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The S-matrix boostrap

Is the S matrix completely fixed by physical constraints?
* 1960s: best hope for strong interactions
e 1970s: Quantum Field Theory explained strong interactions
= S matrix program on hold for 40 years

Three Modern Bootstraps

1. Non-pertubative bootstrap

* e.g. pion 2->2 scattering at low energy _ _

«  Similar to 1960’s bootstrap 2. Perturbative amplitude bootstrap
* Impose unitarity, analyticity, crossing

* Use modern methods

(Hamiltonian truncation, machine learning, etc)

* constrain full amplitude (sum of all diagrams)
Impose symmetries and physical limits

* dual conformal invariance, Regge limit
6-point in N=4 SYM at 7 loops computed this way

[Caron-Huot et al 1903.10890]

3. Feynman diagram bootstrap

today’s
talk

Can we compute Feynman diagrams without actually doing the integrals?
* Many examples to work with

e Uses elementsof 1 and 2



Feynman-diagram bootstrap

Q: Can we bootstrap Feynman integrals? Rules: Don’t integrate!
D1 P3
_ [ d°ky [ dPky 1
st = [ G55 [ G ErTE T S T R T R
D2 D4
I5(u,v)

* Two-loop outer mass double box
e (Caron-Huot and Henn 1404.2922

L. Findafinite basis apply enough analytic constraints
finite / to uniquely fix all ¢,

Is(s,t,u,m)= Z cifi(s,t,u,m)

J=1

3. Analytic regression

* determined by singularities fit the ¢, numerically



Where are the singularities?
Ic(p) = nmt—l)'] I1 daef I1 ddkcm( 3 ae)

e€Eing G) CEE'(G) e€Fint G)

A necessary condition for a singularity is that the integrand is singular (¢=0)

{ = Z ae(q® —m?) =0 * every internal line is either
e€ By (G) on-shell (q?=m?) or a=0 or both

A necessary condition for a singularity of the integral is that poles pinch the contour

for each loop k.: Z Qe o (g2 —m?) =0. Q=P — k.ma
e (TR C p P
Double pole: e€ Fiet (G*)

. . . =k, 1
4 * since g, are linearin k. = mm

I

mm)| D *0a=0 | Landau loop equations

einloop

integration contour
pinched between poles



Coleman-Norton interpretation

Landau equations

b= 3 alg? - md) =0 S gt =0

ec b (G) einloop

[Coleman and Norton 1965]

Landau diagram is interpreted as space-time diagram
* momenta are on-shell (classical)
* 0, are the proper times for propagation

4-momenta add up to zero after rescaling by a

AN

=

Gives some intuition: singularities due to classically allowed processes



e Pham 1967

Pham interpretation - :reemau.

MDS, C. Vergu 2211.07633
Landau equations

normal vectors
(= ) aelg; —mg) =0 E t0eg, =0 | mmp of on-shell constraints g?=m?
¢€ Eint (G) einloop are linearly dependent

on-shell constraints (Euclidean d=2)
gz + gy =me

{q,p} on-shell space

¥
S(Q)
- &= m N O
|ntgr§ect|on tangent on boundary ) @ O
satisfies both qi =mi @

el _ of space where
on-shell constraints circles intersect

S(Go)

on-shell space
of external momenta {p}

Landau variety is
the boundary of the projection map



Bubble in d=2

Consider the simplest 1-loop diagram: the bubble in d=2

p—km '
Io(p) = 2 e :fdzk 1 _ 1 - —27 1n~./4m2—5 —14/s
N k2—m2+ic(p—k)2—m2+ic |/s(s—4m?) V4AmZ—s+i\/s

k,m

It has a normal threshold branch cut starting at s=4m?
* For s>4m?the on-shell process p > p; +p, is allowed for physical on-shell momenta

72
_p.<: Disc[I(s)] = I(s +i€) — I(s — i€) = — e

vV S(S — 4??12)

* Thereis also a pseudthreshold at s=0
 Thereis a branch point at s=0 accessible with complex momenta
* Does not correspond to anything physical happening



Bubble in d=2

More general 2D bubble: generic masses

p—k,ms

. ‘ 1 1
I = _F P = lim [ d%*%— > - >
olp) e—01 k? —m?2 +ie (p — k)2 — m2 + ie’

k,my

Going to Feynman parameters

1

In(s) = 1i d
O(b) E—Ibrl:ln‘l' 0 CESCE(]_ — Cl’) — m%

—T

a—mi(l—a)+ic =(

integrand is singular (¢ =0) at

s+mj —mid\/s?—2s(mi +mj) + (mi —mi)*+ise  on-shell locus

Qs = 2s

* necessary but not sufficient condition for singularities of integral

. . . e |
singularites require pinches, i.e. 7-=0 j two solutions
normal threshold s = (mi+ma)* —ie,  as=——2— tiesgn(mz —m), | ,
2T M

pseudothreshold s = (m1 - ms)® +ie, ap=—"2

meo — 1y

location of branch points
—iesgn(mg —my). | © solutions to Landau equations




Homotopy and Homology

1 —mr

. fl da Y an=? +m3 —m? +\/s? — 2s(m? +m3) + (m} — m3)? +ise '
o [o—ay(s)][a—a(s)] ’ 2s
|
S a
two roots
for eachs
somes
¥ TN /
L - \. -
normal threshold integration contour [0,1]
sy = (my + my)? in o space
What happens as we take a monodromy (discontinuity) of s around s? P

« Poles a, move around too Q_—j/

* Contour must move out of the way to avoid poles
* After full loop, can use Leray residue theorem to get discontinuity
S




Sequential discontinuities

* Can take a discontinuity of a discontuitty | pic. Dise, 1 - —8m%i

V(5= s8)(s — sp)

Steinman relations : S matrix cannot have sequential discontinuities in crossed channels

[Steinmann 1960] 3 4
N_/
5
N crossed

- 6

S= 2

uncrossed

possible term: In(p1 + p2)’In(ps + pa)* cannot appear 1n(p1+ p2+ p3)?In(pa + p3+ pa)?

* Algebraic geometry need to understand contour deformations and pinches
* Gets pretty complicated...



Different kinds of singularities

Simple pinches

near normal threshold near pseudonormal threshold

k° K°
Sh

N>~ <<<<<<<<<4

k]
UD> &
* hypersufaces meet transversely
e e.g. physical thresholds

7%

McLeod, Hannesdottir, MDS, Vergu
arXiv:2211.07633

Non-simple pinches

sunrise Ps \

bubble
P

/N

ice cream cone

Po>

* hypersufaces meet tangentially
e e.g.sunrise in the ice-cream cone

~J1 _ qi1
G = q4 —» Go= XK,
g2 q2

* Permanent pinches (e.g. IR divergences)
* Pinches at infinity



Symbol

The symbol is an efficient way to represent polylogarithmic Feynman integrals

[Goncharov, Spradlin, Vergu, Volovich PRL 2010] 2
* Used symbol to simplify 17 page 2-loop 6 point amplitude to a few lines T’

-
e 2

Polylogarithms are iterated integrals

15t anniversary!
_ 7 dx _ *dx

Lii(s) = / ] =—In(1—-5) Liy(s) = / —Li;(s)

o L—7 0

xr

etc.
Symbol is a map that extracts the dlog forms

b
S{/ dlano---odlan] =R® R, S[lnfslny] =rRY+yYRx

1
S[Lin(z)] = -(1-2)®2®---®2 5{—1n”fﬂ]?®"'®%

) ’n,' -~

Y

n—1

Advantages

* Efficient way to represent integrals

* Possible logarithmic singularities & symbol “letters” vanish
* Transparently encodes discontinuities and sequential discontinties



Constructing a Finite basis

The symbol is the key to making the the problem finite

1. Identify singularities
e All solution to Landau equations
 Some singularities may be on higher Riemann sheets

outer mass double box physical singularities unphysical singularities
— A2
m . §=4m7, s 00, s =0, t =0, s+t=0,
i _ 2
5 — t=4m”, t— oo, st + 4m?s + 4m?t = 0.
1 2
m” =0,
4m? 4m>
U= — , V= ——.
s t

t

2. Identify possible letters
» algebraic functions (with square roots) of singularities with no new singularities

Ly = u, Ly = v, 7:M Szﬁm—l
Bu=+v1+u, By =v1+uwv, By +1’ Buw +1°
Ly =1+ u, Li=1+w,
Buw =V1+u+twv. s 4 . Buv — Bu _ Buv — B
B, —1 Lo = , Lio= )
L5 :u+'y! LG — ﬁuv +/8u ﬁuv"'ﬁv

)B‘M+1! L11:1+U+U,
3. Finite basis
e sum over all possible symbols using the alphabet

S|Z])= Z c(iyLi, ® Li, @ Li; ® Ly,



Landau Bootstrap

A. Construct finite basis 2410.02424
1. Find singularities
2. Find letters
3. Construct finite basis

S|I]= Z cfiyLi, ® Li, ® Liy ® Ly,

B. Fix the coefficients

* Integrability
* Galois symmetry

* Q-positivity
e First-entry conditions C. Fix the non-symbol
* Last-entry conditions rational prefactor

* Geneological constraints

e Sequential discontinuities

e Cluster adjacency conditions
e Regions analysis
e Direct calculation


https://arxiv.org/abs/2410.02424

Integrability

* Every interated dlog integral has a symbol

Fu,v;T) = ¢, iy, dlnL“ woodlnl, . T E Ciy ig,oin Liy @ -+ Q@ Ly,

C——

v
(u,v) * Not every symbol )
corresponds to a function
i J

mte ration contour Learning the Simplicity of Scattering Amplitudes
(UO V & Clifford Cheung (Caltech), Aurélien Dersy (Harvard U. and IAIFI, Cambridge),

Matthew D. Schwartz (Harvard U. and IAIFI, Cambridge) (Aug 8, 2024)
e-Print: 2408.04720 [hep-th]

* For f(u,v,IN) to be a function, must be independent of local path deformations

» [auaa’u]f -

* Derivatives only act on the last entry of the symbol (end of integration contour)
Ou[SRK ® L] = (0uIn L)[S ® K]
0v0u[S @ K ® L] = (0y0uIn L)[S ® K|+ (Oyln L)(0yIn K)S
100, O] [S @ K® L] = L(a“’ln L)(0yIn K) — (0yIn K)(0,In I;)]S

Y
must vanish

(integrability condition)




o positivity

* Symbol encodes all branch points, even on unphysical sheets

Ig(p)z(nim—l)!/w 11 dcre/ 11 ddkcmﬁ(l— - ae)

O ecEin(G) cc8(@) €€ Ein (G)

/

actual Feynman integral on physical sheet is over positive a

* Discontinuities/monodromies act on first entry of the symbol

I=/w1/w2.../wn
dI:wlwa.../wn

» Singularity for physical momenta (physical sheet) €2 singularity of first entry
 Seeifa>0insolutions to Landau equations: constrain first symbol entries



Genealogical constraints

Which symbol entries can be adjacent?
* Adjacent means sequential discontinuities are possible

Pham approach
on-shell surfaces may not intersect in internal momenta

J/ e vanishing cell from first monodromy doesn’t intersect
/ integration contour of second
\/ * sequential monodromy vanishes
/ ------- o (]1 — L/ﬂ’pm,) (]l — ﬂpﬂ,,)fg(p) =0
n Prr \

Singular surfaces intersect transversaly in external momenta

| ><
same lE lm’
j><% >< different

—_—

different

e e.g. Steinmann relations



Easy

Hard

Landau boostrap

Outer-mass double box

Constraints # Coeffs

All Symbols 20736
Integrability 6993
Galois symmetry 861
Physical branch cuts 161
Genealogical 28
constraints
a-positive thresholds 6

L] 1}
.....
] .

“, .®
a, .

Caron-Huot & Henn ‘14

.
"""""
3
“““
. .,

Weight 4 symbol, 12 Letters
Work from easy generic stuff (integrability) to hard

- L L
SZabox) = —Le® - @ Lg® Ly — Lg ® — ® Lo ® Lg
L3 L3
L L
T Le®Le® X2 @ Lo+ L ® Lo ® =2 ® Lg

L3Ls Ls
+ L ®Ls®@ Lg ® Lg+ L @ Lg ® Lg ® Lo

L
+L7®L10®L—2®L5+L7®L10®L8®Lg
5

L
+L7®L7®L—1®L9+L7®L7®LS®L6.
5

Agrees with Caron-Huot & Henn 14
Also need rational prefactor -- not in the sybmol
Compute from maximal cut

Landau bootstrap works!

i



Top down or bottom up?

1. Top down:
Landau bootstrap

Easy Constraints # Coeffs 1,4

All Symbols 20736
Integrability 6993
Galois symmetry 861

Physical branch cuts 161

Genealogical
constraints

28

a -positive thresholds 6

Hard

2. Bottom up:

Analytic regression with
lattice reduction




Solving the Landau equations

Lots of ways to solve the Landau equations

* Solve them by hand (e.g. Eden et al 1950)

* Hyperint (Panzer 2014)

* PLD (Fevola, Mizera, Telen 2013)

* BaikovLetter (Jiang et al 2024

* Recursive approach (Caron-Huot, Correia and Giroux 2024)

« Numerical implementation for any diagram (Correia, Giroux, Mizera 2024) SOFZA

diag =
{{{{1, 2}, my}, {{2, 5}, m}, {{3, 5}, m}, {{3, 4}, my}, {{4, 6}, ms}, = Cand‘idateS‘ingular‘it'ies =
{{1, 6}, mg}, {{5, 6}, m¢}}, {{1, M1}, {2, My}, {3, M3}, {4, Ms}}} //. SOFIA[d-iag’ SolverBound - Infinity];
my;=»>0//.m »>m//.M »0 % // TableForm
FeynmanPlot[diag]
untime= 2.86441
{{{{1, 2}, m}, {{2, 5}, m}, {{3, 5}, m}, {{3, 4}, m}, {{4, 6}, m},
{{1, 6}, m}, {{5, 6}, 0}}, {{1, O}, {2, 0}, {3, 0}, {4, 0}}} = i
sl2
s23
” 2P s12 +s23
a2 5 3. mm - s12
’"“1:"”’"7 mm - $23
: 4mm-sl2
— mJ 4mm - s23
ot 6 s 4mmsl12 + 4mms23 - s12 s23
v > mm? s12 - 2 mm s12 $23 - 4 mm 232 + s12 5232

mm s122 + 4mm s12 s23 - s122 s23 + 4 mm s232 - s12 5232



Singularities to letters

alphabet
s,t,s—t,— 5 _\/_
bl bl \/ST~I—\/_
singularities ‘ /
{s,t,s-t} i
{SZO,—:O}
S
logarithmic
© {SZO,%— , s—t,t,—

logarithmic square root

Landau’s original paper determined if physical singularities were logarithmic or square-root
* In general, singularities may appear multiple times on multiple sheets
e Still true that singuarites are always either logarithmic or square root
* Automated codes like SOFIA seem to be able to tell logarithmic from square root



Finite basis

Location of Landau singularities symbol alphabet
A_ ﬂu_l
s =4m?, s — oo, —{u,v,l+u,l+v,u+v,1+u+v,m,
_ 2 u
t_4m2!_2_>ooa ‘ Bov—1 Buw—1 Buv— Bu Buv — B Buv_ﬁuﬁv}
e , B+ 1" Buv + 17" Buv + Bu” Buv + Bv” Buv + Bubo
s =0, t=0, m° — 00,
s+t=0, st —4m?s —4m?t = 0. Bu = V1 +u, ﬁv=1/1+viﬁu0:1/1+u+v-

e SOFIA can also produce the alphabet
(may be larger than needed)

* Symbol weight <= 2L, L = loop order

e 12 letters
o b e 12% =20,736 symbol entries

S|I]= Z c(iyLi, ® Li, ® Liy ® Ly,

, e Finite basis!



Numerical bootst

rap

-

\_

\

Feynman Integral Alphabet
i+ LO®L QL QL
(s.2) = (- 1.12, - 1.23) \\ 0* 1©LOLOL,
(5p.1,) = (=2.45, — 1.23)  — —_—
(83, 13) = (—3.87, — 4.63) § SOFEA GPLs
PN Bi= G(-1,0,—1,— 1;w)
(51) = (~0.29, - 3.78)
/ Ba= G(-1,0,— 1,0;w)
‘ Bs= G(-1,0,z7", 1;w)
3 B, = G(1,i,1,1;z)
Q* AMFlow
(> 20 digits) Data (A)
i z(XJ) ¢ eQ
""""""""""""""""""""""""" Model

Requirements

can we just fit the ¢; numerically?

1. Evaluate f(x) numerically to high precision
2. Evaluate B(x) to high precision
3. Solve the equation without losing precision

Start with finite

basis




1-loop triangle

m
exact answer: T = —< - (_™ 1) — :
. m2(1 — 22) ( 3 +4G(0, -1, z) 2G(0,0,w))

1—4/14 42
one invariant z = 32
Alphabet (from Sofia) 144/14 422

3 letters
A:{L}:{m,s,4m2—s} —> {.':C,]."—.',U,].—ZU}

rational
prefactor ] et
Basis is / 167t [(am?-s) s
17
T(x)=>)  ciBi(z)=P(z) x [cijLi® Lj + (aj+ bjm) L + dim® + dC]
3:1 A\ v J \ v J U v Yy

9 terms 6 terms 2 numbers
weight 2 weight 1

* Need T(x) and B;(x) to high precision




Numerical Feynman Integration

* AMFlow: numerical evaluation for Feynman loop integrals to high precision

Integration-by-Parts (IBP) [Chetyrkin, Tkachov, 1981] Master integrals

Rational functions

I ( ) (basis)
N i k‘
Z(pi,me) =/ d"k; - =T =) Ra(pi-pj,me)Ml,
13 "I (@2 — m? +ie) Z ’
- [Liu, Ma, 1801.10523; 2107.01864;
Auxiliary mass flow method (AMFLow) 2201.11669: 2201.11637]

1. Introduce an auxiliary mass n to some of the propagator denominators

2. Set up closed differential equations w.r.t n using IBPs
3. Solve the differential equations numerically with boundary conditions n - o

Timing on 1-loop triangle
* each phase space point takes 5-10 CPU-min for 30 signficiant digits



17
T(;r:) = Z Csz(&C) = P(.T)) X [Cz'jL@' X Lj -+ (G,j -+ bj?T)Lj -+ d17T2 -+ dgCg]
i=1
* Rational prefactor evaluation is instant
* Weight-2 symbols can be integrated into closed form expressions

* FiberSymbolin Polylogtools can do this
* Numerical evaluation is very fast

Integrals of highter weight symbols are not always known

e (Can always integrate numerically along a path

5 1 Ad A3 A2
B:Zcil’iz’i?”i‘l/o dlogL?;4()\4)/0 dlogLiS()\g)/(; dlogLiQ(/\z)/O dlogLil()\l),

1=1

* Individual terms may be path dependent, but final result is integrable
e Can do the first and last integral ananlytically
* Reduce weight by 2: speeds up integration tremendously
* Sometimes analytic integrals can be so complicated that it is faster to do the

integral numerically
* More work needed on efficient numerical evaluation



Matrix inversion

* Solve 17 linear equations for coefficients

17
* Evaluate both sides of this equation at 17 points
T(z)= E ciBi(x)
* i.e.invert the matrix =1

My = Bi(x;) mmy ci= (M) T(x))

Problems:
1. No way to impose that c; are rational
 Cannot ever resolve functions that differ by irrational constants

2[Inz] + 3 [r Ina] = (14 7)[ln ] + (Q—I—%)[ﬂlnx]

* Even with infinite precision, will not find the exact analytic answer

2. Matrix inversion loses precision very fast
e Controlled by condition number

k(M) = ||M|[IM4] .

e Generally our matrices will be ill-conditioned
(they come from smooth functions)



Lattice reduction

. . . . . .
vectors span

d Iattice * * . . . . .

. . . . . .

. . . t—» . .

1&1—|—U2:24 ’U%—l—’U%:Q

e Lattice reduction finds another set of vectors for same lattice

e Can minimize some norm (length of lattice vectors)

* NP-Hard problem: no polynomial-time algorithm for truly best solution
e Efficient algorithms exist to find what is almost always the minimum



Lattice reduction

Rational number coefficients can be fit for numbers using lattice reduction

f:—/ldu/Id’Ulog(l_uv)+vlog(1_U) :7?_2+
0 0

T, 6

(3. =c1m% + o3 =2¢- U
f=2.847 <—— Assume 4 digits known <+«——

Multiply by 10% and put into a matrix

i 10%f 1 2847 1 0 0 v 0 -6 1 6
ﬁ2 - 10371-2 1 - 9870 0 1 0 lattice reduction{ t_iz - 3 —11 5 -15
U3 103¢3 1 1202 0 0 1 U3 62 4 -2 T
e Lattices are the same so v in the span of u
vectors span i1 . . . .
. v1 = —6u1 + Uz + 6us.
a lattice / 1 1+ u2 + 0u3
/ l First component
— " / -
U1 — U2
= 0=10%x (—6f + 72 +6¢%)
V2 - - -
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iy
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i

i 458
AR, f:c:)
oo iy
e e
o SHETR
Jaad afeeet
i i
e SRR
L et
i L
i f
e il
i e
e bty
i g
Ereey e
oy i
e g
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Eiey e
e R
ey ey
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s o i
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Seinaai i it it st R AR R A
ddRadatdaaaataa s e e e a et et ety
e
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Hadaddaaaadiiasataaaditaaaiitaaeiitaaediiida et
b nannnnnnnnnnnnnnn
Seiaaadtaseaaeitdaeitdaaibda et e it

o

C]_chs 10R

Ry

+C3-—C]_7T2+CQC3:E'6

e e e et o e e e e o e e A
N e

T
6

loNn requlremen

uv

icients can be fit for numbers lattice reduction

t

Icien

Precis

Rational number coeff

log(1 — log(1 —
" og(l —uv) +vlog(l — u)

1

J

fz—/oldu

* There are (10%)" = 10?Rvectors (c,c5)
Information content must be suff

e ¢- U produce 102R d digit numbers

(%)
| -
Q
o)
&
>
C
Q
| -
>
o
o
=
O
o+
<
A\
]
C
RS,
2]
O
Q
| -
o
)]
Q
Q
=

Multiply by GCD so c¢; and ¢, are integers

Assume d digits of precision on v

Multiple solutions imples that
* There are only 109 d-digit numbers in all




Precision requirements

For fitting functions we can sample at multiple points

f(xa) - £ (xp) “

M = round 10° Bila) - Bl (cp) | 107" Lo =1Vs

: v

Bn(x1) - - Bn(xp) Vs
With p points and d digits [
* net digits of information isp x d 100
Expected digits needed - 80f
. X [
digits of Fbasis =
precision functions ~ s}

req’d

f(x) =G(0,1;2) - G(1,-1;2)  x =4/10,x,=9/10
B(x) ={G(1,0;x),G(0,1;z),G(0,—1;x),G(1,—1;z)}

NG L g e

<_ f point
d p/opoms

-3 =24 1 0 0 0 O
92 154 0 1 0 0 O
=] —45 =129 0 0 1 0 O
36 w0 0 010
-10 —-106 0 0 0 O 1

digits required
(actual fits)

number of functions

We can trade off digits of precision for number of points

Will work even if only a few digits of precision are available!



Example 1: Triangles

s 5 2 /2
Triangle ladder diagrams Ps Ps ! 22 = P2/
P (1—2)(1 —2) =p3/p3

exact results known
Ti(2) = [2L12(z) Liy(2) + log(2zz

1-2)( . D=2 [6Lia(2) 6L14(z) -3 log(zz) (Lia(2) — Lis()) Full alphabet (from SOFIA)

+ %logg(zi) (Lin(e) ~ Lin(2)) |,

1
Ts(z) = (1—2)2(1 - 2)2(z - 2)

+ log? (22) (Lis(2) — Lig(2)) — %Iog3 (22) (Liz(2) — Lis (2))]

Y

Ty(2) =

1—

N

0w

Ai1p = {zé, (1-2)(1-2), z—Z,

|

Simplified alphabet (quicker for testing)

’

[20Li5(z) — 20Lig(2) — 10log(22) (Lis(z) — Lis(2))

ot

8]

zZ 1—-z
Allow all possibilities up to weight 6 A3 = {Zz= 1-2)(1-2), ~, 1= z}
Weight-0: 1
Weight-1:  G(ay,z), 7
Weight-2:  G(aq,a2,z), ™ x G(ay, z), (2
Weight-3:  G(a1,as2,as3,z), ™ X G(ay,a2,x), (2 x G(ai,x), (3
Weight-4:  G(ay, as, as, a4, ), ™ X G(a1,a2,a3,2), (2 x Glay,as,z), 7 x G(ay,z),

(3 x G(a1,7), (4

Weight-5:  G(a1, as,as, a4, as,x), ™ X G(ay,a2,a3,a4,2), (2 X G(ay,az,a3,x),
7 x Glay, az,z), (3 X G(ay,az, ), (4 x Glay, ), (5, G % (3

Weight-6:  G(a1, a2, as, a4, as,a6,z), © X G(ay,a2,as3,a4,as,2), {2 X Glay,as,as,aq,x),
7 x Glay, az,a3,z), (3 x Glay,az,a3,2), ¢4 x G(ay,as,1), (5 x G(ay, ),
(2C3 X G(ay,x), ™ x Glay, x), (s Co



Example 1: Triangles

. . n P n
Triangle ladder diagrams Ps Py Ps

P2 D2 P2

Pick random points in (unphysical) Euclidean region 0 <z<z<1
* Makes basis functions real
* Imaginary numbers are fine, just technically complicated python implemntation

Diagram AMFLow  Transcendental # points Basis size Reduction
point time weights sampled time
full(32) <1s
One-loop  15.6 CPU-min <2 5 simplified(26) <ls 3 digits
uniform(25) <1s
100 full(488) 9.6 min
Twoloop 1.1 CPU-h <4 100 simplified(393)  10.7 min 20 digits
60 uniform(366) 3.5 min
; Full(1373) -
Three-loop 5.7 CPU-h <6 - simplified(972) - 20 dlgItS
200 uniform(806) 1.1h

Results with timing
* Rate limiting step is AMFlow (computation of full function)
e Could be sped up (additonal points much faster than first)



Example 2: Double box

Loop 12 independent letters
\.'P%\ b3 }’iz{u,'v,l-l-'u,,l+’U,u+'v,1+u+v,%,
)BU_]- ;Bu'v_]- 6u’v_ﬁu )Buv_ﬁv 5uv_)5u6'u}
P2 P4 ﬁv‘l‘l’ﬁuv‘l‘l’IBuv‘l‘rBu,ﬁuv‘l‘ﬁv’ﬁuv‘l‘ﬁuﬁv
/ I5(u,v)

with 8, = V1+u, 8, = vV1+v and By = V1 +u+w.

e 12%=20,736 weight-4 symbols +(?) lower weight terms
e square root letters are hard to integrate analytically

<7\

method 1:

method 2:
numerically integate along a contour

_ (1-w?)(1-2?) 4wz * integrate first and last symbol analytically

rationalize the square roots

(w—z)2 and v= (w—z)z’ i
* need to be careful with branch cuts

e euclidean region requires some thought
e usingintegrable contributions helps a lot

U

Ay ={w,z,1+w,1+zwtz1+wzl+twTFz+wz},

* Now symbols can be integrated analytically

* Takes FiberSymbol hours to integrate

e Resultis hundreds or thousands of terms
* GiNaC can get numbers out, but very slow



Example 2: Double box

Landau
boostrap

Analytic
regression

Easy Constraints # Coeffs ..4

('
All Symbols 20736
] Integrability 6993
relatively _<
easy
Galois symmetry 861
\ Physical branch cuts 161 \/ ZOOptS 17 d|g|ts t - 305
iiﬁ:ﬁi:] 28 v 200pts, 8 digits, t < 1s
. a -positive thresholds 6 \/ 200pt$ 6 dIgItS t<1s
Hard



Double box: limitations

w150 o~ -
S——— L ] ' . :’
&) Successful fit .
=
E
= 100} -
o
. —
+>
O -3
- L
8 I
~ 50 i
O I
S I
+~
= [ - ~
T : Unsuccessful fit
— ol

50 100 150 200 250
Basis set size n

Should work with more functions
* With our compute, hard to succeed with more than n < 200



Choosing points

* Before we said you can get away with fewer digits if you use more points

digits of nR )
precision —> J< number
reqrd dN p / OprintS
- 1-0- ] 1 ] 1 L T I-
+= J
Q=
=
o 0.8f .
E-—c . .
S [ ] — 12 sampling points
= osf ]
,i 1 — 14 sampling points
£ 04f ]
B [ ] — 50 sampling points
2 g2} » ]
= i 1" 362 sampling points
A . I
1)) S—— .. 12 points ]

16 18 20 22 24 26 28
# of significant digits used

e Can never succeed below some digit lower bound
* Why did scaling fail?



Choosing points

choose pointsin a range B
2—10% <z <i+10%

401

30} 1 Ao s
E — A=—4
~ 20f M_ .
offset near d=0 o I,
noooL — A=
Amin ~ RGHE + do ) PR i — ——— < -

* will never work with 1 or 2 digits
* want to choose points

f(pj)={103.2, \2-57 2-33 * not too close (lose information)
Y * not too far (need more digits)

unrecovarable information * Need 10-20 digits at least
loss if we trunctate to 2 digits




~—

S

AMFlow CPU time (

Double box: timing

AMFlow + Kira (for IBP) GPL evaluation (GINSH)

""""""""""""""""""""" 25I""I""I""I""I""I""
50 000f [
=
40000 g 20
= o
30000} El:
NP -
20000} Z qof
=
6 L
10000} R
=
. | © |
i T N S T N ST YN T T (NS S S S T [N SN T ST S NS S T TR [ T T S T 0-

0 50 100 150 200 250 300 . S LT

# digits of precision d # digits of precision d

t(p,n)/ns ~ 10° - p-doy,(n) +10* - n-p-dii,(n) + p-n?,

—~ N~
AMFLow GINSH fitting

Trading digits for points makes scaling go from quadradic to linear!



. . Toward the Analytic Bootstrap of Energy Correlators
Application to EECs

Jianyu Gong®,*"* Andrzej Pokraka®,® Kai Yan®,%* Xiaoyuan Zhang®%®

Consider some types of energy-energy correlators (unequal energy weights)

do

B E; 1 —cos@,; ;
dﬂ?lg"'d:E(N_l)N:Z Z fdgmx H Qk H 6(.7;3-3_ 5 al).

m 1<iy, iy <m 1<k<N 1<j<I<N

£

Uses of lattice reducion
* Find linear dependence among basis functions

G(z) = D(2) + ao11 91(2) + @012 92(2) + @1.12 93(2) + a2.12 94(2) + ¢1.12 95(2) + d2,12 96(2)

1
(z — 1)222(2 — 1)222 2272 — 17 482373 — 142372 + 8237 — 23 + 2271 — 142278

g3(2) =

+ 242272 — 142%3 + 22 + (22423 — 32472 + 2%z + 22374 — 82375 + 92322 — 4257 + 25
— 32221 4+ 92223 — 122272 4+ 9227 — 322 + 22 — 422 4 923° — 822+ 22+ 2° — 332
+22)log((z — 1)(2 — 1)) + (—22*2° + 322 — 2%z — 22%2" + 82°2° — 92%2° + 22°2

+32°2% — 92%2° 4 62°2° — 22* + 222°) log(22) — 22* + 822° — 1422° + 822 — 2° + 2°

« Treat {g;} as transcendental basis and a

b

C js d, j as coefficients to determine

i,ja i,ja

e (1). Run lattice reduction among {g;(z)} to get a linear-independent basis {g,(z) }
* (2). Run lattice reduction among both G(z) and {g(2)}

In this case, 2 numerical points and 13 digits fix all six parameters



Pros and cons: Landau bootstrap

Can eliminate large swaths of symbols with physical constraints
Don’t need to do integrals
Leads to new deep understanding in what amplitdues are

Requires subtle understanding of singularities

e Analytic structure of amplitudes

* Branch points, euclidean regions

* Algebraic geometry
Rational prefactors not fixed by singularities alone
Often still requires some integration at the end



Pros and cons: Lattice reduction

Easy to automate
e Can work for any functions
* not just polylogs with symbols
» elliptic polylarithms? no problem!
* cross sections, EECs, etc.
* Can find linear dependencies
e (Can trade digits of accuracy for points
* Scaling t~n? or worse to t~n

* Becomes computationally challenging above n ~ 200
* AMFlow scales like (# digits)?
 lattice reduction scales like (# constants)*

*  Minimum number of digits needed (~ 5 or 6)

) =3 GBx) cco| mmd

------- i=1




Conclusions

* Bootrapping Feynman integrals is now possible in a
semi-automated way

* Analytic and numerical methods are complementary

Easy Constraints # Coeffs 1.4

All Symbols 20736
Integrability 6993
Galois symmetry 861
Semi-
Physical branch cuts 161 q
numerical
analytiac
Genealogical 28 0
constraints reg ression
@ -positive thresholds 6
Hard Easy

* Semi-numerical analytic regression could be
widely valuable for many tasks
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