(2,R) symmetry, and there is actually only one degree of freedom in g

ab

(L): the geodesic
distance between a and b on the Poincaré disk. We explain this symmetry in Section 6.2.

5.1 Perturbative check

First, let us check that the perturbative e xpansion of the BMS equation for g
nn

reproduces the
integrands at 2 and 3 loops that were derived in Sections 3 and 4 by summing virtual and real
corrections using the strong-energy-ordered approximation.

To work perturbatively we write, g
ab

(L) =
P1

m=0

g
(m)

ab

with g
(m)

ab

proportional to Lm, and

similarly for U
abj

. Substituting g
(0)

ab

= g
ab

(0) = 1 and U
(0)

abj

= 1, right-hand side of Eq. (62)
vanishes. Integrating Eq. (62) we then find that there is no O(L) term in g

ab

(L), consistent with
the leading non-global logarithm starting at 2 loops.

At order L, labeling the radiated gluon 2 for convenience, we have

U
(1)

abj

(L) = L

Z

right

d⌦
2

4⇡

�W2

ab

�W2

aj

�W2

jb

�
(64)
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We can therefore write the cross section as the integral of the matrix-element squared times a
measurement function

S(⇢) =

Z
d�

m

��M1···m
ab

��2 u({p
i

}) (42)

where the measurement function for the hemisphere mass cumulant at leading power is

u({p
i

}) = ⇥
⇣
⇢Q�

X

i

2(p
i

· n)✓
R

(p
i

)
⌘

(43)

Working in a frame where the jet are back-to-back in the nµ = (1,~n) and nµ = (1,�~n) directions,
the right-hemisphere projector is ✓

R

(p) ⌘ ✓(~p · ~n). Similarly, the left-hemisphere projector is
✓
L

(p) ⌘ ✓(�~p · ~n) = 1 � ✓
R

(p). Since only the hardest gluon in the hemisphere will contribute,
we can equally well use

u({p
i

}) =
Y

pi

u(p
i

) (44)

where
u (p) = ⇥(⇢Q� 2p · n)✓

R

(p) + ✓
L

(p) (45)

That we can treat the emissions independently greatly simplifies the calculation.1

For one emission, we can write the cumulant as

S(1)(⇢) = ↵̄

Z
W

R

u(p
1

) + ↵̄

Z
W

V

, (46)

where no phase space constraint is imposed on the virtual gluon, as the measurement operator
does not act on the virtual gluons. Let us write more suggestively,

u(p
1

) = ⇥(⇢Q� 2p
1

· n)✓
R

(p
1

) = 1
R

✓
1<⇢

+ 1
L

(47)

1
R

means that gluon 1 goes to the right and ✓
1<⇢

means that gluon 1’s contribution to the
hemisphere mass is not larger than ⇢. Using Eq. (27) the O(↵

s

) result is then

S(1)(⇢) = ↵̄

Z
P1

ab

(1
R

✓
1<⇢

+ 1
L

� 1) = �↵̄

Z
P1

ab

1
R

✓
⇢<1

(48)

This is the global logarithm. To all orders, the global logarithm is given by the exponentiation
of this term.

For two emissions, we have

S(2) (⇢) = ↵̄2

Z

E1>E2

(1
R

✓
1<⇢

+ 1
L

) (2
R

✓
2<⇢

+ 2
L

)W
RR

+ ↵̄2

Z

E1>E2

(1
R

✓
1<⇢

+ 1
L

)W
RV

+ ↵̄2

Z

E1>E2

(2
R

✓
2<⇢

+ 2
L

)W
V R

+ ↵̄2

Z

E1>E2

W
V V

(49)

1
The measurement function factorizes into a product of terms exactly when transformed into Laplace space.

For the leading NGLs, which we consider here, Eq. (44) is enough.
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3 Strong energy ordering

In this section, we review the structure of the real, virtual and real-virtual integrands relevant
for the leading non-global logarithm at large N

c

limit [55]. While simplifications arising from
the strong-energy-ordering (SEO) limit have been known for decades, we try to provide more
explicit details than we have found in the literature. Hopefully, our exposition will clarify the
set of approximations going into the NGL calculation. A reader already familiar with SEO can
skip this section.

3.1 Real emission

To begin, consider the cross section for emission of m gluons o↵ classical quark sources in the aµ

and bµ directions. The di↵erential cross section for real-emission is then

1

�
0

d�
m

=
1

m!
d�

m

��M1···m
ab

��2 (9)

where �
0

is the tree-level cross section and the phase space is

d�
m

=
mY

i=1

d3p
i

(2⇡)3 2!
i

=
mY

i=1

!
i

d!
i

4⇡2

d⌦
i

4⇡
(10)

In the limit that the energy of the gluons is strongly ordered, at large N
c

the matrix-element
squared can be written as [55]

��M1···m
ab

��2 =
��hp

1

· · · p
m

��Y †
a

Y
b

�� 0i��2 = Nm

c

g2m
X

perms of 1···m

(p
a

· p
b

)

(p
a

· p
1

) (p
1

· p
2

) · · · (p
m

· p
b

)
(11)

It does not matter if E
1

� E
2

� · · · � E
m

or if the gluons are ordered in some other permutation;
because they are identical particles, the matrix element is independent of the gluon labels.

To simplify cross section formula, it is helpful to pull out the energies from the dot-products,
by writing

(ij) ⌘ p
i

· p
j

!
i

!
j

= 1� cos ✓
ij

(12)

where ✓
ij

is the angle between the directions ~p
i

and ~p
j

. Then we define the radiator function as

W1···m
ab

=
(ab)

(a1)(12) · · · (mb)
(13)

and
P1···m

ab

=
X

perms of 1···m

W1···m
ab

(14)

so that ��M1···m
ab

��2 = Nm

c

g2m
1

!2

1

· · ·!2

m

P1···m
ab

(15)

6

The solution to the BMS equation are a set of functions G
ab

(L) indexed by lightlike directions
aµ and bµ (equivalently angles ⌦

a

and ⌦
b

on the 2-sphere). These functions, when evaluated at

L = bL ⌘ N
c

↵
s

⇡
ln

1

⇢
, (60)

give all the single (global and non-global) logarithms of the hemisphere mass from a color dipole
in aµ and bµ directions. In particular, the hemisphere mass NGLs are in G

nn

(bL). There are addi-
tional single logarithms coming from the 1-loop running of ↵

s

. These can be easily included [37],
so we simply ignore them for simplicity.

To extract just the NGLs, following BMS we write

G
ab

(L) = g
ab

(L) exp

✓
�L

Z

right

d⌦
j

4⇡
Wj

ab

◆
, (61)

which leads to

@
L

g
ab

(L) =

Z

left

d⌦
j

4⇡
Wj

ab

[U
abj

(L)g
aj

(L)g
jb

(L)� g
ab

(L)] , (62)

with

U
abj

(L) = exp


L

Z

right

d⌦
1

4⇡

�W1

ab

�W1

aj

�W1

jb

��
. (63)

The boundary conditions on the BMS equation are that g
ab

(0) = G
ab

(0) = 1 for all a and b.
Importantly, this boundary condition respects any symmetry acting on a and b.

Before exploring the perturbative solution to the BMS equation, let us quickly consider the
symmetries of g

ab

(L) for di↵erent a and b. The directions a and b can be arbitrary angles
(✓

a

,�
a

) and (✓
b

,�
b

) on 2-sphere. There is an obvious cylindrical symmetry with respect to the
hemisphere axis which makes g

ab

(L) only depend on �
b

� �
a

. Thus one would think there are
three degrees of freedom in g

ab

(L). Remarkably however, the BMS equation contains a hidden
PSL(2,R) symmetry, and there is actually only one degree of freedom in g

ab

(L): the geodesic
distance between a and b on the Poincaré disk. We explain this symmetry in Section 6.2.

5.1 Perturbative check

First, let us check that the perturbative e xpansion of the BMS equation for g
nn

reproduces the
integrands at 2 and 3 loops that were derived in Sections 3 and 4 by summing virtual and real
corrections using the strong-energy-ordered approximation.

To work perturbatively we write, g
ab

(L) =
P1

m=0

g
(m)

ab

with g
(m)

ab

proportional to Lm, and

similarly for U
abj

. Substituting g
(0)

ab

= g
ab

(0) = 1 and U
(0)

abj

= 1, right-hand side of Eq. (62)
vanishes. Integrating Eq. (62) we then find that there is no O(L) term in g

ab

(L), consistent with
the leading non-global logarithm starting at 2 loops.

At order L, labeling the radiated gluon 2 for convenience, we have

U
(1)

abj

(L) = L

Z

right

d⌦
2

4⇡

�W2

ab

�W2

aj

�W2

jb

�
(64)
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b gab(L) gives the leading NGL  
      for the right hemisphere mass  
      from an ab dipole 

We checked that this agrees with the SEO picture + global subtractions to 4 loops 



Symmetries of BMS equation 
March 27, 2014 Matthew Schwartz 

It is helpful also to define a square bracket as the round bracket with one of the vectors reflected
to the opposite hemisphere:

[ab] ⌘ (āb) = 1 + cos ✓
a

cos ✓
b

� cos(�
a

� �
b

) sin ✓
a

sin ✓
b

(70)

Now, if a and b are both left, but the emission goes right, then there are no collinear singu-
larities in the angular integral and the dipole radiator can be easily integrated

Z

right

d⌦
1

4⇡
W1

ab

=
1

2
ln

[ab]

2 cos ✓
a

cos ✓
b

(71)

Adding three of these and exponentiating with Eq. (63) leads to

U
abj

(L) = 2L/2 cosL ✓
j

⇢
[ab]

[aj][jb]

�
L/2

(72)

Therefore, Eq. (62) reduces to

@
L

g
ab

(L) =
1

4⇡

Z
1
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d cos ✓
j

Z
2⇡

0

d�
j

(ab)

(aj)(jb)
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"
2L/2 cosL ✓

j

⇢
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�
L/2

g
aj

(L)g
jb

(L)� g
ab

(L)

#
(a, b both left) (73)

Note that when a and b are both left, to all orders the BMS equation only involves directions in
the left hemisphere.

When one of the directions is n, which is in the right hemisphere, then the integral in Eq.
(71) has a collinear divergences, but U

abj

is still finite. We find

U
anj

(L) = 2L/2 cosL ✓
j

⇢
(an)

[aj](jn)

�
L/2

, (74)

and so Eq. (62) becomes

@
L

g
an

(L) =
1

4⇡

Z
1

0
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j
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0

d�
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(L)

#
(a left) (75)
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Note that when a and b are both left, to all orders the BMS equation only involves directions in
the left hemisphere.

When one of the directions is n, which is in the right hemisphere, then the integral in Eq.
(71) has a collinear divergences, but U
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Performing the right-hemisphere integral (softest emission) exactly, BMS becomes 

(ij) = 1� cos ✓ij

[ij] = (i¯j) = 1� cos ✓ījProject onto unit disk 

za

zb
bµ

n̄µ

aµ

nµ

Figure 2: A stereographic projection of the jet directions onto the Poincaré disk reveals the
PSL(2,R) symmetry of the BMS equation.

6.2 Symmetries of the BMS equation

Having evaluated U
abj

exactly, the BMS equation, as in Eq. (73) now depends only on the g
ab

(L)
functions and an explicit integration measure. In this form it is simpler to explore its symmetries.
In the following discussion, we will first concentrate on the BMS equation when both a and b are
in the left hemisphere (as of course is the emission j). The case when b is in the left hemisphere
is similar, but the symmetry is less obvious. We present both results in the end.

It has been observed that the BMS equation is formally similar to the BK equation [48, 49],
a non-linear integro-di↵erential equation describing gluon saturation e↵ects. The BK equation
enjoys a conformal symmetry PSL(2,C) in its integral measure (see, e.g., [58]), which is violated
by initial conditions. It is therefore natural to look for a similar symmetry in the BMS equation.
Indeed, it has been observed that the integration measure of the BMS equation does indeed
respect PSL(2,C) [59, 60]. Moreover, unlike for the BK equation, this symmetry is not broken
by the initial condition of the BMS equation. However, it is broken by the restriction on the
integration region. As we will now explain, for the hemisphere mass case, the restriction that
radiation goes into the left hemisphere breaks the symmetry from PSL(2,C) to PSL(2,R).

To reveal the symmetry of the BMS equation, it’s useful to consider a change of variables by
stereographic projection [59,60],

z =
sin ✓

1 + cos ✓
ei� (76)

This projection is shown in Fig. 2. Under the stereographic projection transformation, the full
angle space (✓,�) coordinate is mapped to the full complex plane, while the left hemisphere,
cos ✓ > 0, is mapped to the unit disk.

17

In terms of z, the angle from the hemisphere axis is

cos ✓ =
1� |z|2
1 + |z|2 (77)

and the angular measure on the sphere turns into

d⌦ = d cos ✓d� =
4dz dz̄

(1 + |z|2)2 (78)

Also, the round and square bracket inner products, in Eqs. (69) and (70) become

(ij) = 2
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� z
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|2)(1 + |z
j
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|2|
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j

|2
◆
, (79)

and the radiator times the measure becomes

d⌦
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= 2dzdz̄
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� z
b
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� z
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|2|z
j

� z
b

|2 (80)

Recall that the angle and square brackets come from Lorentzian inner products of normalized
4-vectors on the unit sphere. Although the sphere is Euclidean, these inner products are naturally
hyperbolic. Indeed, the inner products are reminiscent of the hyperbolic distance measure on the
Poincaré disk, defined as

hiji = |z
i

� z
j

|2
(1� |z

i

|2)(1� |z
j

|2) =
(ij)

2 cos ✓
i
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j

(81)

It then follows that
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[ij] = 2 cos ✓
i
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j
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⌘
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(83)

Plugging these equations into the BMS equation for left-hemisphere NGLs, Eq. (73), we
obtain
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In this form, the symmetry of the BMS equation under PSL(2,R) is easiest to verify. First,
we note that the radiator itself
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BMS equation respects hyperbolic metric on Poincare disk  
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•  Geodesics are circular arcs perpendicular to boundary 
•  Isometry group maps geodesics to geodesics  

Azimuthal rotations  
  (only obvious symmetry)  

Figure 3: Elements of PSL(2,R) can be visualized by their action on geodesics. Some group
elements are shown.

Because of this property, without loss of generality, we can choose z
a

= 0, or ✓
a

= 0. That is, we
identify a = n in the calculation. We therefore only need

hnji = 1� cos ✓
j

2 cos ✓
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, hnbi = 1� cos ✓
b

2 cos ✓
b

(90)

This greatly simplifies the calculation of the NGLs.

7 Perturbative calculation of NGLs to five loops

While the symmetry of the BMS equation is clearer under stereographic projection, we find it
more convenient to perform the integrals over angles. It is convenient to define
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r
ij

is essentially the 1-loop Sudakov factor, Eq. (71). Then Eq. (73) becomes
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To obtain the m-loop NGLs, we expand Eq. (92) recursively. Recalling that g(0)
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This greatly simplifies the calculation of the NGLs.

7 Perturbative calculation of NGLs to five loops

While the symmetry of the BMS equation is clearer under stereographic projection, we find it
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is invariant under (i) z ! z + � (� 2 C); (ii) z ! �z, (� 6= 0) and (iii) z ! �1/z. These
symmetries generate fractional linear transformations of the form

z ! ↵z + �

�z + �
=

↵

�
+

� � ↵�

�
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The matrices

 
↵ �

� �

!
are elements of the Möbius group PSL(2,C) = SL(2,C)/(±I), where I is the

unit matrix. One way to understand why the radiator is invariant under Möbius transformations,
is to recall that these transformations can be derived by projecting the disk onto the unit sphere,
rotating the sphere, and then projecting back.

Despite the fact that the integration measure in the BMS equation respects PSL(2,C), the
restriction of the integration region to the left-hemisphere only (|z| < 1 from the integration
region in Eq. (84)), or right-hemisphere only (|z| > 1, see, e.g., the integration region for U

abj

in Eq. (64)), breaks PSL(2,C) to PSL(2,R). It is easiest to see that PSL(2,R) is preserved by
mapping the disk to the upper half plane, where PSL(2,R) is represented by fractional linear
transformations with real elements. On the disk, the subgroup of complex fractional linear
transformations preserved is spanned by matrices of the form

�
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These Möbius transformations respect the metric hiji = (ij)

2 cos ✓i cos ✓j
and preserve the Poincaré

disk. Although they include azimuthal rotations, they are in general not Lorentz transformations
(in fact, not even (ab) is Lorentz invariant, since aµ and bµ have their energy component fixed to
1 which breaks boost invariance).

The Möbius transformations are conformal mappings, preserving angles. One way to visualize
them is through their action on geodesics. Geodesics on the Poincaré disk are circular arcs
perpendicular to the boundary. The PSL(2,R) symmetry maps geodesics to other geodesics.
For example, the x-axis diameter is a geodesic. Transformations with � = 0 and ↵ = ei� for
� 2 R are rotations. Transformations with � 6= 0 move the origin. Some 1-parameter families of
transformations are shown in Fig 3. To see the action of these transformations on a and b, one
can project a and b to the disk, find a geodesic passing through them, transform it, then project
back onto the sphere.

We conclude that the BMS equation respects PSL(2,R), and so g
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(L) can only depend on
the distance between a and b according to the metric on the Poincaré disk. That is, g
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are elements of the Möbius group PSL(2,C) = SL(2,C)/(±I), where I is the

unit matrix. One way to understand why the radiator is invariant under Möbius transformations,
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Instead of 4 angles for a,b: only 1 independent variable 

Enormous simplification! 
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At 4 loops the result is most usefully expressed in terms of GPLs in canonical form
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which is valid for hjni > hbni. This equation is in the canonical GPL form, since the next
integration variable hjni shows up only in the argument of GPLs. Some details of how this
canonical form is realized are explained in Appendix C.

B General hemisphere NGL functions to 4 loops

For the same hemisphere NGLs, that is, both a and b are in the left hemisphere, we have obtained
the analytical results up to and include four loops. Defining x = habi we find
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these constants can be guessed, but at 4 loops we require the use of the coproduct to extract
them. The result is a formula for g

ab

(L) at 4 loops. We then use this formula to compute g
nn

(L)
at 5 loops. This is our main concrete result, given in Eq. (141).

In addition to computing the leading NGL at 5 loops, we resummed the leading NGL to all
orders by solving the BMS equation numerically. We found a result in very good agreement with
the fit from a Monte Carlo calculation presented in [37], confirming the equivalence of the BMS
equation and the Monte Carlo approach. Interestingly, the resummed distribution seems to agree
quite well with the exponentiation of the 2-loop result, despite the apparent importance of the
3-loop NGL coe�cient.

The 5-loop leading hemisphere NGL may be of some (limited) phenomenological importance,
since it contributes to event shapes like the heavy jet mass [12]. However, more profound conse-
quences of this work probably include the relatively simple structure of the leading NGL series.
Working in the strong-energy-ordered approximation apparently produces an extended symmetry
which is only partially broken through a finite integration region. That the NGLs are computed
with iterated integrals of uniform transcendentality is also somewhat surprising. While such
integral series are common in supersymmetric settings, examples in large N

c

QCD (N = 0) are
more rare. It may be important to understand the symmetry and the generality of the iterated
structure in more depth.
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A Azimuthal integrals

We present some useful formulae for azimuthal integral in this appendix. The 1 and 2-loop results
are simple
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The 3-loop result is more complicated
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Figure 3: Elements of PSL(2,R) can be visualized by their action on geodesics. Some group
elements are shown.
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This greatly simplifies the calculation of the NGLs.

7 Perturbative calculation of NGLs to five loops

While the symmetry of the BMS equation is clearer under stereographic projection, we find it
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Iterative structure: 
•  3-loop integrates over 2-loop, etc 

•  At each order, 1 polar angle and 1 azimuthal angle integral 
•  Azimuthal integrals simplify by choosing a=n 
 

Azimuthal integrals can be done by contour integration: 

  

Re(t)

Im(t)

C

C 0

t
c

Figure 4: Integral contour for the t integral

We have introduced n into this solution using Eq. (90) to manifest the PSL(2,R) invariance.
The azimuthal integral required for the 3-loop NGL can be done using the same method. The

result is
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The 4-loop azimuthal integral is in Appendix A.
For all the azimuthal integrals we consider, the integrand is of uniform transcendentality. The

azimuthal integrals are all nonsingular and do not change the transcendentality.

7.2 Polar integrals, GPLs, symbols and coproducts

Once all the azimuthal angle integrals are done, which is straightforward with contour integration,
all that remains are the polar angle integrals. It turns out to be useful to make another change

22
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At 4 loops the result is most usefully expressed in terms of GPLs in canonical form
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which is valid for hjni > hbni. This equation is in the canonical GPL form, since the next
integration variable hjni shows up only in the argument of GPLs. Some details of how this
canonical form is realized are explained in Appendix C.

B General hemisphere NGL functions to 4 loops

For the same hemisphere NGLs, that is, both a and b are in the left hemisphere, we have obtained
the analytical results up to and include four loops. Defining x = habi we find
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these constants can be guessed, but at 4 loops we require the use of the coproduct to extract
them. The result is a formula for g

ab

(L) at 4 loops. We then use this formula to compute g
nn

(L)
at 5 loops. This is our main concrete result, given in Eq. (141).

In addition to computing the leading NGL at 5 loops, we resummed the leading NGL to all
orders by solving the BMS equation numerically. We found a result in very good agreement with
the fit from a Monte Carlo calculation presented in [37], confirming the equivalence of the BMS
equation and the Monte Carlo approach. Interestingly, the resummed distribution seems to agree
quite well with the exponentiation of the 2-loop result, despite the apparent importance of the
3-loop NGL coe�cient.

The 5-loop leading hemisphere NGL may be of some (limited) phenomenological importance,
since it contributes to event shapes like the heavy jet mass [12]. However, more profound conse-
quences of this work probably include the relatively simple structure of the leading NGL series.
Working in the strong-energy-ordered approximation apparently produces an extended symmetry
which is only partially broken through a finite integration region. That the NGLs are computed
with iterated integrals of uniform transcendentality is also somewhat surprising. While such
integral series are common in supersymmetric settings, examples in large N

c

QCD (N = 0) are
more rare. It may be important to understand the symmetry and the generality of the iterated
structure in more depth.
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A Azimuthal integrals

We present some useful formulae for azimuthal integral in this appendix. The 1 and 2-loop results
are simple
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Doing the integral for J
3

in the same way, we obtain the final result for Eq. (114),
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= hnbi. In terms of classical polylogarithms this is
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This result agrees with what we find by direct integration of the 3-loop integrand using Mathematica.
At 4 loops, the polar integral cannot be done directly, and we find the use of symbols to

be necessary. One additional complication beyond 3 loops is that symbols does not fix the
functional form of the original function (e.g., there can be terms like ⇣(2) log, which is mapped
to zero under the symbol). Fortunately, these terms can be obtained using a generalization of the
symbol called the coproduct [63, 69], whose application in the context of scattering amplitudes
is nicely demonstrated in Ref. [67]. We provide an example in Appendix C which illustrates the

use of the coproduct in our calculation. The result for g(4)
ab

(L) is given in Appendix B.

7.3 Analytical results for NGLs at fixed order

The formulas for g
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(L) with a and b in the left hemisphere at up to 4 loops are given in
Appendix B. When b is in the right hemisphere, aligned with the hemisphere axis n, the formulas
are simpler. Defining y = hani = 1�cos ✓a

2 cos ✓a
, we find

1

L2

g(2)
an

(L) =� ⇡2

24
, (131)

1

L3

g(3)
an

(L) =
⇣(3)

12
, (132)

1

L4

g(4)
an

(L) =
⇡4

34560
� ⇡2

576
G(0,�1; y)� 1

96
G(0,�1,�1,�1; y) +

1

96
G(0,�1, 0,�1; y)

=
⇡4

6912
� 1

576
ln(�y) ln3(1 + y) +

⇡2

576
Li

2

(�y) +
1

192
Li

2

(�y)2

27

Transcendentality weight 2 

Transcendentality weight 3 



Goncharov Polylogarithms 
March 27, 2014 Matthew Schwartz 

an integrated integral:

Z
1

0

d cos ✓
j

(bn)

(jn)

1

cos ✓
b

� cos ✓
j

=

Z 1

0

dhjni
✓

1

hjni �
1

hjni � hbni
◆

(103)

This is not surprising, since we are solving the BMS equation by iteration. The iterated form
nevertheless suggests that we might be able to exploit recent developments in techniques using
coproducts and Goncharov polylogarithms (GPLs) [61, 62] to compute them. We now briefly
review some of the relevant mathematics.

Recall that the classical polylogarithms are defined iteratively by
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(x) = � ln(1� x). The GPLs are defined as a generalization of this
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GPL, where at least one entry is nonzero. In the case that all the entries are zeros, the GPL
is defined to be the nth power of ln x, where n is the length of the index vector, also called the
weight of the GPL,
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If a given integrand can be written so that the integration variable shows up in the argument
of a GPL and not in its index vector, then the result for the integral can simply be read o↵ using
Eq. (105). In our case, after the azimuthal integrals are done, the integrands are, in general,
complicated combinations of classical polylogarithms. These classical polylogarithms can be
converted into into GPLs using Eq. (106) and (107). However, the resulting GPLs representation
of the integrand will not be in the form of Eq. (105). Instead, the integration variable shows up
both in the argument and in the index vector in a complicated manner. It is therefore necessary
to use functional identities obeyed by the GPLs to massage the integrand into the canonical
form, Eq. (105).

A very useful tool for simplifying the integrand is the technique of symbols [63], first intro-
duced in physics in the simplification of 2-loop 6-particle remainder function in N = 4 Super
Yang-Mills theory [64]. The idea is to map the complicated combination of GPLs to a tensor
algebra over the group of rational functions, by computing its symbol. In this way, functional
identities obeyed by the GPLs are mapped to simpler algebraic identities. We then simplify the
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If a given integrand can be written so that the integration variable shows up in the argument
of a GPL and not in its index vector, then the result for the integral can simply be read o↵ using
Eq. (105). In our case, after the azimuthal integrals are done, the integrands are, in general,
complicated combinations of classical polylogarithms. These classical polylogarithms can be
converted into into GPLs using Eq. (106) and (107). However, the resulting GPLs representation
of the integrand will not be in the form of Eq. (105). Instead, the integration variable shows up
both in the argument and in the index vector in a complicated manner. It is therefore necessary
to use functional identities obeyed by the GPLs to massage the integrand into the canonical
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symbol using these algebraic relation and finally reconstruct the original expression in the desired
form using its symbol.

The symbol acts naturally on iterated integrals of the form
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Both classical polylogarithms and GPLs, defined by Eqs. (104) and (107), are given by iterated
integrals in this category, with R

k

(t) = 1� t and R
k

(t) = t� w
k

respectively. The symbol of an
iterated integral is denoted as

S[T
k

] = R
1

⌦ · · ·⌦R
k

(110)

so that
S[Li

k

(x)] = �(1� x)⌦ x⌦ · · ·⌦ x| {z }
k�1

(111)

and

S [G (a
1

, . . . , a
n

; x)] =

✓
1� x

a
n

◆
⌦ · · ·⌦

✓
1� x

a
1

◆
(112)

Another important property of the symbol is that
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and S[c] = 0 for constants c.
As an example, we consider the polar angle integral over the azimuthal-averaged integrand

at 3 loops. Specifically, we are interested in the following integral
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This is not surprising, since we are solving the BMS equation by iteration. The iterated form
nevertheless suggests that we might be able to exploit recent developments in techniques using
coproducts and Goncharov polylogarithms (GPLs) [61, 62] to compute them. We now briefly
review some of the relevant mathematics.
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If a given integrand can be written so that the integration variable shows up in the argument
of a GPL and not in its index vector, then the result for the integral can simply be read o↵ using
Eq. (105). In our case, after the azimuthal integrals are done, the integrands are, in general,
complicated combinations of classical polylogarithms. These classical polylogarithms can be
converted into into GPLs using Eq. (106) and (107). However, the resulting GPLs representation
of the integrand will not be in the form of Eq. (105). Instead, the integration variable shows up
both in the argument and in the index vector in a complicated manner. It is therefore necessary
to use functional identities obeyed by the GPLs to massage the integrand into the canonical
form, Eq. (105).

A very useful tool for simplifying the integrand is the technique of symbols [63], first intro-
duced in physics in the simplification of 2-loop 6-particle remainder function in N = 4 Super
Yang-Mills theory [64]. The idea is to map the complicated combination of GPLs to a tensor
algebra over the group of rational functions, by computing its symbol. In this way, functional
identities obeyed by the GPLs are mapped to simpler algebraic identities. We then simplify the
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If a given integrand can be written so that the integration variable shows up in the argument
of a GPL and not in its index vector, then the result for the integral can simply be read o↵ using
Eq. (105). In our case, after the azimuthal integrals are done, the integrands are, in general,
complicated combinations of classical polylogarithms. These classical polylogarithms can be
converted into into GPLs using Eq. (106) and (107). However, the resulting GPLs representation
of the integrand will not be in the form of Eq. (105). Instead, the integration variable shows up
both in the argument and in the index vector in a complicated manner. It is therefore necessary
to use functional identities obeyed by the GPLs to massage the integrand into the canonical
form, Eq. (105).

A very useful tool for simplifying the integrand is the technique of symbols [63], first intro-
duced in physics in the simplification of 2-loop 6-particle remainder function in N = 4 Super
Yang-Mills theory [64]. The idea is to map the complicated combination of GPLs to a tensor
algebra over the group of rational functions, by computing its symbol. In this way, functional
identities obeyed by the GPLs are mapped to simpler algebraic identities. We then simplify the
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A very useful tool for simplifying the integrand is the technique of symbols [63], first intro-
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Classical Polylogarithms for Amplitudes and Wilson Loops

A. B. Goncharov,1 M. Spradlin,2 C. Vergu,2 and A. Volovich2

1Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912, USA
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We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R(2)
6 .

The same function R(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45
s123s345

, u2 =
s23s56
s234s123

, u3 =
s34s61
s345s234

, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R(2)
6 (u1, u2, u3) =

3
∑

i=1

(

L4(x
+
i , x

−
i )−

1

2
Li4(1− 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m("4−m(x+) + "4−m(x−)) (4)
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Symbol is a mapping to a tensor algebra over the group of rational functions 
•  Acts nicely on polylogarithms and iterated integrals  

 
•  Maps constants to zero 
•  Two functions with the same symbol agree up to constants 

•  For functions of uniform transcendentality, constants must be transcendental: 

symbol using these algebraic relation and finally reconstruct the original expression in the desired
form using its symbol.

The symbol acts naturally on iterated integrals of the form
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Both classical polylogarithms and GPLs, defined by Eqs. (104) and (107), are given by iterated
integrals in this category, with R

k

(t) = 1� t and R
k

(t) = t� w
k

respectively. The symbol of an
iterated integral is denoted as
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Another important property of the symbol is that
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and S[c] = 0 for constants c.
As an example, we consider the polar angle integral over the azimuthal-averaged integrand

at 3 loops. Specifically, we are interested in the following integral
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This is not surprising, since we are solving the BMS equation by iteration. The iterated form
nevertheless suggests that we might be able to exploit recent developments in techniques using
coproducts and Goncharov polylogarithms (GPLs) [61, 62] to compute them. We now briefly
review some of the relevant mathematics.

Recall that the classical polylogarithms are defined iteratively by
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with Li
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(x) = � ln(1� x). The GPLs are defined as a generalization of this
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with G(; x) = 1. The set of n complex numbers {w
1

, . . . , w
n

} is called the index vector of the
GPL, where at least one entry is nonzero. In the case that all the entries are zeros, the GPL
is defined to be the nth power of ln x, where n is the length of the index vector, also called the
weight of the GPL,
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If a given integrand can be written so that the integration variable shows up in the argument
of a GPL and not in its index vector, then the result for the integral can simply be read o↵ using
Eq. (105). In our case, after the azimuthal integrals are done, the integrands are, in general,
complicated combinations of classical polylogarithms. These classical polylogarithms can be
converted into into GPLs using Eq. (106) and (107). However, the resulting GPLs representation
of the integrand will not be in the form of Eq. (105). Instead, the integration variable shows up
both in the argument and in the index vector in a complicated manner. It is therefore necessary
to use functional identities obeyed by the GPLs to massage the integrand into the canonical
form, Eq. (105).

A very useful tool for simplifying the integrand is the technique of symbols [63], first intro-
duced in physics in the simplification of 2-loop 6-particle remainder function in N = 4 Super
Yang-Mills theory [64]. The idea is to map the complicated combination of GPLs to a tensor
algebra over the group of rational functions, by computing its symbol. In this way, functional
identities obeyed by the GPLs are mapped to simpler algebraic identities. We then simplify the
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If a given integrand can be written so that the integration variable shows up in the argument
of a GPL and not in its index vector, then the result for the integral can simply be read o↵ using
Eq. (105). In our case, after the azimuthal integrals are done, the integrands are, in general,
complicated combinations of classical polylogarithms. These classical polylogarithms can be
converted into into GPLs using Eq. (106) and (107). However, the resulting GPLs representation
of the integrand will not be in the form of Eq. (105). Instead, the integration variable shows up
both in the argument and in the index vector in a complicated manner. It is therefore necessary
to use functional identities obeyed by the GPLs to massage the integrand into the canonical
form, Eq. (105).
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At 4 loops the result is most usefully expressed in terms of GPLs in canonical form
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which is valid for hjni > hbni. This equation is in the canonical GPL form, since the next
integration variable hjni shows up only in the argument of GPLs. Some details of how this
canonical form is realized are explained in Appendix C.

B General hemisphere NGL functions to 4 loops

For the same hemisphere NGLs, that is, both a and b are in the left hemisphere, we have obtained
the analytical results up to and include four loops. Defining x = habi we find
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these constants can be guessed, but at 4 loops we require the use of the coproduct to extract
them. The result is a formula for g

ab

(L) at 4 loops. We then use this formula to compute g
nn

(L)
at 5 loops. This is our main concrete result, given in Eq. (141).

In addition to computing the leading NGL at 5 loops, we resummed the leading NGL to all
orders by solving the BMS equation numerically. We found a result in very good agreement with
the fit from a Monte Carlo calculation presented in [37], confirming the equivalence of the BMS
equation and the Monte Carlo approach. Interestingly, the resummed distribution seems to agree
quite well with the exponentiation of the 2-loop result, despite the apparent importance of the
3-loop NGL coe�cient.

The 5-loop leading hemisphere NGL may be of some (limited) phenomenological importance,
since it contributes to event shapes like the heavy jet mass [12]. However, more profound conse-
quences of this work probably include the relatively simple structure of the leading NGL series.
Working in the strong-energy-ordered approximation apparently produces an extended symmetry
which is only partially broken through a finite integration region. That the NGLs are computed
with iterated integrals of uniform transcendentality is also somewhat surprising. While such
integral series are common in supersymmetric settings, examples in large N

c

QCD (N = 0) are
more rare. It may be important to understand the symmetry and the generality of the iterated
structure in more depth.
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A Azimuthal integrals

We present some useful formulae for azimuthal integral in this appendix. The 1 and 2-loop results
are simple
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The integral in Eq. (114) is naturally split into two pieces,
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For simplicity, we only show details for the computation of I
3

. J
3

can be obtained in almost the
same way, after changing variables to move the lower bound of the integration range to 0.
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It is straightforward to find a set of GPLs with the same symbol. A simple algorithmic approach
is given in Ref. [65]. The important observation is that the symbol of a GPL with argument x
and an x-independent index vector consists of a single term, as in Eq. (112). Note that x shows
up in every entry of the symbol in Eq. (112). To match the symbol of Eq. (120), we start from the
terms where the next integral variable, u

2

, shows up in every entry of the symbol. For example,
the following GPL has exactly the same symbol as the last term in Eq. (120)
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Such procedure can be iterated until the entire symbol has been reconstructed. The result is the
following ansatz,
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2. Calculate its symbol: 
 
 
3. Find GPLs in canonical form with same symbol 
 
 
 
4. Check numerically or with coproduct for missing transcendental numbers 
 
 
5. Integrate 
 
 
6. Convert back to classical polylogarithms: 
 
 

+
1

24
G (0,�1, u

1

; u
1

) +
1

24
G (0, 0,�1; u

1

) +
1

24
G (0, u

1

,�1; u
1

) (128)

Doing the integral for J
3

in the same way, we obtain the final result for Eq. (114),
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This result agrees with what we find by direct integration of the 3-loop integrand using Mathematica.
At 4 loops, the polar integral cannot be done directly, and we find the use of symbols to

be necessary. One additional complication beyond 3 loops is that symbols does not fix the
functional form of the original function (e.g., there can be terms like ⇣(2) log, which is mapped
to zero under the symbol). Fortunately, these terms can be obtained using a generalization of the
symbol called the coproduct [63, 69], whose application in the context of scattering amplitudes
is nicely demonstrated in Ref. [67]. We provide an example in Appendix C which illustrates the

use of the coproduct in our calculation. The result for g(4)
ab

(L) is given in Appendix B.

7.3 Analytical results for NGLs at fixed order

The formulas for g
ab

(L) with a and b in the left hemisphere at up to 4 loops are given in
Appendix B. When b is in the right hemisphere, aligned with the hemisphere axis n, the formulas
are simpler. Defining y = hani = 1�cos ✓a

2 cos ✓a
, we find
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However, since the symbol maps all constants to zero, we cannot yet conclude that �
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The rational number c can be easily fixed by computing the two sides of the above equation
numerically for some u

1

and u
2

2. It turns out that c = 0. We have thus fully reconstructed
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) for u
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into the canonical form, including the constant term.
Now the integral in Eq. (118) can be done almost trivially, using the iterative definition of

GPLs, Eq. (105). For example,
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Here one needs to be careful because the resulting GPL, G(u
1

,�1, 0; u
1

), is logarithmically diver-
gent. In general, when the first entry of a GPL coincides with its argument, there is a logarithmic
divergence in it, as evident from the iterational definition, Eq. (105). However, since the original
integral Eq. (114) is finite, as can be checked numerically, such logarithmic divergences must be
spurious and must cancel against similar logarithmic divergences from other terms. A simple
method [67] to deal with such spurious logarithmic divergence is to isolate them using shu✏e
identities of GPLs [68]:
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Now the logarithmic divergent term G(u
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E�cient numerical evaluation of GPLs can be done by GiNaC [66].
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At 4 loops the result is most usefully expressed in terms of GPLs in canonical form
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which is valid for hjni > hbni. This equation is in the canonical GPL form, since the next
integration variable hjni shows up only in the argument of GPLs. Some details of how this
canonical form is realized are explained in Appendix C.

B General hemisphere NGL functions to 4 loops

For the same hemisphere NGLs, that is, both a and b are in the left hemisphere, we have obtained
the analytical results up to and include four loops. Defining x = habi we find
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which is valid for hjni > hbni. This equation is in the canonical GPL form, since the next
integration variable hjni shows up only in the argument of GPLs. Some details of how this
canonical form is realized are explained in Appendix C.

B General hemisphere NGL functions to 4 loops

For the same hemisphere NGLs, that is, both a and b are in the left hemisphere, we have obtained
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We have given separately the GPL representation and classical polylogarithms representation of
the results. The classical polylogarithms representation is obtained using the package HPL [75].
The functions S

n,m

(x) are the Nielsen polylogarithms.
The hemisphere NGL functions g

an

(L) when one direction is in the right-hemisphere are given
in Eq. (131) to (133) .

C Systematic use of the symbols and coproducts
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can be done using the contour integral method sketched in Section 7 and Mathematica. However,
the resulting expression is very complicated and further integrating over hjni is too di�cult.
However, the symbol of �
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Figure 5: Comparisons of the complete, resummed, leading NGL series for the hemisphere
mass distribution, g

nn

(L), to its fixed-order approximation at up to 5 loops. The resummed
distribution is computed by numerically solving the BMS equation. The fixed order analytical
expansions are given in Eq. (141). On the left, the numerical solution is labelled “resummed”.
The right plot shows the fixed order approximations relative to this resummed result in the region
0 < L < 2.

Finally, using the analytic results for the opposite hemisphere and same hemisphere NGLs
up to and including 4 loops, we can calculate the hemisphere NGLs through 5 loops. The result
is
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Numerically, it can be written as

g
nn

(L) = 1� 0.411233512L2 + 0.10017141L3 + 0.0028185501L4 + 0.0037694522L5 + . . . (142)

Note that the 5-loop coe�cient is actually larger than the as the 4-loop coe�cient. Perhaps this
is because the 4-loop coe�cient is unusually small. In any case, it suggests that the series may
not be convergent beyond L = 1. Plots of the approximations of g

nn

(L) at up to 5 loops and a
comparison to the exact (that is, numerically resummed) result are shown in Fig. 5. We discuss
the calculation of the resummed result in the next section.

8 Resummation

An exact solution to the hemisphere BMS equation, Eq. (62), would resum the leading hemi-
sphere NGL. While we cannot solve this equation analytically, finding a numerical solution is
straightforward. Before discussing the numerically approach, we explore an iterative approach
to the resummed solution, finding an exact solution in the first nontrivial case.
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It is helpful also to define a square bracket as the round bracket with one of the vectors reflected
to the opposite hemisphere:

[ab] ⌘ (āb) = 1 + cos ✓
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Now, if a and b are both left, but the emission goes right, then there are no collinear singu-
larities in the angular integral and the dipole radiator can be easily integrated
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Adding three of these and exponentiating with Eq. (63) leads to
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Note that when a and b are both left, to all orders the BMS equation only involves directions in
the left hemisphere.

When one of the directions is n, which is in the right hemisphere, then the integral in Eq.
(71) has a collinear divergences, but U
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is still finite. We find
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Figure 6: Left shows a comparisons of the resummation of the leading NGL using the Monte
Carlo approach of Dasgupta and Salam (dashed, red) to a numerical integration of the BMS
equation (black). Right shows a comparison of the numerically integrated result to various
approximations.

8.2 Numerical resummation

The BMS equation for the non-global logarithms, in the form of Eqs. (73) and (75) can be
solved numerically for g

ab

(L). Since this equation has only a single derivative, and the boundary
condition g

ab

(0) = 1 for all a, b is simple, we can solve the equation by simply integrating.
As noted in Section 6.2, although a and b are points on the sphere, g

ab

only depends on the
invariant distance habi associated with the Poincaré disk after stereographic projection. Rather
than exploiting this, we take a more brute-force approach and use only the obvious azimuthal
asymmetry: we parameterize a and b by by cos ✓

a

, cos ✓
b

and �
a

��
b

. To solve the BMS equation
numerically, we discretize the angles into n
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and n
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bins, and solve the equation by summing
the integrand with step size �L = L/n
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. The computation time using this approach scales like
n
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�

.
The only thing which makes the numerical integration nontrivial is the collinear singularity
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•  Agreement to  0.1% for L < 2 
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Figure 5: Comparisons of the complete, resummed, leading NGL series for the hemisphere
mass distribution, g

nn

(L), to its fixed-order approximation at up to 5 loops. The resummed
distribution is computed by numerically solving the BMS equation. The fixed order analytical
expansions are given in Eq. (141). On the left, the numerical solution is labelled “resummed”.
The right plot shows the fixed order approximations relative to this resummed result in the region
0 < L < 2.

Finally, using the analytic results for the opposite hemisphere and same hemisphere NGLs
up to and including 4 loops, we can calculate the hemisphere NGLs through 5 loops. The result
is
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Numerically, it can be written as
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(L) = 1� 0.411233512L2 + 0.10017141L3 + 0.0028185501L4 + 0.0037694522L5 + . . . (142)

Note that the 5-loop coe�cient is actually larger than the as the 4-loop coe�cient. Perhaps this
is because the 4-loop coe�cient is unusually small. In any case, it suggests that the series may
not be convergent beyond L = 1. Plots of the approximations of g

nn

(L) at up to 5 loops and a
comparison to the exact (that is, numerically resummed) result are shown in Fig. 5. We discuss
the calculation of the resummed result in the next section.

8 Resummation

An exact solution to the hemisphere BMS equation, Eq. (62), would resum the leading hemi-
sphere NGL. While we cannot solve this equation analytically, finding a numerical solution is
straightforward. Before discussing the numerically approach, we explore an iterative approach
to the resummed solution, finding an exact solution in the first nontrivial case.
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Figure 6: Left shows a comparisons of the resummation of the leading NGL using the Monte
Carlo approach of Dasgupta and Salam (dashed, red) to a numerical integration of the BMS
equation (black). Right shows a comparison of the numerically integrated result to various
approximations.

8.2 Numerical resummation

The BMS equation for the non-global logarithms, in the form of Eqs. (73) and (75) can be
solved numerically for g

ab

(L). Since this equation has only a single derivative, and the boundary
condition g

ab

(0) = 1 for all a, b is simple, we can solve the equation by simply integrating.
As noted in Section 6.2, although a and b are points on the sphere, g

ab

only depends on the
invariant distance habi associated with the Poincaré disk after stereographic projection. Rather
than exploiting this, we take a more brute-force approach and use only the obvious azimuthal
asymmetry: we parameterize a and b by by cos ✓

a

, cos ✓
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and �
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��
b

. To solve the BMS equation
numerically, we discretize the angles into n

✓

and n
�

bins, and solve the equation by summing
the integrand with step size �L = L/n

L

. The computation time using this approach scales like
n
L

n3

c

n2

�

.
The only thing which makes the numerical integration nontrivial is the collinear singularity

when j = a of j = b. This singularity causes no problem in an analytic integral (it can be
integrated over), but must be avoided in a discretized approach. We take the simplest solution
and simply omit the j = a and j = b bins. This omission obviously a↵ects the results for finite
n
c

, but smoothly disappears as n
c

! 1, Rather than trying to take very large n
c

, we simply
take values of order n

c

= 30 or n
c

= 40 and extrapolate to n
c

= 1 from a fit as a function of n
c

.
Our solution for g

nn

(L) is shown in Fig. 6. On the left side of this figure, it is compared to
the numerical calculation of the same quantity by Dasgupta and Salam [37]. More precisely, we
compare to the fit given in their paper, which in our normalization is
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In the region L < 1.4, where the fit in [37] is claimed to be valid, we find less than a 0.1% disparity.

This confirms the equivalence of the two approaches. It is notable however that g
(DS)

nn

(L) does
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Exponential of 2-loop result has excellent agreement with resummed result 



1.  Strong-energy ordering lets us resum stuff SCET can’t (so far) 
•  Includes all real and virtual contributions 
•  Easiest at large N  
•  Leading non-global logs only (not systematically improvable) 

2.  Leading NGL has a hidden PSL(2,R) symmetry 
•  Mobius transformations of Poincare disk 

 

3.  NGLs at each order involve iterated integrals 

4.  Symbols and Goncharov polylogarihms 
•  Simplify expressions 
•  Make polar integrals trivial 

5.  Resummation of leading NGL is possible  

Summary 
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Figure 3: Elements of PSL(2,R) can be visualized by their action on geodesics. Some group
elements are shown.
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This greatly simplifies the calculation of the NGLs.

7 Perturbative calculation of NGLs to five loops

While the symmetry of the BMS equation is clearer under stereographic projection, we find it
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March 27, 2014 Matthew Schwartz 

1.  Can leading NGLs be resummed with Effective Field Theory? 

2.  Physics of PSL(2,R)? 

3.  Can the BMS equation be solved anlaytically? 

4.  Can subleading NGLs be resummed? 
•  Probably not with strong-energy-ordering 

5.  Do these symmetries/methods work for non-hemisphere NGLs? 
•  Yes, for out-of-jet energy 

6.  Does Exp[2-loop] always work well?  
•  Important for phenomenology 

Figure 3: Elements of PSL(2,R) can be visualized by their action on geodesics. Some group
elements are shown.
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This greatly simplifies the calculation of the NGLs.

7 Perturbative calculation of NGLs to five loops

While the symmetry of the BMS equation is clearer under stereographic projection, we find it
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