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Part 1:
Motivation



Parameter Input value

My [GeV] 01.1875 + 0.0021
Iz [GeV] 2.4952 + 0.0023
oy [nb] 41.540 + 0.037
RY 20.767 £ 0.025
AR 0.0171 + 0.0010 ", i0
Ay @ 0.1499 + 0.0018 -
A 0.670 4+ 0.027 9
Ay 0.923 +0.020
Aps 0.0707 £ 0.0035 8
VD 0.0992 + 0.0016
RO 0.1721 -+ 0.0030 T
Ry 0.21629 + 0.00066
sin®8’y (Qrp) 0.2324 + 0.0012 B
Combine many 3
observables to constrain a
Higgs mass
3
2
1
0
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Parameter Input value
My [GeV] 91.1875 + 0.0021
Iz [GeV] 2.4952 + 0.0023
ap .1 [nb] 41.540 + 0.037
RY 20.767 £ 0.025
AR 0.0171 + 0.0010 w 10
A, @ 0.1499 + 0.0018 E‘t : o
Ac 0.670 £ 0.027 9 -
A, 0.923 + 0.020 : -}
O,e e
AEE’ 0.0707 + 0.0035 8 -
App 0.0992 4 0.0016 E
RO 0.1721 -+ 0.0030 T @
RY 0.21629 + 0.00066 5
sin®8’y (Qrp) 0.2324 + 0.0012 B 5
a
" 5 i
Combine many =
observables to constrain a
Higgs mass
3
2
1




WHERE IS THE HIGGS?

Parameter Input value 3
Recent Tevatron exclusion
My [GeV] 91.1875 4 0.0021 (158-175 GeV) CDF+D0
Iz [GeV] 2.4952 + 0.0023 i
Xiv: 1007.4587
oy [nb] 41.540 + 0.037 Al
RY 20.767 £ 0.025
AR 0.0171 + 0.0010 w 10 ~
. = -
Ay @ 0.1499 + 0.0018 - o
Ac 0.670 £ 0.027 9 -
Ay 0.923 + 0.020 -4
Aps 0.0707 £ 0.0035 8 =
VD 0.0992 + 0.0016 _E
RO 0.1721 -+ 0.0030 T @
Ry 0.21629 + 0.00066 5
sin?6’ ¢ (Qrn) 0.2324 £ 0.0012 B 5
a
Combine many =
observables to constrain a
Higgs mass
3
2
1
0

If it exists, Higgs is
most likely light



HOW DO WE FIND A LIGHT HIGGS?

95% CL Limit/SM
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* Need a factor of 2 improvement in significance for m,=120

« Double statistics gives V2, where will the other V2 come from?

LHC

e|mportant search channel is
pp — W/Z+H
H — bb

e Abandoned by ATLAS and CMS
too much background

* Recently high P, W/Z + H revived,
*Requires P; > 200
°Lose 95% of signal

How good can we do
in W/Z + (H — bb)?




FOCUS ON pp — HZ — bblT1~

| 7 H
i

CDF note-10235 (sumimer 2010) CDF employs multivariate approach
{:_J+ ‘ Inputs to the neural net are
9.9 *Missing transverse energy
0.02 *Dijet mass
0.1 ott matrix element output } Barton-eval
3.6 *ZH matrix element output |  kinematics

47

7 — 00+ bb
/ — Ul 4 cc
Z — U+l f.
fakes

Total Bkg

22_i *Sum of leading jet Pt's
)/ enumber of jets

1.2
0.9
40.3

Dominant background
is the irreducible one

Questions:
* Are there smarter more comprehensive inputs?
e Can we trust the multivariate approach?



Part 2:
The Inputs



KINEMATIC VARIABLES

Standard Stuff E‘:]s:_ P; of hardest b-jet
* P;’s of b’s and the leptons ackgroun
- ([N Offor the b jets and the leptons & signal
* IR of the b’s and the leptons
* P; of the reconstructed Z I

 P; of the reconstructed Higgs
* M, invariant mass of the b‘s

Less Standard Stuff _ _
« acoplanarity of the b's; 27 — Abpy — Ly
e acoplanarity of the leptons - ¥ 5 f
e transverse mass of the bb system "7 = M~ + P Py
 transverse mass of the lepton system
e invariant mass of 2 leptons and 1 b or 2 b’s and 1 lepton




TWIST

Look at 2D distribution in 00 Ul$pace:

Higgs Signal Background Initiated bv gg

Amhh

Anyg A
It seems that neither [ nor [l nor R holds the right information

Introducing twist = polar angle in this plane

Background has pole for
zero twist
(t-channel singularity)




b-jet twist lepton twist
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Jet level with detector cuts

1.

A
5
<
o
%4,
oot
o8
G

52
oo
bl
5
bl
%
KL

<
N
355
e
0o
e
50,
R
e

A
k>
%
%
%
L

1.2

AEEE

1.4 1.6
7,5 (Wist angle twist angle

Could be more generally useful....



HELICITY AND AZILICITY ANGLES

Angles in Higgs rest frame

relative to H boost direction gt e 2T
H boost direction i i

Parton level i
/ - no cuts o
beam i’ :
f\ 1 08 06 -04 02 0 02 04 06 08 dl
b H frame cos(e‘b) helicity angle
H anti-boost Jet level

Signal is on-shell
* angles meaningful
Background is not a resonance
* Angles meaningless
* Expect peaked due to collinear singularities

with detector cuts 4

0.5, 1
H frame cos(8,) helicity angle



CHINESE MENU METHOD

e Pick a particle: high-pr b-jet. low-pr b-jet, high-pr lepton. low-pr lepton. Higgs, £
e Optionally transform to a boosted frame: Higgs. Z. Center of Mass (CM)

e Optionally rotate the polar axis to point along the initial direction of the particle whose
frame yvou're in (for Helicity and Azilicity Angles).

e Pick a kinematic property: pr. 1. ¢. cos(#), etc.

e Optionally pick a second particle to form a sum or difference. sometimes with a coor-
dinate transformation as in AR and twist 7. and sometimes with a more complicated
combination as in invariant-mass.

e For vector quantities optionally take the magnitude of vector sums, |p; £ pa| or scalar
sums, |pq| £ |p2|.

Aygy p and Ayy po: Difference in rapidity between Higgs and higher-pr or lower-pr b-jet

cos(fy,): Center of Mass frame cos(@) of the lower-pr b-jet. Same for higher-pr b-jet.

&pg‘“: Difference in py between the reconstructed Z and the higher-py lepton

ﬁp;’nl‘m: Difference in py between the higher-pr b-jet and the lower-py lepton

¥ pg}-l?; Sum of pr’s of the higher-pr b-jet and the lower-pr lepton

Adppy g2: Difference in 1 between the higher-pr b-jet and the lower-py lepton



EVENT SHAPE VARIABLES

Nothing to do with the particular signal or background
e H7p = Scalar sum of all £y
e Y pr = Scalar sum of all pr (which differs from Hy for massive jets)
e H. = Boost of the center-of-mass system along the beam
e F,;. = Scalar sum of all visible energy
e 5 = CM energy for hard collision. or invariant mass of the reconstructed Higes and Z.
e Centrality
e Aplanarity and Aplanority
e Sphericity and Spherocity
e DShape and Yvariable (related to the eigenvalues that go into defining the above)

o Fox-Wolfram Moments



JET SUPERSTRUCTURE

What is not in the parton-level kinematics?
*Global information
e Event shapes

e Color:
 Color charge: Quark vs. Gluon jets
e Color connections




COLOR CONNECTIONS

Signal

Background

s




HOW DO THEY SHOW UP?

Monte Carlo simulation
* Color coherence (angular ordering, e.g. Herwig)
e Color string showers in its rest frame (pt ordering, e.g. Pythia)
* Boost — string showers in string-momentum direction
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e
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HOW DO THEY SHOW UP?

*II'(;,'; Xk - zJ
@*J }}—p :

3

Shower same event
millions of times

6—
Higgs: s
e
Nipdie=1 -
Afi’bg =2 *
Add up Er in £
each cell:
u_ |||||||||||||||||||||||||||||||




SIGNAL VS BACKGROUND




HOW CAN WE USE IT?

Higgs:

Baysean probability that
each bit of radiation is signal

[ accumulated all Pt weight - notZ | R
Entries 23715

S

* Most useful radiation is

: R=0.5- 1.5 away

Y TS R 1] o R E  Pattern depends strongly on kinematics

* Can we find a simpleror more universal discriminant?




PULL

® Ca
C) @

*Find jets (e.g. anti-k;)
*Construct pull vector (~ dipole moment)
on radiation in jet

p:Z Ejet k

e Can use bigger jets for pull, but R = 0.7
seems optimal




PULL VECTOR IN RADIAL COORDS

| ak07 L Pt Cn 1 e00 pull R vs akO7 L Pt Cn 1 e00 pull Angle I

004

18I

H — bb gosof -
gjf qq — Zbb

k07 L Pt Cn 1200 pull Angle ) _ i ak07 L Pt Cn 1 €00 pull Angle

-
Z

0, Op

* Angle much more important than length
* Look at radial pull angle (like for twist)
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SECOND MOMENTS

What about higher moments?

i E‘;“ | 73] Aﬁbf —A¢; An; Eigenvalues
L ( —A‘]h Aqﬁ‘l Aﬂ? aandb

Eccentricity
- \/ﬂz e
==

a2

JET
Girth

e




OTHER “SHOWERED” VARIABLES

Many variables vanish at the parton level
* Do not enter the matrix element method
e Complimentary and uncorrelated with kinematic variables

e Mass of each b-jet and the jet mass to pr ratio

Rapidity y in addition to pseudorapidity n of each massive b-jet

Subjet multiplicity for each b-jet

Average pr of the small subjets within each b-jet

pr of hardest, 2nd hardest, and 3rd hardest subjets within each b-jet

Radial moments (“girth”) of each b-jet: g =), Py Ir:|

et
T

1-a
Angularity: 7, = — > Eisin® (g%) [1 — cos (E%‘)] for —1 <a <1

Maet



SUMMARY

*\We looked at ~ 900 discriminents!
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Part 3:
The Output



EFFICIENCIES

ROC 1Al . . a e
Sl Background efficiency as a function of signal efficiency
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Which variable is best?



OTHER VISUALIZATIONS

Butterworth et al.

S cut €55 _ ( €S ) S arXiv:0802.2470
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TOP VARIABLES

| Correlation Matrix (signal) |

‘ Improvement mag ‘ to p 10 Va rl a bles Linear comelation coefficients in‘!i,":“:I
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ADDING MORE

Sequential variable addition

» Take top 3 sets of n variables

* Add any of original 900

» Take top 3 sets of n+1 variables

| Improvement in o
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0

BSERVATIONS

[Tmprovement if o
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| LHC HZ : Significance |

S

10 0 T S O 0 O O T P O oo
0 061 02 03 04 05 06 07 08 09 1

Signal eff

» Converges slowly

 Sensitivity to statistics apparent
e rp = 2 [k= 0.05 gives L= 1/1600
* 1 million events down to 600

e Some variables very poor by themselves,
but show up as 5™ or 61" variable

Top 10 include

* Higgs pr

* IRy,

* Pull

e Twist y (twist with y not [)

* Event shape D

*Determinant of covariance matrix for
radiation in low p; b jet

e Scalar sum of the b jet p;s



CORRELATIONS OF GOOD 10 COMBO

Best 10
combo

Best 10
individuals

| Correlation Matrix (signal) |
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JET ALGORITHMS

* Main observable is m,,
* Look at jet algorithm dependence

Improvement in o
—
o
T[TTTT[TITT[TTIT[TT1T]

1.3
1.68—
1.66—
1.64—
1.62 \
L } \-._\‘
E —pra
- =S M (A ) Iz
1.58— .04 kg
/& 0.5 anti-kp
1.56~ - 0.5 C/A
s 0.5 kq
1.54— / — 0.6 anti-kp
A N, 0.6 C/A
1.527 - 0.6 kp
LA e — 0.7 anti-Kp
I 0.7 C/A
1.5 0T R
Eoaav o tovaa bvvaa bavav s bvvav s bova s bova s Lo g o]

05 055 06 065 07 075 08 0.85
Higgs Signal Efficiency =5

]
=]
=
T
Fa

=]
=4
OF
o
e

=
=
-
o
[

TR EOR FOR 0
1 ! g -

1

|

o

Cligyrm o ot o g o S

-—

1
2 03 04 05 06 07 0.8 0
Higegs Signal Efficiency = g

e The winner is ...
anti-kT with R=0.5

* Optimal mass window
90 GeV < myp < 124 GeV



(slides stolen from Brock)

TRIMMING !t et vere

1. Recluster jet
constituents into
very thin jets




(slides stolen from Brock)

TRIMMING !t et vere

1. Recluster jet
constituents into
very thin jets

2. Throw away thin jets
that are too soft




(slides from Gavin Salam)

TRIMMING Boosted H — bb
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(slides from Gavin Salam)

TRIMMING Boosted H — bb
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MULTIPLE TRIMMINGS

Trimming does not seem to help much in our case...

Multiple trimmings do help!

r | Higgs : Significance |
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R (inspired by Soper and Spannowsky)



CONCLUSIONS
* Final efficiencies still under construction

* Looks like we can help the Tevatron searches
e around 10% with variables (relative to the ones they use)
e around 10% with masses (assuming they can trim)
* W/Z + H is totally feasible at the LHC
* Do not need large p;
* Discovery potential with 30 fb1

General Observations
» S|C curves provide a useful visualization
e demonstrate instabilities
* show covergance
e visually compare variables’ performance
e Uncorrelated variables helpful after kinematics exhausted
* Multiple mass measures useful

Future
e Compare boosted decision trees, random forest, neural networks, etc.
» Compare different generators (Herwig/Pythia)
e Study reducible backgrounds
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