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THE PHYSICS OF JETS




What happens in a collision??

Colliding water droplets — what happens?
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Colliding water droplets — what happens?




What happens in a collision??

Colliding water droplets — what happens?
Produces distribution
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Colliding protons




Colliding protons

SATLASE
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Colliding protons

‘Compact Muon Solenoid

CMS Experiment at LHC, CERN

Data recorded: Thu Aug 26 06:11:00 2010 EDT
Run/Event: 143960 / 15130265

Lumi section: 14

Orbit/Crossing: 3614980 / 281
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Jets and the LHC

* The LHC has much higher energy than any collider ever
* More jets
» Harder (more energetic) jets
* More jet-like (collimated) jets

* LHC experiments can measure jets really well
* Better energy resolution than Tevatron
* Better spatial resolution than Tevatron
 Can identify individual particles!!

Jet physics is entering a Golcen Era
Revolution in the last 4 years

New theoretical

New experimental methods

techniques




BRIEF HISTORY




Nuclear physics begins

Rutherford’s Experiment (1910)
* o particles from 24Po on 0.5 u thick sheet of gold ‘ Q

Radioactive
Source

* o particle speed = 10" m/s

Rutherford concluded:
* Most of the gold foil is empty space
» Mass is concentrated in a hard central nucleus
« Size of nucleus is approximately 3 x10-1* m (very close to correct)

Positively charged nucleus (+z)
[~ 10°14 meter diameter)

<+— ~10'? meters —»
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Electron-positron (e~ P*) scattering

In general, the cross section depends on the momentum transfer g2

electron

o
P2 2
do = dapointF(q )
P4 =Py~ v
A=P2P Form factor ~ scattering potential
electron \Z
electron

/ Flg)=1 ¢ V(T):%
elec.tron pointlike elastic /\/

\ collisions
Pure Coulomb potential — no

/' T ‘ structure




Electron-positron (e P*) scattering

1950s at the Mark Il linear collider at Stanford
- Energies of order 200-500 MeV 1.0 ety

Exponential Model

re=rrm=0.80 x 10 3 cm

0.5 -
F2 |
= 200 MeV
* 300
024 ;3%
- ¢ 500
x 550
R T e
0 4 8 12
Q? (fermi)2
9 1
F(Q)N1+( Tt
0.71 GeV

o V(T):%Q—(OJGe\/)r

Proton has size: r = 10°m
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Higher energy e P* scattering

1960s at Stanford Linear Accelerator
(SLAC)

Proton breaks apart — inelastic ‘

scattering!
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Very high energy e P* scattering

1960s at SLAC a2 = —0.093+-0.005
a4 = 0.001+-0.001

N[ /
._:/‘;*?Q

electron
2.00 ~ =

1.00 - "y il + 2 1,
050+ 1
1 225 T

], <4

. il szl
1 5 10 50 100

Q2 [Proton]
Now F(g?) = constant again!

electron

F2

Hard scattering off of
pointlike weakly interacting constituents in the proton

quarks

What happens to the proton?
Hard to tell -- DIS experiments of the 50s and 60s were fixed-target

experiments
-- not designed to measure the “hadronic” part, just the electron



Intersecting Storage Rings (ISR) at CERN

First hadron (pp) collider From T. Schérner-Sadenius
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» Unexpected rise in the total pp cross section
« Large number of particles produced at high p;
« Consistent with (early) expectations from QCD
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Spear at SLAC N

1

Mark | -- first 4wt detector (1973-1977)

: : _ Measured Sphericity 20
« Confirmed jet models with event shapes  (event shape)
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PETRA at DESY (Hamburg)
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From T. Schorner-Sadenius



THE PHYSICS OF JETS
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Colliding protons
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Colliding protons

®
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Size is




Matb e S
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Special relativity
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Special relativity

G——l

Length contraction

* Longitudinal size of proton is much smaller than transverse size
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Special relativity

Time dialation

» Hadronization occurs well outside of proton radius
« For 100 GeV collision, R;,,4 ~ 100 fm

Length contraction

Longitudinal size of proton is much smaller than transverse size
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Beam remnant

Beam remnant

Jet/\




at short distances
QCD is like QED

* Electrons in, electrons out '/SA ' i
at long distances QCD is a mess 7 OPAL e*e” Dutu event
* Nuclei in, hadrons out — _ ﬁ\
‘ \ CMS
?F \ Heavy ion event
Proton-proton collisions are just right Dijé:tl\g\?ent

intermediate between QED and a mess
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QCD predicts jets

1. Quarks and gluons (partons) are produced at short distance, =—> Production
where QCD is weak

2. As they propagate outward, they radiate more partons __—7 Radiation
3. Atdistances~ Aqcp’' they form uncolored hadrons —_—

Hadrons leave the proton and
do not interact strongly until detected

Hadronization

do =[PDFs] x [production] x [parton shower] x [hadronization]

short distance long distance

« Physics at different length scales can be calculated separately
and then combined
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do =[PDFs] x [production] x [parton shower] x [hadronization]

Hadronization/

_ !
Fragmentation/ o .’.l .o
[} t? ‘J d.

Parton shower/
Jet formation

- Subject of my lectures

| production
(hard process)

* Image F. Krauss
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Factorization

« Partons produced at short distances

6 Jets

« Radiation and hadronization cannot change parton
momentum by much

Short distance physics
imprinted on jets!




JETS FROM
PERTBUATIVE QCD
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Why jets?

,.r,-L Leading order: R=0, Energy = E
y <\:6 Propagator factor: L 1 ! = !

g “(p+q9)? 2p-q E,El—cosf) 2E,E,sin? g
\/ Blows up when E=0 (soft divergence)

Or 6 = 0 (collinear divergence)

R
df dFE
~agsinRIn B Sudakov double

0 0 E \/ logartihms

Rate fo& much greater than

do ~ o
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Collinear limit

No interference

In the collinear limit, cross sections factorize
) e /—\
k(2) - g (2) — (1) (2)
T kT T ko >< M kT
o > > —>

when k¥ <« ki) « B

In the collinear limit, cross sections given by DGLAP splitting functions E,
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Parton shower

Probability of finding a gluon with energy fraction z
and transverse momentum Kk

4 o 1+2%21
dP = — dk2 d
321 1—z k2 17

« Start with the largest scale (k; ~ Q)
* Is there an emission?
* If not, try lower scales.

Parton “evolves” from hard scale to Aqqp



Sudakov factors * &% { o K2 antmas

all+z2?
do=—— dtdz
2nt 1—2 Probablllty of finding a gluon with energy fraction z
Integrate over z and transverse momentum t ~ k7.
1t 3\~
do=P(t)dt=C
*) F 21 t ( Q2 t3 ) Probability of finding a gluon at this t

What is the scale for the hardest gluon?
» Should correspond to scale of the second hardest jet

Sudakov factor A(tg,t) is the probabilty of finding no gluons between t, at t

t+ot
A(to,tJr(St)A(to,t)( 1 / dt’P(t’))A(to,t)P(x)(Sa:A(to,t) ]

A(to,t+5t) ZA(to,t) +5$%A(t07t) o

to
20ug t 3, t
Thus, A(tg,t) =exp (—[ P(t’)dt/) ~ exp{— 3(; (ln2§+§ln§)]

And so, the cross section for the hardest gluon is Sudakov factor

= semi-classical resummation
=A(Q,t)P(t)dt~e

A(to,t) = —P(t)A(to, t)

2o ln2i dt of the leading Sudakov logarithm

t




Parton shower

* Probability of emission at some t Probability that hardest emission is at t
_ _ Lt 3 _2esp2t
do=P(t)dt= OFﬂ;( @‘l‘§> do=A(Q,1)P(t)dt~e =
H_I

Leading log resummation
« Agrees with cross section for hardest parton in QCD

including leading log resummation k:% (1 — ) i d;%% _ %
« Formally correct at this order for many scale choices
do~e 23a“812kT dk2 do e~ 55 07 9d0 do~e 23&“812%%
Aﬁé&j * f '} v * M t = (pg + py)*
* (angle) (invariant mass)

(transverse momentum)

« Common scale choices motivated by soft physics
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Parton shower

« Semi-classical model which agrees with perturbative QCD
in collinear limit at leading-logartihmic level

dO- - 6_ f deP DGLAP
~ 6_a1n2 (Z_;) as 1+2 dz splitting functions
2 1 — 22

Leading log re!ummation . et :« . s,
R ‘.' rhiist
- Formally correct at this order for many scale choices =%, :,1 SR N, ”
~ SN A EE I N
« Common scale choices £ Vel 35 [ ge V=

motivated by soft physics
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Soft limit

* In soft limit (large distance limit), field from + and — charges cancel
» Coherent destructive interferece
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Soft limit
: Gluons act like ends of 2 dipoles
3 quark color dipoles
)

—8 =0 <% o2 o

Accurate up to 1/N2~10% effects

Destructive interference

~ O 3_-
Color coherence
2k

VN o orciering IR

-3 Lnnn A A A lnn P SN

Constructive interference

Pythia simulation
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Dipole shower

Dipole showers in its rest frame

N

g ~.

T/\\‘T\ §>

« Boost — string showers in dipole-momentum direction
« Alternative to angular ordering




Parton shower summary

« Semi-classical model which agrees with perturbative QCD
in collinear limit at leading-logartihmic level

do = e 1 IPdP,
o et A
\ ) 1
Y
Suadkov factor
(leading log resummation)

« Formally correct at leading log in the collinear limit

Herwig uses an angle ordered shower  Pythia uses a k; ordered dipole shower

« Both incorporate color coherence
» Neither gets soft limit exactly right
« Parton showers give amazingly accurate simulations of complicated final states



JET ALGORITHMS
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Jet-parton-map

We want to see quarks and gluons: We observe jets:

m

shower

SSl missing
energy

How can we invert ?

!

* Find jet momenta
« Set quark momenta = jet momenta



Jet algorithms

« Construct jet 4-momentum from observed particle 4-momenta

Desirable properties )
Good match between jet and parton momenta c ally simo)

" : : onceptually simple
Insensitive .to hadronlz_atlon | . Difficulties with infrared
Calculable in pertubative QCD = infrared safe safety
Experiment friendly >‘

Cone algorithms

« Easy to calibrate lterative algorithms
* Insensitive to pileup - Popular
e Fast Efficient
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Sterman-Weinberg jets (1977)
.
e*e to 2 or 3 jets

3 jets if: E, > ¢ B
* Angles greater than o
« Energies greater than ¢ / .ﬂ

E,>¢E
E;>¢E

N

total
total

o m Would blow up if
P + We just asked for cones
" /\/(no energy restriction)

O2jet = 00 [1—% (lnélne+ln5-§+...)]

« This jet definition is infrared safe (finite in perturbation theory)
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Cone jets

Generalizations to hadron colliders

 Where are the cones centered

» Seeded cones, Fixed cones, Midpoints
* |Is it still infrared safe

 Maybe, maybe not. Does it matter?

Processing || Progressive L L
Finding cones Removal Split-Merge Split=Drop
: GetJet
Seeded, Fixed (FC) CellJet
: JetClu (CDF)T
Seeded, Iterative (IC) CMS Cone ATLAS cone
Seeded, It. + Midpoints CDF MidPoint PxCone
(1Cmp) DO Run Il cone
Seedless (SC) SISCone

G. Salam
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lterative jet algorithms

« Start with input 4-vectors ‘ °
* e.g. stable particles, topoclusters,
calorimiter cells, etc. ‘

 Calculate the pairwise distances

Rij = \/(0: = 02 + (1 — 1)? O
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lterative jet algorithms
« Start with input 4-vectors f~/\

* e.g. stable particles, topoclusters, 0.3
calorimiter cells, etc. 1.2 ‘

 Calculate the pairwise distances

Rij = \/(9z' —03)% + (i — n)?

» Merge the two closest particles

1.1
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lterative jet algorithms

« Start with input 4-vectors ‘/\\

* e.g. stable particles, topoclusters,
calorimiter cells, etc. ‘
¢ 1.8
 Calculate the pairwise distances
1.1
Rij = \/(Qz' = 0;)% 4+ (n; —n;)? ‘

» Merge the two closest particles
» Repeat until no two particles are closer than R
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lterative jet algorithms

« Start with input 4-vectors
* e.g. stable particles, topoclusters,
calorimiter cells, etc.

 Calculate the pairwise distance

1.0
Rij = \/(Qz' = 0;)% + (i — ;) ‘

» Merge the two closest particles /
» Repeat until no two particles are closer than R

Two R=1.0 Jets




Different distance measures

Cambride/Aachen algorithm

Ri;\’
dij = RO

» clusters closest radiation first

Inversion
of Pythia shower

Inversion
of Herwig shower

kK, algorithm

» clusters hard collinear radiation first

anti k; algorithm
2
R..
dij = min(pz, pr; ( ”)
) T Tj) RO

» Clusters farthest first * Produces round jets
* No inverse parton-shower interpretation « Almost exclusively used

by ATLAS and CMS
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J et a I g O rith I I lS Cacciari, Salam, Soyez JHEP 0804:063 (2008)
Cambridge/Aachen + Based on angles
» Good for QCD theory

* popular at Tevatron
« Closer to cones
* Non-compact regions — hard to calibrate

* Infrared safe cone algorithm *  Very round jets
* Not cones at all * No parton shower interpretation
*  Great for calibration
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What R Is best?

Goal: reconstruct parton momentum in Monte Carlo

* Include all final state radiation (FSR) « Include little initial state radiation

Bigger R * Include little pileup
Smaller R

Jet p; versus parton p;
From aSSXiv:0712.3014

Tevatron |
quark jets

o0 | P=50GeV 7
R independent

+(Opy)y; + (OpyE [GeV’]

P
pert

Underlying event (ISR,
proton remnants)
In practice
« R~0.4-0.7 works best

* Must optimize for each study

(py)

S5 06 07 08 09 1 1.1
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Resonance peak various R

R=0.3
aq, M =100 GeV
0.08 ————————1————1———
SISCone, R=0.3, f=0.75 .
0.06 - Qo4 = 24.0 GeV |
0.04 i

1/N dn/dbin / 2

0.02

Y0€1°0180:AIXIE

O L P
60 80 100 120
dijet mass [GeV]

from G. Salam
http://www.Ipthe.jussieu.fr/~salam/jet-quality/

Resonance X — dijets
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Resonance peak various R

R=0.3 Resonance X — dijets
qq, M =100 GeV _
0.08 —r . | v v 1. | 1t 1 1t | 1t T 1 ® lit_
SISCone, R=0.3, f=0.75 |%
w g
ol 0.06 F Qf=o_24 = 240 GeV _g
= |2
O
2 0.04 | -
c
©
<
— 0.02 -
O I I I —_—
60 80 100 120 140 jet

dijet mass [GeV]

from G. Salam
http://www.Ipthe.jussieu.fr/~salam/jet-quality/
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Resonance peak various R

R=0.4
aq, M =100 GeV
0.08"'|lll|lll||||
SISCone, R=0.4, f=0.75 .
~ 0.06 L Qg o4 = 22.5 GeV |
=
o]
S 0.04 | .
C
©
<
— 0.02
0

¥0€1°0180:AIXIE

60 80 100 120
dijet mass [GeV]

from G. Salam
http://www.Ipthe.jussieu.fr/~salam/jet-quality/

140

Matthew Schwartz

Resonance X — dijets

jet

jet
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Resonance peak various R

R=0.5 Resonance X — dijets
qq, M =100 GeV _
0.08 T, jet
SISCone, R=0.5, f=0.75 %
w 5
o 0.06 Qf=o_24=22.6 GeV —é
= |2
O
L2 0.04 - .
c
©
<
— 0.02 .
0 1 1 1 1 1 1
60 80 100 120 140 jet

dijet mass [GeV]

from G. Salam
http://www.Ipthe.jussieu.fr/~salam/jet-quality/
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Resonance peak various R

R =20.0
qq, M =100 GeV

0.08

0.06

0.04 -

1/N dn/dbin / 2

0.02 -

0
60

from G. Salam

SISCone, R=0.6, f=0.75 .

QL 04 = 23.8 GeV

¥0€1'0180:AIXIE

80 100 120 140
dijet mass [GeV]

http://www.Ipthe.jussieu.fr/~salam/jet-quality/

Resonance X — dijets

jet

jet
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Resonance peak various R

¥0€1°0180:AIXIE

R=0.7
qq, M =100 GeV
008 ———m————1—+—+7+—
SISCone, R=0.7, f=0.75 |
N 006 | Q¥i024=25.1 GeV |
<
o]
9 0.04 - -
[
©
<
— 0.02 -
O L

60 80 100

dijet mass [GeV]

from G. Salam
http://www.Ipthe.jussieu.fr/~salam/jet-quality/

120

140

Resonance X — dijets

jet

jet
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Resonance peak various R

R=0.8

Resonance X — dijets
qq, M =100 GeV

0.08 [, jet

SISCone, R=0.8, f=0.75 |% D
w g

~ 0.06 F Qf=0_24=26.8 GeV —é

c |8

o]

D 0.04 | -

C

©

<

— 0.02

0 —_— \__//
60 80 100 120 140 jet

dijet mass [GeV]

from G. Salam
http://www.Ipthe.jussieu.fr/~salam/jet-quality/
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Resonance peak various R

R=0.9
aq, M =100 GeV
0.08 —— 11—
SISCone, R=0.9, f=0.75 |
W
~ 0.06 - Qf=o_24=28.8 GeV .
=
o]
D 0.04 + -
c
©
<
— 0.02
O '

60 80 100 120
dijet mass [GeV]

from G. Salam
http://www.Ipthe.jussieu.fr/~salam/jet-quality/

Y0E€1'0180:AIXIE

140

Resonance X — dijets

jet
ol

jet
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Resonance peak various R

R=1.0
aq, M =100 GeV
0.08 T,

SISCone, R=1.0, f=0.75 :—{
~ 0.06 L Qo4 = 31.9 GeV _§
E I
0
D 0.04 F -
c
©
<
— 0.02 F

O rel T T B T

60 80 100 120 140
dijet mass [GeV]

from G. Salam
http://www.Ipthe.jussieu.fr/~salam/jet-quality/

Resonance X — dijets

jet
ol

jet
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Resonance peak various R

R=1.1
qq, M =100 GeV
0.08 ——————————————1———
SISCone, R=1.1, f=0.75 |
005 | Qtozs =347 GeV |
0.04 _

1/N dn/dbin / 2

60 80 100 120
dijet mass [GeV]

from G. Salam
http://www.Ipthe.jussieu.fr/~salam/jet-quality/

0.02

70€1°0180:AIX e

140

Resonance X — dijets

jet

0

jet
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Resonance peak various R

R=1.2
aq, M =100 GeV
0.08 ——— 11—
SISCone, R=1.2, f=0.75 .
o 006 B Q}’io-24=37.9 GeV ]
=
o]
9 0.04 | -
c
©
<
— 0.02 | -
0

60 80 100 120
dijet mass [GeV]

from G. Salam
http://www.Ipthe.jussieu.fr/~salam/jet-quality/

70€1°0180:AIX B

140

Resonance X — dijets

jet

4N

jet
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Resonance peak various R

R=1.3

Resonance X — dijets
qq, M =100 GeV

0.08 —————T—————, jet

SISCone, R=1.3, {=0.75 |2
w 2

ol 006 | Qf=0_24=42.3 GeV _g

= 2

£

3 0.04 |+ -

c

©

<

— 0.02 -

60 80 100 120 140

jet
dijet mass [GeV]

from G. Salam
http://www.Ipthe.jussieu.fr/~salam/jet-quality/
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DATA
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RHIC, Hera and Tevatron

. Excellent agreement 0lL inclusive jet production _fastNLO_

between NLO theory | ’ {1 in hadron-induced processes
and data (10% level) T - 1
S=

¢ Hi 150<Q’ < 200 GeV*

300 GeV " Hi mo:Q’: 300 GeV*
(x100) 4 Hi 00<Q’ < 800 GeV*
v H1 600 < OF < 3000 GeV*

s =318 GeV DIS czms m<ci< s

lllllllmsls:zooeev
* + STAR 02<ll<08 pp
T

K
* Using same PDF set (CTEQ6.1M) 192}

and same
MHQ_(X:@ 4 ZEUS 500 <QF < 1000 GeV®
¢ ZEUS 1000 < QF < 2000 GeV®

C‘58 (mZ) — 0118 ¢ ZEUS 2000 <Q° <5000 GeV*

[ Vs =546 GeV (x16)
B o CDF 01<ll<07 N
g 0B HERA . F Vs =630 GeV t||||||| | ] PP bar
I * ZEUS + DO W<05

i : 7 o
* H1 : - s = 1800 GeV 2
» HERA combination - ?%F gé:m:&g e
1 i + DO 05<lyl<10

data / theory
=

0.2

Vs = 1960 GeV
1 F 0 COF cone ' (x1)
015 - - s COF k,
- " all pQCD calculations using NLOJET++ with fastNLO:
| == QCD [ o M,)=0.118 | CTEQ6.IMPDFs | =W =Py
01 - a(M,) = 0.118 = 0.003 _ NLO plus non-perturbative corrections | pp, pp: incl. threshold corrsctions (2-loop)
| C-Glasmlan 1 [ ol 1 1 ||1||||2 1 1 |||||||3
10 100 10 10 10

H=Qor Bf! (GeV) pr (GeVic)



LHC data: dijet invariant mass

Atlas dijet invariant mass (anti-k; R=0.4)

— 10pg | | | L L L L BN BB =
% — —~+Data Vs =8 TeV, [Ldt=>5.8 fb” ]
_;3 [ ]Pythia 8 \s =8 TeV i
8 Scaled to 5.8 fb™: . ]
= 1 —~+ Data V\s=7TeV, det=4.8fb _
"~ B [JPythia6 Vs =7 TeV 3
_g" L —h— .
= —H == :
© i —— —f= i
107 _?_ _+_ —

- ATLAS Preliminary =T= I 5

- anti-k, jets, R=0.4 _1' + I + =

- y*<1.5lyl<2.8 |-

10-2 L v v by v b v v b v by b by ] i P

3000 4000



Tri-jet invariant mass

> E I I I | I I I | I I I E
8 - ATLASPreliminary [Jtt .
- B Single Top 7

S T f Ldt=4.7fo"Ns=7 TeV [V (V) +jets ]
~ 10%= - iy =
(2 - MC Stat Error E
- - L (m,m_) = (400,1) GeV -
q) — t X1 ]
Lﬁ B ® Data 2011 .
10¢ E

L3 E

: 2

— ?

- 7

- %

10™ ?

200 400 600

O III|



Multijets

Multijet data
Agrees very well
with theory

10

s15
a

S
=205

R=0.4, _[ L dt=2.4 pb™”

—e— Data (Js=7 TeV)+syst.

-------- ALPGEN+HERWIG AUET1x1.11
-------- PYTHIA AMBT1x0.65

— — ALPGEN+PYTHIA MC09’ x1.22

—1— SHERPAK1.06 | |

Inclusive Jet Multiplicity

do/d P, [pb/GeV]

— — —
2 2 9

—_
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Summary

strongly coupled at long distances

Jets exist because QCD is weakly coupled at short distances and

Collinear and soft regions dominate cross sections

P é\fq do = e J4Pqp

o) (O‘S 1+2 ) dz

/\/ 2w 1 — 22

Semi-classical approximation “Sudakov factors and splitting-functions” works excellently

Jet algorithms reconstruct parton momenta from jets

Different algorithms Different goals ‘

Cone algorithms Reconstruct parton momenta
Cambrideg/Aachen “ Infrared safe

Kt Insensitive to pileup

Anti-k; Easy to calibrate experimentally

Excellent agreement of theory with data



