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Jet-to-parton map

We want to see quarks and gluons: We observe jets:

_~“Parton™.

shower

missing
+

Jet algorithms
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Application: resonance searches

Example: Tiny extra dimensions of space

T Higher harmonics have larger masses
/\/ ‘w;{'ww;x‘o..@:m;m m, = 0 (KK gluon 2)
PN POQEIIIIE®. m, = 0 (KK gluon)
09Q9QUQQQQAQ. M =0 (gluon) dljetS

How do we see a heavy
gluon? jet

Decays to ./;v7 Decays to /;'7
quarks /y gluons M
@




August 27, 2012 Matthew Schwartz

KK gluon searches

jet
Heavy KK gluons from extra /
dimensions . Decays to %7’
/1 jet gluons M
Decays to ;’
quarks /y.
QUITITITIVITITITITILY
.§> 2.0k T
N\ o NS=7TeV, [ Ldr=0.81fb"
. T e Data
jet 0 1g¢ D2
. 10° - q:(1000)
Dijet background g
from the standard model 10° .
is enormous! 10

How else can we find KK gluons?
0—1

—

ATLAS Preliminary
oL L s

significance

1 I 1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1
1000 2000 3000 4000
Reconstructed m, [GeV]



Other decay modes

Look at decays to

Looks like 6 Jets




Problems at high mass

Triply-tagged

sisse . |ttbar candidate!
For heavy KK gluons (> 1000 GeV) Top, W, and bl
tops are boosted e

tt (SM)

do/dM (fb/100 GeV)

|
F o
0.1 -

1500 2000 2500 3000 3500 4000
dijet/tt invariant mass M (GeV)

- Take R large (R=1.0) and you only get 2 jets not 6 NOW It IOOkS Ilke 2 jetS!

 Take R small (R=0.4), end up with too many tiny jets
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Typlcal top jets Moderate boost (P; = 500 GeV)

| top jet with pT=500 GeV |

["top jet with pT=500 GeV | [ top jet with pT=500 GeV |
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Typical top jets Large boost (P = 1500 GeV

[ top jet with pT=1500 GeV |

top jet with pT=1500 GeV |

[ top jet with pT=1500 GeV |
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Jet substructure

Triply-tagged
ttbar candidate!
Top, W, and b!

. e
New concept —

Fat Jet

A jet is not a parton: it has substructure!

Quick history:

M. Seymour : look within a jet (Z. Phys. C62 (1994) 127) (1994)
Butterworth et al : boosted Ws in WW scattering (hep-ph/0201098) (2002)
Butterworth et al : boosted Higgs (arXiv:0802.2470) (2008)

Kaplan et al boosted tops (arXiv:0806.0848) (2008)

2008-today: hundreds of papers
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Top-tagging

1. Find fat jets (R = 1.2)

R
e

]

2. Reverse clustering steps

3. Filter:
» If clustered particle is soft, discard

4. Top jets should have 3 subjets

5. Kinematic subjet cuts
« W mass peak, top mass peak, and helicity angle

Hopkins top-tagger
Kaplan et al. arXiv:0806.0848




KK gluon

do/dM (fb/100 GeV)

Kaplan et al. arXiv:0806.0848

gnal
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KK gluon

Kaplan et al. arXiv:0806.0848

After top-tagging e

10—
4 -
10
Signal
10 gluon KK pb

1000

100

10

do/dM (fb/100 GeV)

1500 2000 2500 3000 3500 4000
dijet/tt invariant mass M (GeV)




Top-tagging In data

CMS, 2011

Top-antitop events

Unboosted Boosted

Triply-tagged
ttbar candidate!
Top, W, and b!
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To p-tagg | ng INn data Summer 2011: 0.8 fo' analyzed

resonances excluded to 1.5 TeV

_q
- OMS,L=5%,Vs=7TeV _ _ Typels2 10 _CMS Preliminary, 886 pb”" atys =7 TeV
8 10 §_ N Observed _§ '8. 3 ! Combmqpe1o1&102 3
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5 Efl e Z(2TeVic) 0=0.06pb 7 N e Toposar, A M st
w - . m cemreraiens Topcolor Z', 1.2% width, Harris et al |
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W boson in top jet

CMS L 5 fb at \J'E = 7 TeV Type 2 hemlspherlelp,l‘:-l 400 GeVic

O 24 =
S »E Prellmlnary =
G 205 mOATA= 80.1+ 3.2 GeV/c?
w0 185 mMC = §1.711.0 GeVic? - ,
5 16E = Atlas version
T 14 * Data E (less efficient algorithm)
) il - -
2 12E tt ]
R (1] = ElW+Jets - ATLAS-CONF-2011-103
8:_ I:INO“-WMJE > T T T T LI B LA I
61 —Datafit 3 G 160 ATLAS Prellmmary
4= MCfit - © 440 - Dala .
2 — -~ ww i
ol L I N R R R m —~
% 20 40 60 80 100 120 140 160 180 200 @ '2 — S
m(W-jet) (GeV/c?) 10 + :
ILdt:O.m '

y

within filtered fat jets

CMS (April, 2012)
arXiv:1204.2488

150 200
Jet Mass [GeV]



BOOSTED HIGGS
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Higgs to bb

How can we measure the Hbb coupling? * <'

« H+ W/Z has enormous W/Z + bb background

« top background is also very large (tt -> WW bb)
« Z -> neutrinos difficult because neutrinos go back to back

and there’s no missing energy

Go to boosted regime!
 Demand pT > 200 GeV for the higgs (at 14 TeV)

« Signal cross section drops to 5%
« WH+jets drops to 0.1%
« Tops no longer a problem
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Boosted Higgs bosons

14 TeV 30 fb-"

Parton level study
B’s not decayed

2 45 \tﬁ
3 4oL SNB =33 —V+jets
= 40 in 112-128Gev v
> vy
8 35 =V+Higgs
2 30
a5k Y G
€ TF [ 4L
2 2
w
15
10 N,
SIS,
5 Y0008
e 4 I e i / z
(b 20 40 60 80 100 120 140 160 180 20

Mass (GeV)

Hadronic W peak
for validation

ATLAS \
Full simulation
S/\B = 3.0 at 30fb-"

'I- 20:" 'I"'I"'I"'I'"l"'I"'I"'I"'I"':
£t ATLAS 3
© 18:_ Simulation
> 16 =
3 1o ;
2 12F 3
g 105 :
8 E
oF E
aF ]
2 JILLFJLJJ&
%2040 60 80 10012014016018020

Higgs mass [GeV/c?]

Not feasible at 8 TeV

Possibly with 14 TeV
data...




N-SUBJETTINESS
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N-subjettiness

Ty = min

Boosted Top Jet, R=0.8

5.5¢

4.5¢

Matthew Schwartz

Zmin{pj ‘N1,...,P; NN}

ni,..,nyN B

Boosted Top Jet, R=0.8
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/ ) \
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N ’ 7/
\\ N //
4.5 ~L_ "
1 1
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n

Finds subjets without fixed jet size
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N-subjettiness

TNE min Zmln{p]n177p]nN}

niy...,MN
jed
2 >

m 0
T~ o

2F
o m
Ty = +
: 2E1 2E2

QCD jet

(all T, small)

Boosted W/Z jet

(small <,, large t,)

T2/ Th

Good discriminant
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Ratios t./t, and t4/t,

Useful for distinguishing boosted W or top jets from QCD jets

65 GeV < mj <95 GeV

—W jets
0.07¢ —— QCD jets|

0 0.2 0.4 0.6 0.8 1

-&2/1:10fje't
2 : 2 2
T ~ my To ~ my o M
2EJ . 2F; 2F5

Relative occurence

145 GeV < mj < 205 GeV
T3/T>

=—Top jets

|| =—=QCD jets

o
o
a

o
o
=

Flexible cut to adjust
signal acceptance vs.
background rejection

2 2 2
. my My m3
E 2F, + 2F, + 2F;




Background mis-tag
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Top-tagging

Herwig 6.5

-
o
-

fuy
o
)

ATLAS
CMS
HEP
JH
NSub
Pruned
TW
Trimmed

0.1 0.2 0.3 0.4 0.5
Signal efficiency

0.7

Matthew Schwartz

Herwig++
10-1 _ :;; ~ =z =
_ o=
o _ ’/”7"
4‘5 _ - ——
@ Rt
g 7
2 on_ S 2
3. | XS — ATLAS
= - /
gy \ — CMsS
8 = — HEP
, X
(@/‘ - - Pruned
10° | -- TW |
- - Trimmed
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Single variable t,/t, works well for top-tagging
« Simulations somewhat inconsistent

Signal efficiency




August 27, 2012 Matthew Schwartz

Atlas data (QCD only)

(March 20, 2012)

© S © S
S E . S - -
S so00f. —e— 2010 oata.IL=3sw" ATLAS © 12000~ +201OData.ILs35pb" ATLAS
@ : . @ r .
3 . — Pythia = 2100001~ ___ pynia
5000/ —
- T2/T) - . T3/T2
L eeeeee e wmmeew +4
4000/ = 8OOO: o -
3 B 6000/ .
3000 - B _ antik R=1.0jets ]
- et e ] - 300 <p, <400 GeV _
2000 -~ 40001\ o ii<2 E
o anti-k, R=1.0 jets ] - N
1000} 300<p, <400GeV Lo B 2000} -
- Ney=1,ly|<2 xl_’i o i
- P B B B B .
o 1.8; E [ 1-8: =
© 1.6 3 w 1.6 =
Q }3— = Q 1.4 i3
2F = = 12F "3
(@] 3 = (@] 3 E
1E E 1E E
= 08E | E = 0.8t 3
0.6 = 0.6 5
045 | | | . - 0.4F- o .
0% 02 04 06 08 1 12 0% %62 04 06 08 i 12
N-subjettiness 1, N-subjettiness t,,
Signal-like <}> QCD-ike Signal-like <> QCD-like

With more data, could be a precision observable.
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Comparison to theOry arXiv:1204.3898

NNNLL Calculation (No Hadronization )

20
Q=0 GV Theory agrees well with pythia for W jets
sk —Q =100 GeV
—Q = 200 GeV
1 do m—Q = 400 GeV 0.0
- q 10 f m—Q = 600 GeV ~T Pythia VS. N3LL/NNLL i
7 onn ——— Q = 1000 GeV 100k Q=0GeV i
5F - (Q = 1000 GeV
S50FTT Q
o . . , . 1 do
0.00 005 0.10 0.5 020 025 030 ; d 1y 20}
o 10f
Pythia (No Hadronisation ) 05}
20 : : : : :
—_—Q =0 GeV 02 B
st — Q= 100GV ] 000 005 010 0.15 020 025 030
— (Q = 200 GeV
1 do = Q = 400 GeV 1
- 10 = Q = 600 GeV
g dTZ/l
— Q = 1000 GeV
. Can 1y for QCD jets be calculated?
N- . . \ :
0 000 005 010 0I5 020 025 030

T2/1



JET GROOMING




2010 pileup
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Jets with pileu 2011 pileup

[GeV] — el ) B

t p—

JATLAS

A EXPERIMENT

Run Number: 153565, Event Nu
Date: 2010-04-24 04:18.53 CEST
Event with 4 Pileup Vertices
in 7 TeV Collisions
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Jets with pileup, 2012 pileup
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N N RV SR T T,

.~
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Jets with plleup 2015 pileup?

Date: 2010-11-08 11:29:31 CET

7 AT LAS Run Number: 168665, Event Number: 57983 |-, E:‘ ) i
e gl

L EXPERIMENT

(This is a heavy ion collision from 2010)
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Jet grooming

Can we remove piluep without destroying the event?

Basic idea: remove soft radiation which is not collinear

Filtering Trimming
(Butterwort et al 2008) (Krohn et al 2008)

* Recluster fat jet

* Recluster fat jet
into R=0.3 subjets

into R=0.3 subjets

* Keep subjets which

» Keep 3 hardest subjets have energy > 5% jet energy

Q0 Boosted Higgs
O Boosted top

Designed for
C/A algorithm

U Parton momentum reconstruction
Q Pileup removal

Designed for

anti-k; algorithm

O All help with jet substructure
O All help with pileup removal

Pruning
(Ellis et al 2008)

* Undo clustering steps

e Cluster 1 with 2 if
+ E,,E, >0.1 (E,*+E))
 orR;,<0.2
» otherwise, drop softer of 1,2

U Jet mass searches
U Qjets

Designed for

»%,
>
Q

<
o &
: <
k; algorithm [REN)
3@
Z
o
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. . . s anti-ke FSR only
Trimming E—
Ea i e

N

|) Make seed jet with anti-kt (Ro large) N

2) Recluster into subjets with kr (Ro small) 00
3) Remove subjets if pt < feur NAnard
4) Kept subjets give trimmed jet

IR

160 180 200

60 80 100 120 140

S15r i <15 15 Jet Mass [GeV]
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' mpmm " - = u = n -
% o o=" o o "mmmm
r | . o .= ]
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An An A

After anti-kt After kt No subjets below
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Trimming

Jet mass dependence

On NPiIeup-Vertices NPV =30
Before trimming After trimming
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Jet mass with grooming

0.161

ATLAS simulation

Z' (1.6 TeV) /QCD dijets

0.145

0.12

Arbitrary units

o
—_—

0.08
0.06
0.04
0.02

QCD jets

III|IIII|IIII|IIII|IIII|IIII|IIII|IIII
ATLAS Preliminary - Simulation

anti-k, LCW jets with R=1.0, 600 < p' < 800 GeV
Nao jet grooming applied Z'— 1 imz=|.6 Te\V)

Mo jet grooming agplied Dijets {POWHEG+Pythia)
Trimmed (f_ =0.05, R =0.3)Z'> tl {m_=1.6 TeV}

cut sub Fa4
Trimmed [fm=0.05, R, ,=0.3) Dijets (POWHEG+Pythia)

Jet mass [GeV]
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by grooming

Top jets
unnaffected by grooming

CMS data (2012)
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JET PROPERTIES
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Jet-parton map

We want to see quarks and gluons: We observe jets:

m

shower

Il missing
energy

Jet algorithms
Reality: this exists

Assumption: this exists
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What is wrong with the jet-parton map?
It treats jets as 4-vectors

« Jets have substructure
» Fat-jet boosted top/higgs searches
« Can be groomed

» Jets have superstructure
« color connections between jets

Can these be

» Electric charge measured?

» Partons have quantum numbers }
* QCD charge (quark or gluon?)



COLOR FLOW
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Color coherence In soft radiation

3 quark color dipoles Gluons act like ends of 2 dipoles

—2 0<% o2 o

Accurate up to 1/N2~10% effects

Destructive interference

~ O 3_-
Color coherence
2k

VAV . orcerng I

-3 Lnnn A A A lnn P SN

Constructive interference

Pythia simulation
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Dipole shower

Dipole showers in its rest frame

N

g ~.

T/\\‘T\ §>

« Boost — string showers in dipole-momentum direction
« Alternative to angular ordering




August 27, 2012 Matthew Schwartz

Signal vs Background in H+W/Z

Signal Background

H — bb
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How do they show up?

xJ | x_)

-
~—

3 77 3

Shower same event
millions of times

6
Higgs: 5 \ /

4 \ /

Amyp = 1

Ay =2 3 ‘
2

Add up E7 in )

each cell:

0
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Signal vs background
Higgs:

Signal (Higgs) Background (QCD)
Color singlet Color connected to beam
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Pull

* Find jets (e.g. anti-k;)
 Construct pull vector (~ dipole moment)
on radiation in jet

. Eq\ri|
=) Tj|etZ| T
7 ET

* Angle between pull vectors measures
color connections
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Can be validated on ttbar

Measure pull

Clean top tag on leptonic
side
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Measured by DO (2011)

40000 | Noise/pileup area
350000 W2 jets —+ Not split jet data smaller towards
30000 S Me other jetl

j”_1_'— Split jets

5000;— Cells are assigned

! WIS PSP B to the nearest jet

%05 1 15 2 25 3
Relative jet pull ¢ of leading pt jet




Ruled out color octet W  meemmm

90

D@, L=5.3 fb™ —~-Data
- Singlet
-==- Octet
M i

I Other
T WH+jets
B Multijets

Neve nt

W is color singlet

W is color octet

MR S ey

0 0.5 1 1.5 2 2.5 3
Minimum relative jet pull 6



JET QUANTUM
NUMBERS
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Jet charge
Can the charge of a jet be measured?

« Could distinguish up-quark jets from down-quark jets
» Could help distinguish up squarks from down squarks

1 S

0

Tl X].
® i

u

« W prime vs Z prime

« Many many uses for characterizing new physics (if seen)
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Long history...

» Late 1970s: do quarks exist?
« Deep-inelastic neutrino-proton or anti-neutrino-proton scattering
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Long history...

» Late 1970s: do quarks exist?
« Deep-inelastic neutrino-proton or anti-neutrino-proton scattering

« Charge of jet is unambiguous



Long history...

Measured the energy-weighted jet charge: / 1 < K would
; 1 - include beam remnants
jet Sciat 1 < k would let one

» Suggested by Feynman and Field (1977) particle dominate

« Early calculations in parton model (no QCD!)

L (b) y, N | 25 by
10} 05
; & e 1.0
Fermilab | ., | + r
ZlO ogp d-qugrk / u-quark oF 08
bata | =t 1 ! 2%
> 06} ' -
(1980) | _i3°| "2 oq
04 04l
|
Q2 0.2l
00 — —

o)
Qu

neutrino = up quark jet anti-neutriho = down quark jet
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Can it work at the LHC?

Measured the energy-weighted jet charge:

=

o R R R

Y08 06 —04 02 0.0 0.2 04 06 0.5
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Distinguishes W " from Z°

Matthew Schwartz

Log-likelihood distribution for 1 TeV resonance,
various «

Distinguishing Wprime vs Zprime
! 7

Nevent = 50
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~
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Ul
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S
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=
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o
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10°
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- Zp, kappa=1.5

Wp, kappa=1
Zp, kappa=1

0
log L (wprime) - log L (zprime)

20 with 30 events

50 with 200 events




2D charges (parton level) ’

Calibrate on standard model

for different pT
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Can also test on top quarks

Measure sum of jet charges from
W decay products

distribution of jet charge for Ws from top pairs

1.4
— kappa = .3
10l — kappa = .6
' — kappa =1
1.0f
0.8}
0.6}
0.4
v 0.2
. . 0.0 * : : :
=2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Top Applications o et chaa,

* Measure hadronic W charge
« Measure top charge
» Measure top polarization
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No LHC data yet



Matthew Schwartz

August 27, 2012

QCD charge: quark or gluon
Backgrounds mostly gluon jets

New physics mostly quark jets

N

19) W)
, 2} ‘\‘
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O S NS5 7
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N S 2
O S 2
D -,
-

Quark and gluon discrimination already used in

Jet calibration

* Db-tagging
Is it possible to distinguish quarks from gluons on an event-by-event basis?
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Jet Shape Varlables Linear radial moment

Charged particle count (girth/track width)

10

I

; T i€jet
PYTHIA
00E
Colors backwards
(sorry)
- L L L R R = ‘” R
N — uark-like ] (@] L :—Quark-lilgie ]
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% 008: i ’J LL Pythia Inclusive Dijets, 15 =7 TeV ] FUII detector £ 0.08F 11‘ i i R
Yo - . . . S LLL .
~ 0.06; f H : : simulation .06 | :
0.04f | | \L Lll . 0.04] J[ L| ]
0.02:{ . - 0.02f |
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2D distributions

Quark Gluon Likelihood: ¢/(q + g)
.4:* .4777 _4:, | 1
- 50 r a - - 9
: ] - . s
3 40 3F .3E ,
- E 6
< '2? 30 o 2K i< .2; 5
N = § - 4
NS 20 50 5o :
i = AF .
10 c ;
3 2 A

:‘ : L 0 Covv b v b v v b v b v gy 1 10\ [T B 0\ L

. * b Charged Count 30 Charged Coufit

Cut here

+ Keep 50% of quark jets
* Reduce gluon jets by a factor of 8 (to 12.5%)
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Data (J UIy 201 2) Data and simulation do not agree

For charged particle multiplicity

X 30_ I | | | | |
\5_::' C ATLAS Preliminary —o— Templatg_ . —~ 0.3# : | : : |
251 . —a— Pythia Dijets . < L
- anti-k, R=0.4, Inl < 0.8 = Pythia y+jet -90 g ATLAS Preliminary —o— 'l!;ert];p.)laltje“ t _:
20F Templates from 2011 Data ; anti-k, R=0.4, Iyl < 0.8 +— Fythia Djets ]

Closed markers Quarks ] —m— Pythia y+jet

L fL dt=4.7t" Vs=7TeV Open marke, = B Templates from 2011 Data
L ] © 0.2 c 4 Closed markers Quarks |
15 — |‘: - fL dt=4.71f",\s=7TeV Open markers Gluons
- i ~ -
- : 0.15¢
10 ——
- T —e— 0.1
5 | =

o 0.05

50 100 150 200 250 300 350
P! [GeV]

Template/MC
QO 4 4
0o O N

Template/MC
QO = -
o O N

P} [GeV]

Quark Gluon
acceptance rejection

Simulation 50% 8

Factor of 2 worse gluon rejection in data than simulation
Data 50% 4

* Future of Q vs G needs better understanding



THE FUTURE OF JETS?
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Jet-to-parton map

We want to see quarks and gluons: We observe jets:

m

shower

Il missing
energy

Jet algorithms
Reality: this exists

Assumption: this exists

Parton-shower is not invertible
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ithms, different results

Different algor

Cacciari, Salam, Soyez JHEP 0804:063 (2008)
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e.g. reconstruct W invariant mass

W — qq

1 = -
- 1200
0.8F T : ey
0.6 i 1000
0.4f L N itk
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0.2 . m :
0 600/
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0.4F " 400~
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Parton shower Is not invertible

. E
Parton shower gives an event

o

o

What is the inverse?

A

¥ o . | | . { { y
¥ R . UES 06 ot 02 0 02 04 0A o0k

A
oAl . . .
. C - . « o
e “--m .
. aEmes
l) . . . - -
\ . - . - - - .
':I’-k . - .- . - - - —
R = or or ?
o . . . - -
'-s[ . - “w
Ay D6 o1 03 0 03 04 04 o8
&v

» Is there a way to have “fuzzier” jets
which account for non-unique inverse?
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One possibility: Qjets [Ete ot al. e 12011914

Instead of choosing smallest d;, choose pair with a probability

P x exp(—ozdij)

Generates ensemble of trees for each event

f — >\ and >\ and }\
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What did we do with the Qjets?

As an example, we can prune them

* Pruning discards radiation in clustering that is soft but not collinear

e
i 1.1 \

Zij = — — < Zeut AR;; > Dyt
pr, + j% |

B e P> 2 pruned
unpruned

JJHI h

0.05

0.04

Other variants filtering or 0.03 | .

trimming work similarly -~ 3 .
0.02 =

L]

Butterworth, Cox, Forshaw Phys.Rev. D65 (2002) 0.01 L E

Krohn, Thaler, Wang JHEP 1002 (2010) 40 145 150 155 160 165 170 175 180 185 190
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Pruned Qjets

Construct 100 trees
from each jet in each event

Apply pruning to each tree

b = min (pT“ij) < 2
o= — — "
Y lpT, + 7| o

ARij > Deut

Histogram resulting masses

Matthew Schwartz

Event with a boosted W boson

1200

- -CAany

_ —— paths around CA
1000

& .lﬂ‘only

—— paths around KT

S J
600
400
zoo'— [ 1

11|||1|l|||| ' N T N T N R

°o 60 80 100 120 140 160 180 200

This is one event
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Distributions become much smoother

Classical anti-k- Pruned Qjets anti-k;

= S
g I 5 0.06¢
.= 0.08- S -
3} i S 0.05¢
3 0,06, 5 004,
2 0.06 7004
S ool S 0.03}
S 0.04] SR
: 0.02

0.02f 001!
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\Jet Mass [GeV] /‘ Jet Mass [GeV]

The same 100 events
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Need fewer events for same precision

For example,

« Take 10 boosted W events (p>500)

« Construct jet mass

* Look at variance of the the mean W-jet mass over many pseudo-experiments

Algorithm Mass uncertainty Relative Luminosity
required

K 3.15 GeV 1.00
Qjets 0:=0 2.20 GeV 0.50
Qjets 0:=0.001 2.04 GeV

Qjets needs half as much luminosity as conventional jet algorithms



arb. unit
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0.8

0.6

0.4

0.2

Matthew Schwartz

Signal vs background

QCD jets (one event)

tllllllllllllllllllll
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Il classical with k.
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- 0=0.01 withk,

pruned jetmass
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is a purely Q-observable
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Volatiity T
(m)

QCD jets are broader than boosted W jets

[ a0WoM {(60<a0M)&&(a0M < 90)} | Ees G077
_ Mean 0.08093
e RMS 0.07891
1200
N
1ooo§ QCD jets
NS
-
800
%
W jets R
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Volatility

10!

102

107

10*

Matthew Schwartz

QCD jets are broader than boosted W jets

o =001
— W-Jets
---- QCD-Jets

Volatility
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W-tagging: cut on volatility

SIC from_TMVA

|IIII|IIII|II

I T T 1

Qjets+n-subjettiness

|
pr—

W tagging (60-100 GeV window)
pruned mass
/Y

«=0.0001
«=0.001

a=0

@=0.0001 & /7,

05 06 0.7
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Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 100 akt m12= 995.577
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Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 10 akt m12= 995.577

3

-
-
2
=

Work in progress, with D. Krohn and D. Kahawala
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Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 1 akt m12= 995.577

3

2

Work in progress, with D. Krohn and D. Kahawala
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70
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30
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Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 0.1 akt m12= 995.577

3r

2

Work in progress, with D. Krohn and D. Kahawala
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Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 0.01 akt m12= 995.577

3r
2

a=0.01

Work in progress, with D. Krohn and D. Kahawala
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Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 0.001 akt m12= 995.577

3
2

a=0.001 ¢

Work in progress, with D. Krohn and D. Kahawala



August 27, 2012

Qjets on dijet events (no pruning)

a=0.001

May help resolve
ambiguities with
overlapping jets

Matthew Schwartz

eta, phi vs frequency, pT, 1TeV scalar, alpha= 0.001 akt m12= 995.577

2
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3

-3k

Work in progress, with D. Krohn and D. Kahawala
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Summary from Lecture 1

strongly coupled at long distances

Jets exist because QCD is weakly coupled at short distances and

Collinear and soft regions dominate cross sections

P é\fq do = e J4Pqp

o) (O‘S 1+2 ) dz

/\/ 2w 1 — 22

Semi-classical approximation “Sudakov factors and splitting-functions” works excellently

Jet algorithms reconstruct parton momenta from jets

Different algorithms Different goals ‘

Cone algorithms Reconstruct parton momenta
Cambrideg/Aachen “ Infrared safe

Kt Insensitive to pileup

Anti-k; Easy to calibrate experimentally

Excellent agreement of theory with data



Summary from Lecture 2

« Jets have substructure
« Top-tagging — CMS data
» Boosted higgs for 14 TeV
* N-subjettiness

Triply-tagged
. |ttbar candidate!
Top, W, and b!

- Jets can be groomed E: I
« Trimming, Pruning and Filtering remove pileup Gunt
* Allow better reconstruction of parton 4-momenta "

Higgs: qq

 Jets are not just 4-vectors ’ P ‘ g H

« They have superstructure ’ Yy T

......
4444444444444444
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Jets and the LHC

* The LHC has much higher energy than any collider ever

* More jets

» Harder (more energetic) jets
* More jet-like (collimated) jets

* LHC experiments can measure jets really well
* Better energy resolution than Tevatron
* Better spatial resolution than Tevatron
 Can identify individual particles!!

Jet physics is entering a Goelden Era
Revolution in the last 4 years

New experimental
techniques

New theoretical
methods

What will the future bring??




