JET SUBSTRUCTURE AND THE
STANDARD MODEL

ATLAS Standard Model Workshop

September 19, 2013

Matthew Schwartz
Harvard University



Two motivations

The July 5% problem Appreciating the
The Standard Model

07-04-12: find the Higgs boson _
07-05-12: measure everything about it More than just 27 numbers
mm-dd-yy: find a new particle Qualitatively new phenomena

mm-(dd+1)-yy: measure everything about it

Electric @
charge
Color
charge

Underlying

event
Rapidity
% -

Requires precision measurements
Requires validation on Standard Model Requires precision calculations

Quarks vs Color

Gluons connections




Jet substructure

Lots of developments in jet substructure over the past 5 years

« Top-tagging « Jet Charge
« Johns Hopkins Tagger * N-subjettiness
» Top template tagger « Jet cores
« HEP top-tagging « W-tagging
« Jet grooming * Dipolarity
« Filtering * Modified mass drop
* Trimming « Angularities
* Pruning * N-point energy correlators
* Multijet events « Semi-classical clustering
« Pull .
« ISR tagging
* Quarks vs Gluons
* Qjets

e Shower deconstruction

Many methods tested on data.
Impressive agreement with full simulation.
Applications to BSM (e.g. Z' resonance searches)



What is a jet?

Energetic quarks and gluons produced

M Q Farton ™

X shower

Jet algorithms: reconstruct parton momenta
As of 2007: jet=parton

A jet is a 4-vector. Just calibrate it (performance group).



Jets are not just 4-momental!

« Jets have substructure
« Hard subjets
« Jet shapes
« Jets have quantum numbers
* Flavor (up/down/strange/charm/bottom)
« Electric charge
« Color charge (quark or gluon)
« Spin (?)
« Jets have superstructure
« Color connections between jets
« Jets are not partons
« Jets are not collections of hadrons

2007: A jet is a 4-vector. Just calibrate it.
2013: Jets are sophisticated emergent phenomena in the standard model

Lets study them for their own sake!



CASE STUDY:
ELECTRIC CHARGE
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Jet charge
Can the charge of a jet be measured?

« Could distinguish up-quark jets from down-quark jets
» Could help distinguish up squarks from down squarks

~

* X1

« W prime vs Z prime

« Many many uses for characterizing new physics (if seen)
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Distinguishing charge -:.-3.0.5.5
Measure the pr-weighted jet charge' Krohn, Lin. MDS, Waalewijn

Phys.Rev.Lett. 110 (2013) 212001
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Distinguishes W' from Z’

Log-likelihood distribution for 1 TeV resonance,

various «

Nevent = 50

0.14 w ‘ ‘ 9 Distinguishing Wprime vs Zprime
o -0 W’, R = 0.4 e o MC ///

0.12F -0 7 k=04 || 8f| — kappa=1.0 )/

#T e-o W =07 - - kappa=0.5 /

I 7 - - = /

‘ oo 7, k=07 | kappa=1.3 X

o
=
o

T
N

= ¥ e W. k=1 g 6f
: do-° 7 k=1 S ]
£ 0.08} ‘ ’ 5
< k=
s \ "
s’ a
2 g |
— |
< 0.06 ' 3 -7
< 3 -7
Py ' “7 .
& .

N

| )
0.04| 1 =’ *

— o
0.02 ) i
0 .
10’ 10
Nitmher nf aventc
0-00 -30 -20 -10 0 10 20 30 [\
' NS

InL (W)-InL (2)

20 distinction with 30 events

50 discovery with 200 events



September 19, 2013 Matthew Schwartz

Can calibrate with hadronic W's from tops

Distribution of jet charge for Ws from top pairs
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2013: measured in data by ATLAS!

Theory paper
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Dijets

fraction of events

10

06

z
S
T >
e—e pp>ug 04
0.5F e e—o pp > ud|]
\ e—e pp>uu L
Y pp 9 gg e—e other 02
os a. * - pp>gg i
A ‘e e e pp>dgl] F
\ 0.0
. pp = ug |

I
w

Small x: proton mostly gluon

o
N

€3;C

0.1 e
P\ /' p3

_ o pp = g9

p2 /' N\ Pa

0.0

200 400 600 800 1000
parton pT [GeV]

eard

Larger x: quark-gluon dominates

\

Fractions for
each channel
(parton level)

Valence quarks
picked up at large x




Dijets: quarks at Iarge X
Fractions Jet charge

(parton level) - (hadron level)
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Theory paper ATLAS Conference note
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Evidence of valence quarks in PDFs!
Quark charge measured without leptons
-- in pure QCD (dijet) events.



Mean at width are calculable

D!(z,p) Fragmentation function
* Probability that parton q fragments to hadron h with energy fraction x

Ehadron — £BEpathon

« Nonperturbative objects with perturbative evolution equations

Moments of fragmentation functions

1
Dli(v, ) = / dw 2" D} (w, 1),
0 (prob. that emission is within jet)

Splitting functions within jet

Q) = 1t)n > Q)"

(pjzGj jE€jet
\/<Qz> -

Jet function Calculable
(Prob. of getting jet with E and R)

Qhﬁg(’{’a ,LL)

h



Mean and width evolution are calculable
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Krohn, Lin, MDS, Waalewijn
- Moments of charge distribution ApBINEEEHs D0 2100

calculable from moments of fragmentation functions

» Evolution of these moments tests precision QCD

1. Verify dijet charge (2->2 cross sections and PDFs)
2. Observe new form of scaling violation



Contamination

Effect of multiple interactions/pileup not bad
» Tracks from primary interaction vertex part of motivation
* Could be extremely useful tool at high luminosity

W’ vs. 7, 50 events

o—e ['SR only

e—e F[SR+MI4ISR
o—e LSR+MI+ISR+trim
e—o Npileup=10
Npileup=10 +trim

Significance




Jet Charge Summary

* p; weighted jet charge remarkably useful at LHC
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* Uses only tracks

0.2f

* Insensitive to pileup
« Can be used at high luminosity

-1.0 -0.5 0.0 0.5 10 15

* Most information in average and width
(QF) (T%)? = (Qr)* — {(Qx)*)

» Has been validated on W jets from top decays
 Has been tested on dijets
* Quark/Gluon/Flavor content measurable (statistically)
* Unfolded data will show
« Tests precision QCD
* Gluons are at small x, valence quarks at large x
» First measurement of scaling violation in charge moments




OTHER IDEAS IN
JET SUBSTRUCTURE




Qjets: sample multiple interpretations

Ellis,Hornig, Krohn, Roy, MDS
Phys.Rev.Lett. 108 (2012) 182003
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Jet Sampling: Qjets for ambiguous/
overlapping jets

Kahawala, Krohn, MDS o
JHEP 1306 (2013) 006
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Measured Iin data
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Useful for top/W tagging
Useful for H -> bb
Distinguishes overlapping jets

ATLAS-CONF-2013-087

T T T TTT T T IO TT T T T TTTTT]
5_ ATLAS Prellmlnary E
Ldt-363+1.0pb" s=8Tev —* Data

: Dijet Selection, anti- k R=0.7 LC D Pythia Dijets ]
= Z= 0.1,d= m/pT, C/A Pruning Ogtat
o N, =75,a=0.1

Q-jets

10° ]

L A
215m‘m"H“‘“H“‘.‘»‘/ijg;y;;;/m// ,/5,/,./;
o1 0......'-.-9"9 »MW‘% //;;;/E/‘;;g?fffg;/ 7 {4 Z
805m\m\‘HmHmH\m\mr‘%\lhm‘ﬁ
0 02040608 1 1214161.8 2
Volatility

Interesting standard model physics

Jet is not a parton
Jet is not a collection of hadrons!!

Jets are sophisticated emergent phenomena in the standard model

What is the right way to think about jets?
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Pileup removal

willbe ESSENTIAL
for precision QCD at high luminosity

Trimming
Pruning
Filtering

Work well
at NPU =20

Existing methods

Jet area subtraction

Jet shape subtraction
Charged hadron subtraction
Jet vertex fractioning

Areal/Shape
subtraction

Jet

Cleansing

(new method, Krohn, Low MDS, Wang)
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Quark and gluon tagging

See also
Larkoski, Salam and Thaler
arXiv:1305.0007 \

Thaler and van Tilburg €—
arXiv:1011.2268

Single
variables

Pairs of
variables

3,4,5
variables

Gallichio and MDS Phys.Rev.Lett. 107 (2011)

Gallichio and MDS JHEP 1304 (2013) 090

Gluon Efficiency % at 50 GeV 200 GeV
50% Quark Acceptance Particles Tracks Particles Tracks
P8 | H++| P8 |H++| P8 |H++| P8 | H++
2-Point Moment 5=1/5 8.7 1 17.8%| 13.7*| 22.8%|| 83 | 15.9 | 13.2 | 19.6
9.3 | 185 | 14.2 | 229 || 7.6 | 16.2 | 12.3 | 19.4*
9.2 | 186 | 139 | 23.6 || 6.8 | 15.7"| 9.8 | 18.7
9.1 | 19.3 | 146 | 244 || 59" | 16.7 | 8.6 | 19.5
Radial Moment 5=1 (Girth) 10.3 | 20.5 | 16.1 | 24.9 || 11.2 | 189 | 15.3 | 21.9
Angularity a = +1 10.3 | 20.0 | 15.8 | 24.5 || 12.0 | 19.3 | 14.0 | 21.6
Det of Covariance Matrix 11.2 | 21.2 | 181 | 27.0 || 94 | 209 | 13.5 | 24.6
Track Spread: /< p% >/p];_,'rft 16.5 | 25.3 | 16.5 | 25.3 || 9.3 | 20.1 | 9.3 | 20.1
Track Count 17.7 1 264 | 17.7 | 26.4 || 89 | 21.0 | 89 | 21.0
Decluster with k7, AR 15.8 | 24.5 | 20.1 | 284 | 13.9 | 20.1 | 16.9 | 234
Jet m/pr for R=0.3 subjet 13.1 | 256.9 | 16.3 | 27.7 || 11.9 | 24.2 | 14.8 | 26.2
Planar Flow 28.7 | 34.4 | 28.7 | 34.4 || 39.6 | 42.9 | 39.6 | 42.9
Pull Magnitude 37.0 | 39.0 | 32.9 | 35.6 || 30.6 | 30.2 | 29.6 | 30.6
Track Count & Girth 9.9 | 20.1 | 134 | 232 || 7.1 | 17.3 | 7.7° | 187
R=0.3 m/pr & R=0.7 2-Point f=1/5 7.9 | 177 | 1227 22.1 || 5.7 | 144*| 85 | 17.9
1-Subj f=1/2 & R=0.7 2-Point f=1/5 | 85 | 17.3*| 12.9 | 22.1 || 6.0 | 14.6 | 8.6 | 17.7*
Girth & R=0.7 2-Point 5=1/10 12.6 | 21.9 | 12.6 | 21.9%| 9.2 | 180 | 9.2 | 18.0
1-Subj f=1/2 & 3-Subj =1 8.9 | 18.0 | 14.0 | 23.2 || 5.6 | 15.0 | 84 | 184
Best Group of 3 75 | 17.0 | 11.0 | 209 || 4.7 | 14.0 | 6.9 | 16.6
Best Group of 4 7.1 | 16.7 | 10.6 | 20.5 || 4.5 | 13.7 | 6.2 | 16.3
Best Group of 5 6.9 | 16.4 | 104 | 20.0 || 4.3 | 13.3 | 6.1 | 15.9




Quark and Gluon tagging

Hard problem: /, Shapes: Width/girth/2-point function
Two equivalence classes
9 > Counts: # particles/subjets/

Discrimination easier at higher p+

Using all particles works better than just charged tracks

80-90% gluon rejection at 50% quark acceptance
IS realistic

Pythia gives bigger Q/G difference than Herwig
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ATLAS-CONF-2012-138

Data (Sep 201 2) Data and pythia do not agree

For charged particle multiplicity
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measuring Color flows in jets
Signal o Background

H — bb
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Pull

*Find jets (e.g. anti-k;)
*Construct pull vector (~ dipole moment)
on radiation in jet




CDF dijet excess
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Measure color connections distinguishes s from t channel production
Must validate on Standard Model first
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Validate on tops

Measure pull

Clean top tag on leptonic
side



DO ruled out color octet W in top decays

Andy Haas and Yvonne Peters, hep-ex:1101.0648
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Conclusions

The July 5t problem

We want to have tools ready and validated
_— before new physics is discovered
* e.g.jetcharge

e color connections
Appreciating the « QVG
The Standard Model ...

\

2007: Ajet is a 4-vector. Just calibrate it.
2013: Jets are sophisticated emergent phenomena in the standard model

Lets study them for their own sake!

Examples:
jet charge
» shows evidence for quarks and gluons in proton, at different x
 Mean charge scale-independent to leading order
calculable scaling violation

Qjets/volatility
* Re-evaluate what a jet is.
« Wide open field, theoretically and experimentally



QUESTIONS FROM
ATLAS
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Scale uncertainties

- Several theorists suggest that factorization and normalization scale
uncertainties on W+b predictions should be estimated by changing the
scales by factors 4 and 14 (instead of the usual 2 and 12 ). This has
become the standard procedure in comparing prediction with past W+b
xsec measurements. Is this still justified?



Scale uncertainties

Why should scale variations predict uncertainties?

o~ as(p)er + a2 () (e fo ln% +co)+ -
$@;\(\/\/ we No dependence on u if known exactly

\}Qéi\‘ \ Ok ¢ Choose u=Q to minimize large logs
o (W~ 2
1) e cans 0~ as(Q)er + a%(Q)es

Suppose ¢, is not known, but c, and , are. How do we estimate c,?
Varying around Q/2 < u < 2Q

o~ as(Q)er + a2 (Q)eiBoln 2
" 22 42 1007

Gives a number of order 1
that appears in the right place where ¢, would in the cross section

Method works well for inclusive
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Scale uncertainties

Method works for inclusive single scale observables
No theory justification for most cross sections at LHC

N-jet production, W+jet production, Higgs+W with jet veto

In these cases, we don’t know what u=Q means

p=Hrp )
1. Guess: 2 2 Pick one and vary by a factor of 2 or 4 or 100
fo=\/Pp T My >
= max{myw, I
M { W Jet} _ oal _\/ﬁ
, = wu=\mw’+pr’
I = ]
; O.Zj [TT1] H=Hn
Differences between &  Spee==s
parameterizations : 0.0 SSes = )
are larger than the ‘?l I <= e e e ]
individual variations & -02F B === e S e e e
-04+ 1
50‘ - ‘100‘ - ‘150‘ ‘200 | ‘250‘ - 300
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Becher, Lorentzen and MDS, Phys.Rev. D 86 (2012)

In some cases, we know the

origin of the different scales Individual variation show extrema
s (natural w,rg, Wt Usore SCalES, like Q)
~e 1.6
14N
=] 12 - p— =
8\ 1.0
ZS 0.8
Hard
scale B Pr 0.6 HARD Individual scale sensitivities
04 (LHC 7 TeV)

0.5 1.0 1.5 2.0

\ Hlpr
When put together uy,=We=Uson=t gives NLO
1.6 NLO (s =44,)
50 GeV
1.4 100 Ge V.
12~

~ out of jet energy 0 Gey

\/’

éb 2 10
High p; Al Tos
W boson 0.6 Fixed—order scale sensitivity
04 (LHC 7 TeV)
0.5 1.0 1.5 2.0
ulpr

No natural u at NLO (or NNNNLO). Cannot set all scales equal.
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W + JET at the LHC

f Theory vs. ATLAS data
05 W'+ W~ (LHC, 7 TeV, 31 pb™")

: NLO f
R —

H\,\ S ,
~ N3LL+NLO |

- PDF uncertainties

—
D
~—

0 —ONLO

-0.5+

® T ®

l W boson

250 300

Becher, Lorentzen, and MDS, (2010, 2011, 2012, 2013 ...)

Public code (PeTeR)
for high-p; W/Z




Scale setting

My recommendation:

Compare different parameterizations, including all relevant
scales, rather than varying each by 2 or 4



