
Matthew Schwartz
Harvard University

FROM ANALYTICITY TO PHENOMENOLOGY
Princeton, NJ, January 12, 2026

The Semi-Analytic Landau Boostrap

Institute for Artificial Intelligence 
and Fundamental Interactions (IAIFI)

Based on

• H. Hannesdottir, A. McLeod, MDS, C. Vergu:
“Applications of the Landau Bootstrap” 2410.02424
“Constraints on sequential discontinuities from the geometry of on-shell spaces” 2211.07633

• O. Barrera, A. Dersy, R. Husain, MDS and X. Zhang:
“Analytic Regression of Feynman Integrals from High-Precision Numerical Sampling”, 2507.17815

https://arxiv.org/abs/2410.02424
https://arxiv.org/abs/2507.17815


The S-matrix boostrap
Is the S matrix completely fixed by physical constraints?

• 1960s: best hope for strong interactions
• 1970s: Quantum Field Theory explained strong interactions

➥S matrix program on hold for 40 years

Three Modern Bootstraps
1. Non-pertubative bootstrap

• e.g. pion 2->2 scattering at low energy
• Similar to 1960’s bootstrap

• Impose unitarity, analyticity, crossing
• Use modern methods
(Hamiltonian truncation, machine learning, etc)

2. Perturbative amplitude bootstrap

• constrain full amplitude (sum of all diagrams)
• Impose symmetries and physical limits

• dual conformal invariance, Regge limit
• 6-point in N=4 SYM at 7 loops computed this way

3. Feynman diagram bootstrap

• Can we compute Feynman diagrams without actually doing the integrals?
• Many examples to work with

• Uses elements of 1 and 2

today’s
 talk

[Caron-Huot et al 1903.10890]



Feynman-diagram bootstrap

Q: Can we bootstrap Feynman integrals? Rules: Don’t integrate!

1. Find a finite basis apply enough analytic constraints
to uniquely fix all cj

fit the cj numerically

2. Landau bootstrap

3. Analytic regression

• determined by singularities

• Two-loop outer mass  double box
• Caron-Huot and Henn 1404.2922



A necessary condition for a singularity is that the integrand is singular (l=0)

integration contour

pinched between poles

Double pole: 

• every internal line is either
on-shell (q2=m2) or α=0 or both

A necessary condition for a singularity of the integral is that poles pinch the contour

for each loop kc:

• since qe are linear in kc

q2=

q1=

=0

Landau loop equations

Where are the singularities? 



Coleman-Norton interpretation
Landau equations

4-momenta add up to zero after rescaling by α

Landau diagram is interpreted as space-time diagram
• momenta are on-shell (classical)
• αe are the proper times for propagation

[Coleman and Norton 1965]

Gives some intuition: singularities due to classically allowed processes

=0



Pham interpretation
Landau equations

=0

on-shell constraints (Euclidean d=2)

normal vectors
of on-shell constraints q2=m2 

are linearly dependent

intersection
satisfies both 
on-shell constraints

tangent on boundary
of space where
circles intersect

{q,p} on-shell space 

on-shell space
of external momenta {p}

Landau variety is 

the boundary of the projection map

• Pham 1967
• H. Hannesdottir, A. McLeod, 

MDS, C. Vergu 2211.07633



Bubble in d=2
Consider the simplest 1-loop diagram: the bubble in d=2

• It has a normal threshold branch cut starting at s=4m2

• For s > 4m2 the on-shell process p → p1 +p2 is allowed for physical on-shell momenta

p

• There is also a pseudthreshold at s=0
• There is a branch point at s=0 accessible with complex momenta
• Does not correspond to anything physical happening



More general 2D bubble: generic masses

Going to Feynman parameters

integrand is singular (l =0) at

• necessary but not sufficient condition for singularities of integral

singularites require pinches, i.e.

=l

normal threshold

pseudothreshold
• location of branch points

• solutions to Landau equations

on-shell locus

two solutions

Bubble in d=2



Homotopy and Homology
on-shell locus: α = α±

integration contour [0,1]
in α space

some s

What happens as we take a monodromy (discontinuity) of s around sN?

• Poles α± move around too
• Contour must move out of the way to avoid poles
• After full loop, can use Leray residue theorem to get discontinuity

normal threshold

two roots

for each s



Sequential discontinuities

1

2

3 4

5

6

[Steinmann 1960]

possible term: cannot appear

• Can take a discontinuity of a discontuitty

Steinman relations : S matrix cannot have sequential discontinuities in crossed channels

1

2

3 4

5

6

1

2

3 4

5

6

S=
uncrossed crossed

• Algebraic geometry need to understand contour deformations and pinches
• Gets pretty complicated...



Different kinds of singularities

• hypersufaces meet tangentially
• e.g. sunrise in the ice-cream cone

• hypersufaces meet transversely
• e.g. physical thresholds

Non-simple pinchesSimple pinches

McLeod, Hannesdottir, MDS, Vergu
arXiv:2211.07633

• Permanent pinches (e.g. IR divergences)
• Pinches at infinity



The symbol is an efficient way to represent polylogarithmic Feynman integrals

[Goncharov, Spradlin, Vergu, Volovich PRL 2010] 

• Used symbol to simplify 17 page 2-loop 6 point amplitude to a few lines

Symbol is a map that extracts the dlog forms 

Polylogarithms are iterated integrals

etc.

Symbol

Advantages
• Efficient way to represent integrals
• Possible logarithmic singularities ⇔ symbol “letters” vanish 
• Transparently encodes discontinuities and sequential discontinties

15th anniversary!



Constructing a Finite basis
The symbol is the key to making the the problem finite

1. Identify singularities
• All solution to Landau equations 
• Some singularities may be on higher Riemann sheets

physical singularities unphysical singularitiesouter mass double box

2. Identify possible letters 
• algebraic functions (with square roots) of singularities with no new singularities

3. Finite basis
•  sum over all possible symbols using the alphabet



Landau Bootstrap
A. Construct finite basis

1. Find singularities
2. Find letters
3. Construct finite basis

MDS, Hannesdottir, McLeod, Vergu 2410.02424

• Integrability
• Galois symmetry
• α-positivity
• First-entry conditions
• Last-entry conditions
• Geneological constraints

• Sequential discontinuities
• Cluster adjacency conditions

• Regions analysis
• Direct calculation

B. Fix the coefficients

C. Fix the non-symbol 
rational prefactor

https://arxiv.org/abs/2410.02424


Integrability
• Every interated dlog integral has a symbol

• Not every symbol 
corresponds to a function

• For f(u,v,Γ) to be a function, must be independent of local path deformations

• Derivatives only act on the last entry of the symbol (end of integration contour)

(u,v)

(u0,v0)

Γ
integration contour

must vanish
(integrability condition)



α positivity

• Symbol encodes all branch points, even on unphysical sheets

actual Feynman integral on physical sheet is over positive α

• Discontinuities/monodromies act on first entry of the symbol

• Singularity for physical momenta (physical sheet)  singularity of first entry
• See if α > 0 in solutions to Landau equations: constrain first symbol entries



Genealogical constraints

Singular surfaces intersect transversaly in external momenta

same

same

different

different

on-shell surfaces may not intersect in internal momenta
• vanishing cell from first monodromy doesn’t intersect 

integration contour of second
• sequential monodromy vanishes

Which symbol entries can be adjacent?
• Adjacent means sequential discontinuities are possible

Pham approach

• e.g. Steinmann relations



Outer-mass double box

Landau boostrap

• Weight 4 symbol, 12 Letters
• Work from easy generic stuff (integrability) to hard

• Agrees with Caron-Huot & Henn ’14
• Also need rational prefactor  -- not in the sybmol

• Compute from maximal cut

Caron-Huot & Henn ‘14

Landau bootstrap works!



Top down or bottom up?
1. Top down: 

Landau bootstrap

2. Bottom up:
Analytic regression with 
lattice reduction



Solving the Landau equations

Lots of ways to solve the Landau equations
• Solve them by hand (e.g. Eden et al 1950)
• HyperInt (Panzer 2014)
• PLD (Fevola, Mizera, Telen 2013)
• BaikovLetter (Jiang et al 2024
• Recursive approach (Caron-Huot,  Correia and Giroux 2024)
• Numerical implementation for any diagram (Correia, Giroux, Mizera 2024)

Input Output

Finds all
singularities
(simple & non-simple)



Singularities to letters

{s,t,s-t}

singularities

alphabet

s

logarithmic square root

logarithmic

Landau’s original paper determined if physical singularities were logarithmic or square-root
• In general, singularities may appear multiple times on multiple sheets
• Still true that singuarites are always either logarithmic or square root
• Automated codes like SOFIA seem to be able to tell logarithmic from square root



Finite basis
Location of Landau singularities symbol alphabet

• SOFIA can also produce the alphabet
(may be larger than needed)

• Symbol weight <= 2L, L = loop order

• 12 letters
• 124 = 20,736 symbol entries

2 loop outer-mass double box

Finite basis!



Numerical bootstrap

Start with finite
basis

can we just fit the cj numerically?

Requirements
1. Evaluate f(x) numerically to high precision
2. Evaluate B(x) to high precision
3. Solve the equation without losing precision



1-loop triangle

Alphabet (from Sofia)

exact answer: =

Basis is 

rational
prefactor

9 terms
weight 2

2 numbers6 terms
weight 1

(Sofia computes)

s       

m

m
s

one invariant

17 
constants

• Need T(x) and Bi(x) to high precision 

3 letters



Numerical Feynman Integration

• AMFlow: numerical evaluation for Feynman loop integrals to high precision

1. Introduce an auxiliary mass η to some of the propagator denominators 

2. Set up closed differential equations w.r.t η using IBPs

3. Solve the differential equations numerically with boundary conditions η → ∞

Timing on 1-loop triangle
• each phase space point takes 5-10 CPU-min for 30 signficiant digits 



Numerical basis functions

• Rational prefactor evaluation is instant
• Weight-2 symbols can be integrated into closed form expressions

• FiberSymbol in Polylogtools can do this
• Numerical evaluation is very fast

Integrals of highter weight symbols are not always known

• Can always integrate numerically along a path

• Individual terms may be path dependent, but final result is integrable
• Can do the first and last integral ananlytically 

• Reduce weight by 2: speeds up integration tremendously
• Sometimes analytic integrals can be so complicated that it is faster to do the 

integral numerically
• More work needed on efficient numerical evaluation



Matrix inversion

• Evaluate both sides of this equation at 17 points
• Solve 17 linear equations for coefficients

• i.e. invert the matrix

Problems: 
1. No way to impose that cj are rational

• Cannot ever resolve functions that differ by irrational constants

• Even with infinite precision, will not find the exact analytic answer

2. Matrix inversion loses precision very fast
• Controlled by condition number

• Generally our matrices will be ill-conditioned  
   (they come from smooth functions)



Lattice reduction

• Lattice reduction finds another set of vectors for same lattice
• Can minimize some norm (length of lattice vectors)
• NP-Hard problem: no polynomial-time algorithm for truly best solution
• Efficient algorithms exist to find what is almost always the minimum

vectors span
 a lattice



Lattice reduction

Rational number coefficients can be fit for numbers using lattice reduction

f=2.847 π2=9.870Assume 4 digits known ζ3=1.202

Multiply by 103 and put into a matrix

• Lattices are the same so v in the span of u

First component 

✓

vectors span
 a lattice



Precision requirements

Rational number coefficients can be fit for numbers lattice reduction

Q: how many digits of f are required to fit rational c1 and c2?

• Multiply by GCD so c1 and c2 are integers
• There are (10R)n = 102R vectors (c1,c2)

• Assume d digits of precision on v 
•        produce 102R d digit numbers

• There are only 10d d-digit numbers in all

• Need precision                   to fit pure numbers 
• Information content must be sufficient

• Multiple solutions imples that assume size of c’s



Precision requirements

digits required
(actual fits)

number of functions

For fitting functions we can sample at multiple points

• With p points and d digits 
• net digits of information is p × d

• Expected digits needed

digits of 

precision 
req’d

# basis

functions

number 

of points

size of

 integers

We can trade off digits of precision for number of points
• Will work even if only a few digits of precision are available!



Example 1: Triangles

Allow all possibilities up to weight 6

Full alphabet (from SOFIA)

Simplified alphabet (quicker for testing)

Triangle ladder diagrams

exact results known



Pick random points in (unphysical) Euclidean region
• Makes basis functions real
• Imaginary numbers are fine, just technically complicated python implemntation 

Triangle ladder diagrams

Results with timing
• Rate limiting step is AMFlow (computation of full function)
• Could be sped up (additonal points much faster than first)

Example 1: Triangles



Example 2: Double box
Loop

12 independent letters

• 124 = 20,736 weight-4 symbols +(?) lower weight terms
• square root letters are hard to integrate analytically

• Now symbols can be integrated analytically
• Takes FiberSymbol hours to integrate
• Result is hundreds or thousands of terms

• GiNaC  can get numbers out, but very slow

method 2:
numerically integate along a contour

method 1: 
rationalize the square roots

• integrate first and last symbol analytically
• need to be careful with branch cuts

• euclidean region requires some thought
• using integrable contributions helps a lot



Landau 
boostrap

Analytic
 regression

relatively 
easy

✓ 200pts, 6 digits,  t < 1s

✓ 200pts, 8 digits, t < 1s

✓ 200pts 17 digits, t ∽ 30s

Example 2: Double box



Should work with more functions
• With our compute, hard to succeed with more than n ≲ 200 

Double box: limitations



362 
points

12  points

Choosing points
• Before we said you can get away with fewer digits if you use more points

digits of 

precision 
req’d

# basis

functions

number 

of points

size of

 integers

• Can never succeed below some digit lower bound
• Why did scaling fail?



Choosing points

offset near d=0

• will never work with 1 or 2 digits

unrecovarable information

loss if we trunctate to 2 digits

• want to choose points
• not too close (lose information)
• not too far (need more digits)
• Need 10-20 digits at least

choose points in a range



Double box: timing

AMFlow + Kira (for IBP) GPL evaluation (GINSH)

• Trading digits for points makes scaling go from quadradic to linear!



Application to EECs

Uses of lattice reducion
• Find linear dependence among basis functions

2509.22782

Consider some types of energy-energy correlators (unequal energy weights)



• Can eliminate large swaths of symbols with physical constraints
• Don’t need to do integrals
• Leads to new deep understanding in what amplitdues are

• Requires subtle understanding of singularities
• Analytic structure of amplitudes
• Branch points, euclidean regions
• Algebraic geometry

• Rational prefactors not fixed by singularities alone
• Often still requires some integration at the end 

Pros and cons: Landau bootstrap



• Easy to automate
• Can work for any functions

• not just polylogs with symbols
• elliptic polylarithms? no problem!
• cross sections, EECs, etc. 

• Can find linear dependencies 
• Can trade digits of accuracy for points

• Scaling t∼n2 or worse to t∼n

• Becomes computationally challenging above n ∼ 200
• AMFlow scales like (# digits)2

• lattice reduction scales like (# constants)4

• Minimum number of digits needed (∼ 5 or 6)

Pros and cons: Lattice reduction

problem 
solved



Conclusions

Analytic 

Landau 
boostrap

Semi-

numerical
 analytiac 
regression

• Bootrapping Feynman integrals is now possible in a 
semi-automated way

• Analytic and numerical methods are complementary

• Semi-numerical analytic regression could be 
widely valuable for many tasks 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Coleman-Norton interpretation
	Slide 6: Pham interpretation
	Slide 7
	Slide 8
	Slide 9: Homotopy and Homology
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Landau Bootstrap
	Slide 15
	Slide 16
	Slide 17: Genealogical constraints
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

