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Modern Machine Learning for Particle Physics

Traditional approach

Think about physics

v

Derive some observables

g Run simulations <

U

Combine best variables
 Boosted Decision Trees
e Neural Networks

U

Final multivariate discriminant

Modern machine learning

Don’t think about physics

Matthew Schwartz Q

Test on data

Computer learns discrimination




Convolutional Neural Networks
for quark/gluon jet discrimination

Matthew Schwartz

Three input layers

Red = energy of charged particles
Green = energy of neutral particles
Blue = number of charged particles

Komiske, Metodiev, MDS (arXiv:1612.01551)

NN inputs
preprocess
>
e Center
* Crop
e Normalize
* Zero

* Standardize



CNN architecture

Komiske, Metodiev, MDS (arXiv:1612.01551)

convolutional layer dense layer
L B quark jet
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e Convolution layers
e 32X%X32(image) P 8X8=24x4 D2x%x2 =21

* Final layer is densely connected to all final filters

* Qutput nodes connected to all notes in final hidden layer
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Quark/Gluon CNN results

Komiske, Metodiev, MDS (arXiv:1612.01551)
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— BDT of 5 jet obs.
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—— Deep CNN grayscale

BDT of top 5|variables

=--~ Single variables
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Quark Jet Efficiency

Works really well — especially considering we don’t put in any physics!
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Extracted

LHC data on quark and gluon jets

ATLAS (arXiv:1405.6583)
ATLAS (ATLAS-CONF-2016-034)
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Training Q/G discriminants on data

* Don’t have samples of pure quark and gluon jets in data

e Do we need them? 60% quarks
\ \ N
100% Quarks | ; -

100% Gluons | : 80% gluons

Bl L L L I L L L I L L L 1 L L L L 1 L . . 1 L L L 1 L L L 1 L L L 1
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Q(x) = 2 f1(x) — f5(x) Sample 1: f; (x) = 0.6 Q(x) + 0.4 G(x)
G(x) =-0.5 f1(x) +1.5 f,(x) Sample 2: f5(x) = 0.2 Q(x) + 0.8 G(x)

* Any two independent samples will do, in principle
* Inversion requires high statistics, impossible for multidimensional inputs

Weak supervision: don’t try to unmix samples, just learn discrimination

Cohen, Freytsis, Ostdiek (arXiv:1706.09451)

Matthew Schwartz Metodiev, Nachman, Thaler (arXiv:1708.02949)




Jet images + weak supervision

MDS, Komiske, Metodiev, Nachman (arXiv:1801.10158)
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Learning from mixed samples without labels as good learning from pure samples
Labels not needed even for complex inputs

Matthew Schwartz



Pileup removal as regression problem
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Leading vertex charged

Total neutral

Can measure

1. Leading vertex charged particles Leading vertex
2. Pileup charged particles

3. Total neutral particles neutral particles
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CNNs for Pileup Removal

Komiske, Metodiev, Nachman, MDS (arXiv:1707.08600)

Separate observable energy deposits into 3 images

Leading vertex charged
S

Pileup charged

Total neutral

Input to CNN and train
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PileUp Mitigation with Machine Learning (PUMML)

Komiske, Metodiev, Nachman, MDS (arXiv:1707.08600)

With 140
piluep events

* Excellent leading / . ¥
vertex (truth) reconstruction \ /\' *.

* Excellent observable reconstruction * Excellent stability for variable piluep #
1.00 1
Truth — oge e, I
» | l. ‘ﬂg.ll.l Bun I 2
£ w. Piewp = 0.98 EEpegugar LT L LT T S e
D Sefxiber 2 (L o® ot I..l-. n
_. [ PRI :_é 0.96 4 1 ....a Pang 0" o o L ™) .I' anug ..
[ ) oL S l - ®» * ° ® l s “m
.E c | ..... - . & - - =
5 ) < ol o **el”s oo, %,
E . ) .‘—5 0.94 l ® o > I o
5| | With 140 z ! olte®
g piluep events S 0921 | L
- ®
A + 2 1 B PUMML trained on NPU=20 | © ..
= < 0.901 I ®  PUMML trained on NPU=140 | R
. = 1 s PUPPI I
0.88 - 1 e SoftKiller I
0 20 &0 a0 20 100 — v - . 2 X
ot Mass [G6) 0 25 50 75 " Umo 125 150 175

Matthew Schwartz

11



Other ML applications

Check out ML-for-Jets conference @ Fermilab (Nov 14-16, 2018):
https://indico.cern.ch/event/745718/timetable

Model-independent BSM searches

Collis, Howe, Nachman (arXiv:1805.02664)

bottleneck

Heimel et al. (arXiv:1808.08979) ) \‘

Farina, Nakai, Shih (arXiv:1808.08992)

Jet charge | Fraser, MDS (arXiv:1803.08066)

Strange quark tagging | Nakai, Shih, Thomas (in prep.)

Jet representations as unordered sets. _

Particle Clouds | Gouskos, Qu (inprep.)
* Energy flow networks
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Andreassen, Feige, Frye, MDS. (arXiv:1804.09720)

autoencoder

Adversarial networks

Louppe, Kagan, Cranmer (arXiv:1611.01046)
Shimmin et al. (arXiv:1703.03507)

* Decorrelates NN
output from mass
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Generative adversarial networks (GANs)

Oliveira, Paganini, Nachman. (arXiv:1707.08966)

Phase space sampling

Bothmann, del Debbio (arXiv:1808.07802)

Klimek, Perelstein (arXiv:1810.11509)
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Conclusions

* Machine learning is a rapidly growing, exciting area of high energy physics

* Early successes
* Discrimination:
e Quark vs Gluon, Boosted Tops, W’s, jet charge
e Data driven discrimination
* Weak supervision: do not need labeled samples
* Bump hunting
* Train on sidebands, look for anomalies
* Efficiency improvements
* CaloGAN, PS generators: simulate in microseconds

* Future
* More testing on data
* Learning physics: can we learn something we didn’t already know?
* Symbolic ML: can it do QFT?
* Killer ap for reinforcement learning in HEP?
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