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* Introduction to jet physics
* Traditional approach vs ML approach

* ML applications in collider physics
— Quarks vs. Gluons
— Top tagging
— Pileup removal
— Unsupervised learning
— Unfolding
— Weak supervision
— Decorrelation
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Higgs discovered 2012
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Higgs discovered 2012
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Higgs boson decay modes

Photons (0.2%)

Decays to Gluons
Higes I 2
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Higgs boson decay modes
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Higgs boson decay modes
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Higgs boson decay modes

e, u(1.8%)

Photons (0.2%)

Decays to

Higgs ‘

* Higgs discovery involved just these special decays
Matthew Schwartz



Jets from come from
chomoelectromagnetic radiation

Matthew Schwartz



Not all jets are created equal

e, 1 (1.8%)

Photons (0.2%)

Tau jets

Gluon jets

Background is
e 80 billion gluon jets
e 10 billion light quark jets

How can we tell all these different jet types apart?

Matthew Schwartz



MODERN MACHINE LEARNING



Modern Machine Learning for Particle Physics

Traditional approach

Physical insight

U

Observables

g Simulations <

v

Combine best observables

e Neural Networks

 Boosted Decision Trees

Validate physics ‘j

Matthew Schwartz

L

Modern machine

earning

Innovative algorithm

Apply to data

E’ Validate algorithm




Game is about Hammers and Nails:

Convolutional Neural Networks
Recurrent Neural Networks
Variational Auto-encorders
Latent Dirichlet Allocation
Reinforcement learning

Point cloud networks

Cluster networks

Matthew Schwartz

Top tagging

W tagging

Quark/gluon discrimination
Pileup removal

b/c/s-tagging

Jet-energy scale calibration
Missing energy measurement
Jets in heavy ion collisions



Physics domain is distributions

Is this event

* two quark jets

e two gluon jets

e two Higgs bosons?

* Any individual event has no “truth” identity
* All that exists are the probability distributions for different truths

d"o d" o
APy(r) = o aP,(z) = -8
AP1 Pn, dp1 - - - dpy,
Y
1000-dimensional phase space
(from 108 dimensional measurements!) goal is to test/measure

* datais a combination ////
dPyata(x) = agdPy 4+ agdPy + - - -

Matthew Schwartz



QUARKS VS GLUONS



Quark jets vs gluon jets: theory

Probability of quark radiating:

3 colors of quark

e Gluons around twice as likely to radiate than
Gluon jets are fatter, on average

Gluon jets are more massive, on average
Gluon jets have more particles, on avera,

Matthew Schwartz

10

Probability of gluon radiating:

8 colors of gluon

Charged particle count

%




Traditional approach
Consider lots of “motivated” variables

e Jet width

* # of particles
e # of subjets
* Jet “shape”

* Jet mass

| Significance Improvement |

best group of 5

<

.......... charged mult & girth

—h

,,,,, charged mult * girth
charged mult R=0.5

—

>>>>> . subjet mult Rgu,=0.1
B o girth R=0.5

optimal kernel at 80%
. 1st subjet R=0.5
e R avg kr of Rsu=0.1

— mass/Pt R=0.3

.......... decluster k7 Rgu=0.1
_____ jet shape ¥(0.1)
— |pull] R=0.3
.......... planar flow R=0.3

[
Significance Improvement

;
(n)

Particle count
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0 01 02 03 04 05 06 07 08 0.9 1
Quark Jet Acceptance

Gallicchio, MDS (arXiv:1211.7038)
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Convolutional Neural Networks
for quark/gluon jet discrimination

Komiske, Metodiev, MDS (arXiv:1612.01551)

NN inputs
preprocess
>
e Center
* Crop
e Normalize
* Zero

* Standardize

Three input layers

* Red = energy of charged particles
 Green = energy of neutral particles
* Blue = number of charged particles

Matthew Schwartz



3.5

Quark/Gluon CNN results

Komiske, Metodiev, MDS (arXiv:1612.01551)

Girth
Charge Particle Multiplicity
Leading Energy Fraction
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N
o
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Significance Improvement

Deep grayscale NN

BDT of top 5

[
",
[
'

Two Point Moment
N95

BDT of 5 jet obs.
Fisher LD

Deep CNN grayscale
Deep CNN w/ color

variables

==--~ Single variables
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TOP TAGGING



Top-tagging

Hypothetical new heavy particles often decay to top quarks:

Looks like 6 Jets

Matthew Schwartz



Tops are often boosted

For heavy KK gluons (> 1000 GeV) N ook
«. ttbar candidate!
Top, W, and b!

tops are ultrarelativistic (boosted)

-

do/dM (fb/100 GeV)

|
HJ G-t
0.1 .

1500 2000 2500 3000 3500 4000
dijet/tt invariant mass M (GeV)

Now it looks like 2 jets!

Matthew Schwartz



Typical tOp jEtS Large boost (P = 1500 GeV)

[ top jet with pT=1500 GeV | [ top jet with pT=1500 GeV | [ top jet with pT=1500 GeV |

1003 -
s "‘3‘
[ R e
e
‘_"‘*—f‘%
e

S

. 3
e
SHEeRaeT e
S

sty
PR~
2 e A

Typical background jets

[ dijet with pT=1500 GeV | [ dijet with pT=1500 GeV | Sl/ 6 [ dijet with pT=1500 GeV |

350

300 e
250 250
200 200
150 %‘ = 150

S 100
1003 i o0 o
sEE T RS ST s 50 S
50 e & N e
] S5 SRR O S e oS e
0% oot B 5 osomasiTotieeooss
SR 5 R 2 2 T e
SEndaraa e 0 = SR IR e
rrr e e 15 Sesme gy 2
T s ’ S
: = 3 T 3 o
=
35 S
Q S Y
2 0.5

Matthew Schwartz



do/dM (fb/100 GeV)

Top-tagging

1. Look for big jets (R=1.2)

2. with subjets within the jet

3. Analyze the subjets

Hopkins top-tagger
Kaplan et al. arXiv:0806.0848

-

* W mass peak, top mass peak, and helicity angle

2000 2500 3000 3500
dijet/tt invariant mass M (GeV)

1500
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4000

do/dM (fb/100 GeV)

10°

104
1000k
100k

10¢

two tops: background down by 20,000

=04
g, = 0.006

1500

2000 2500 3000 3500 4000
dijet/tt invariant mass M (GeV)



Many ML hammers hit the top-tagging nail

Background rejection ¢

104 i

103 4

102 i

>

Hopkins top-tagge

101 4

ParticleNet
TreeNiN
ResNeXt
PFN

CNN
NSub(8)
LBN
NSub(6)
P-CNN
LoLa

EFN
nsub+m
EFP
TopoDNN

0.0 0.1

0.2
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0.3

0.4 05

0.6 0.7

Signal efficiency &g

0.8

arXiv:1902.09914

Factor of 10 better
background rejection
than traditional taggers



Apples-to-apples top-tagging comparison

arXiv:1902.09914

AUC | Acc 1/ep (es = 0.3) #Param
single mean median

025" CNN [16] 0.981 [ 0.930 | 914+14  995+15  975+18 610k

«\3%6 ResNeXt [30] 0.984 | 0.936 | 1122447 1270£28  1286+31 | 1.46M
\

TopoDNN [18] 0.972 | 0.916 295+5 382+ 5 378 £ 8 59k

Multi-body N-subjettiness 6 [24] | 0.979 | 0.922 792+18  798+12 808+13 57k

« Multi-body N-subjettiness 8 [24] | 0.981 | 0.929 | 867+15 918+20  926+18 58k

e TreeNiN [43] 0.982 | 0.933 | 1025411 1202423 1188424 34k

B e P-CNN 0.980 | 0.930 | 732424  845+13  834+14 348Kk

po° ) ParticleNet [47] 0.985 | 0.938 | 1298446 1412445  1393+41 498k

LBN [19] 0.981 [ 0.931 | 836+17  859+£67 96620 705k

N LoLa [22] 0.980 | 0.929 | 722417  768+11  765+11 127k

\"(\eo. 66 Energy Flow Polynomials [21] 0.980 | 0.932 384 1k

.\(\5\9\‘ Energy Flow Network [23] 0.979 | 0.927 | 633+£31  720+£13  726£11 82k

Particle Flow Network [23] 0.982 | 0.932 | 891+18 1063+£21 1052429 82k

* GoaT | 0.985 | 0.939 | 13684140 15494208 35k

00 | ParticleNet-Lite 0.984 0937 1262449 26k

90\006 ) ParticleNet 0.986 0940 1615+93 366k

* Uses same samples

e 800k training, 200k test
* So good, limited by sample size
* GoaT: 200k/1368 = 146 bg events survive

Matthew Schwartz




Particle net uses point cloud approach

* Respects permutation symmetry

Gouskos and Qu: (arXiv:1902.08570)

(other approaches include energy flow polynomials, arxiv:1712.07124)

- \\\ .
e N T

Point cloud
points are intrinsically unordered

primary information:

3D coordinates in the xyz space

Matthew Schwartz

Particle cloud
particles are intrinsically unordered
primary information:

2D coordinates in the n-¢ space \

but also many additional features! | _\,cas EdgeConv

energy/momenta = angular distance metric
charge/particle ID = k-nearest neighbors

track quality/impact parameters/etc.



Background efficiency

10

1072

10°°

CMS top-tagging: DeepAK8 ML algorithm

* Inputs particles/tracks to ResNet archictecture
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ATLAS top-tagging : topoDNN

* inputs topoclusters to deep neural network
e also finds better performance with modern machine learning

L L L B B B R B L LRI
- — DNNtop ATLAS Simulation .
[ BDT top \s =13 TeV i
- Shower Trimmed anti-k, R = 1.0 jets -

Deconstruction In™e| < 2.0
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| -+~ TopoDNN

—
o
w
T T TTTT]
Ll

» HEPTopTagger v1

----- T,4p, M™™ > 60 GeV raw topoclusters

—_
o
n

|

ey TopoDNN 3
e ‘48 DT/DNN |[ high level inputs

Background rejection (1/ €,
T

1lIllIIlIllllllllllllllllllllllllll
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PILEUP REMOVAL



* LHC collides protons in bunches PI Ie u p

e 101 protons/bunch -
* Up to 200 collisions per bunch crossing 1800

@) 1600
OOO 1400
1200
1000

800
600
400

\-h\ T HLI‘\HLLH:

+ (140) pileup
T

Uncorrected
Dijet Mass (cev)

200 40.0% correlated

ol b b b b b b b L]
00 200 400 600 800 1000 1200 1400 1600 1800 2000

Primary Interaction only (Truth)

Pileup removal
algorithm g

* Tracking system can resolve primary collision from secondary ”“pileup” collisions
* Only charged particles can be seen this way

* Can we use machine learning to remove the pileup radiation?

Matthew Schwartz



Pileup removal as regression problem

P

— ~
-~
e
e

Leading vertex charged

Total neutral

Can measure

1. Leading vertex charged particles Leading vertex
2. Pileup charged particles

3. Total neutral particles neutral particles

Matthew Schwartz



Convnets for Pileup Removal

Komiske, Metodiev, Nachman, MDS (arXiv:1707.08600)

Separate observable energy deposits into 3 images

Leading vertex charged
S

Pileup charged

Total neutral

Input to CNN and train

Matthew Schwartz



PileUp Mitigation with Machine Learning (PUMML)

Komiske, Metodiev, Nachman, MDS (arXiv:1707.08600) Traditional approaches
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ATLAS uses conv nets to measure MET (in simulation)

E%ﬁss:_ Zmi+ Z pr + Z pr +

> opr+ ) pi'+ Y pr

ATL-PHYS-PUB-2019-028
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PUPPIML: Graphnet approach

GGNN (100)

x
N

. Jet pr resolution, 100 < pr < 150 GeV

GGNN (100)

GGNN (100)

0.0 ;
N —&— PUPP| + CHS
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3
b~
I
| 0.0a}
o
¢
&
< 0.03
w0
PUPPIML
0.01f
Anti-kt, R=0.7
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Apy

e good stability
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UNSUPERVISED LEARNING



Andreassen, Feige, Frye, MDS
P R (arXiv:1804.09720, 1906.10137)

* unsupervised approach: learn probability distribution for each sample

* represent data as clustering tree A" o
i dP, — 1
e can be used to classify or generate g\ ) =
dpy - - - dpn,
500 GeV /
2.4
/ Probability written as product
2.2 n—1
Py (jet) = [ | NG i Sl 1R kgfﬂ
20 GeV 27 a1 t=1

x P (end|k{™. .. k(™)

/2.2 * each term interpretable

I 1 GeV /

nodes labeled =2.7 -32 _31

with  log,, P() \

P(jet) ~ 10~%

Matthew Schwartz



JUNIPR

Visualizing discrimination power: boosted top or QCD jet?

e nodes labeled with probabilities that jet is
top, given only info at that node ).53

0.51
).5H2
0.50 _~—0.51
_—0.50

0.51 0.50.~0.51

0.5

0.46

0.1 GeV 20 GeV 500 GeV

Matthew Schwartz



JUNIPR

Pythia quark jets
Pythia gluon jets
Q
@ 10000
2 8000
6000 A
4000 |
2000 A

0.0 0.2 0.4

14000

a2 Pythia gluon jets
B 12000 Herwig gluon jets
=1 ]

2 10000

2, 8000

Matthew Schwartz
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What is different?
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angular distribution early on

energy sharing different early on



Andreassen and Nachman
(arXiv:1907.08209)

DCTR: Use relative weights for tuning Reweights 00,1363

distribution back to a.=0.1600

* includes simulation parameters 0 in truth data Multiplicity
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* learns relative weight P(x, 6)/P(x,0,)

* Could be a very efficient way to tune simulations
* orto reweight simulations to data 100
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OmniFold: Unfold events

Uses ML to learn mapping
from generator to detector

Can then unfold any distribution to truth level
Previous unfolding techniques are

observable-by-observable
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Andreassen et al. (arXiv:1911.09107)

Detector-level
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Step 2:
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* Herwig as “truth” + delphes -> “data”

pythia as “sim” + delphes -> “gen”
Truth and omnifold agree

Trying out on actual data is work in progess



Weak supervision

Dery at al. (arXiv:1702.00414)

Supervised learning: pure samples of quark and gluons used
Weak learning: mixed samples of quarks or gluons used
Unsupervised learning: no labels at all, just find patterns
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*  Weak learning works
with three Q/G discriminants

Weakly supervised works as well as

fully supervised



Jet images + weak supervision

MDS, Komiske, Metodiev, Nachman (arXiv:1801.10158)

g Fully supervised

0.87 1
0.86 - Weak supervision
0.85 - (Mixed samples)
0.84 - . .
o * Works as well as with full supervision
2 0.83 - e Labels not needed even for complex inputs
0.82 - =00
0.81 - fr=01
— f1=02
0.80 - —— " CWoLa —— f;=0.3
-=- @ LLP —— f1=04
0-79 1 I I 1 1 I 1 1 1

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
Number of Training Samples

Weak supervision is a breakthrough for particle physics:

Can learn complex discrimination directly from data

Matthew Schwartz
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Adversarial networks

Want to find bump

* Train network on signal and background
* Can sculpt background to look like signal

Louppe, Kagan, Cranmer (arXiv:1611.01046) %2000:' CMS Preliminary
Shimmin et al. (arXiv:1703.03507) (G1800f is=7TeV,L=5.1 "
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ABCDisCo: ML the ABCD method

ABCD method:

e Standard experimental sideband technique
. . . . NN
* Estimate background in region A via N, = 1?/ <
D
* Requires two features f and g to be uncorrelated
* E.g. f =massand g = rapidity
* Single DisCo ) ?‘fle Iﬁ:i
f is fixed (e.g. mass) g is learned f and g are learned
Single DisCo Double DisCo
_5 ‘ Double DisCo c 10° Single DisCo
g ?! Top quark jet tagging '% Scan with ATLAS features
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Works great!



Conclusions

Modern machine learning is growing rapidly
“Traditional” collider physics is dead

INSPIRE search: ("machine learning" or "deep learning" or neural)
and (hep-ex or hep-ph)

Much progress on standard nails 100
* top-tagging g ©
* quark/gluon o
 anomaly detection

1 of papers / y

40

20

1995 2000 2005 2010 2015
Year

State-of-the-art methodology
 New observables (ML top tagging...)
 New data representations (JUNIPR, point clouds ...)
* Improving experimental analyses (Omnifold, ABCDisCo..)

See https://iml-wg.github.io/HEPML-LivingReview for a comprehensive list of papers

Past: apply hammers to nails * Future: learn some new physics

Matthew Sc
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