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Modern	Machine	Learning	for	Particle	Physics

Test	on	data

Final	multivariate	discriminant

Combine	best	variables
• Boosted	Decision	Trees
• Neural	Networks

Run	simulations

Derive	some	observables

Think	about	physics

Traditional	approach Modern	machine	learning

Don’t	think	about	physics

Computer	learns	discrimination
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Convolutional	Neural	Networks
for	quark/gluon	jet	discrimination

preprocess

• Center
• Crop	
• Normalize
• Zero
• Standardize

• Red	=	energy	of	charged	particles
• Green	=	energy	of	neutral	particles
• Blue	=	number	of	charged	particles

NN	inputs

3

Three	input	layers	

Komiske,	Metodiev,	MDS	(arXiv:1612.01551)
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CNN	architecture
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Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

charged, neutral and negatively charged particles. To be concrete, in this study we take three

input channels:

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

Each of these observables is evaluated on each image pixel. All channels of the image undergo

the standard pre-processing: the images are normalized such that
P

ij I
(k)
ik = 1, where k

indexes over channel; the zero centering and standardization are done for each pixel in each

– 9 –

• Convolution	layers
• 32	✕ 32	(image)	è 8	✕ 8	è 4	✕ 4		è 2	✕ 2		è 1

• Final	layer	is	densely	connected	to	all	final	filters

• Output	nodes	connected	to	all	notes	in	final	hidden	layer

4

Komiske,	Metodiev,	MDS	(arXiv:1612.01551)



Matthew	SchwartzFigure 5: (top) ROC and (bottom) SIC curves of the FLD and the deep convolutional

network trained on (left) 200GeV and (right) 1000GeV Pythia jet images with and without

color compared to baseline jet observables and a BDT of the five jet observables.

in signal over background discrimination power in a collider physics application, and also

exhibits a nontrivial maximum (at some "q) which gives an unbiased measure of the relative

performance of di↵erent discriminants [6].

The ROC and SIC curves of the jet variables and the deep convolutional network on

200GeV and 1000GeV Pythia jets are shown in Figure 5. The quark jet classificiation

e�ciency at 50% quark jet classification e�ciency for each of the jet variables and the CNN

are listed in Table 1. To combine the jet variables into more sophisticated discriminants, a

boosted decision tree (BDT) is implemented with scikit-learn. The convolutional network

outperforms the traditional variables and matches or exceeds the performance of the BDT of

all of the jet variables. The performance of the networks trained on images with and without

color is shown in Figure 6.
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Deep	grayscale NN	
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Quark/Gluon	CNN	results

Deep	Color	NN	

BDT	of	top	5	variables

Works	really	well	– especially	considering	we	don’t	put	in	any	physics!

Single	variables
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Komiske,	Metodiev,	MDS	(arXiv:1612.01551)
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Figure 5: Means of extracted templates for wtrk (left) and wcalo (right) comparing data (solid line), P����� (dotted
line) and Herwig++ (dashed line). The top plots show the distribution for |⌘ | < 0.8, the bottom plots are for
1.2 < |⌘ | < 2.1. The bottom panel of each plot shows the ratio of the P����� and Herwig++ distributions to the
extracted templates. The last pT bin in all plots includes overflow events.

4.4 Validation

Using the �+2jet and trijet validation samples defined in Section 3 it is possible to check the extracted
templates against purified quark- and gluon-jet data samples. Figure 7 show a comparison of the means of
the template distributions for quarks and gluons as compared with the two samples. The variables ntrk and
wcalo are displayed as examples. Generally the extracted templates and validation samples agree within
15%, with the extracted gluon means being typically 10–15 % higher in the validation sample. The quark
means are well reproduced, except at the lowest pT bins. Note that no attempt is made to correct the
validation samples to 100% light-quark or gluon jet purity. However the purity of these samples is above
90%. therefore di�erences between the the validation and extracted templates can be attributed to other
sources, such as sample dependence, as discussed in Section 5.

4.5 Discrimination Performance

In order to determine which variables are most powerful for quark-gluon discrimination, a likelihood is
created to rank the variables based on the fraction of gluons they reject (gluon rejection) for fixed quark
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LHC	data	on	quark	and	gluon	jets
ATLAS	(arXiv:1405.6583)
ATLAS	(ATLAS-CONF-2016-034)

• Simulations	don’t	agree
with	each	other

• Data	does	not	agree
with	any	simulation

Jet	width

Pythia/Herwig	gluon	jets

Gluon	jets	in	data
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Training	Q/G	discriminants	on	data
• Don’t	have	samples	of	pure	quark	and	gluon	jets	in	data
• Do	we	need	them?

0.0 0.2 0.4 0.6 0.8
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4100%	Quarks

100%	Gluons 80%	gluons

60%	quarks

Sample	1:	f1	(x)	=	0.6	Q(x)	+	0.4	G(x)
Sample	2:	f2(x)	=	0.2	Q(x)	+	0.8	G(x)

Q(x)	=	2	f1(x)	– f2(x)
G(x)	=	-0.5	f1(x)	+1.5	f2(x)

• Any	two	independent	samples	will	do,	in	principle
• Inversion	requires	high	statistics,	impossible	for	multidimensional	inputs

7

Weak	supervision:	don’t	try	to	unmix samples,	just	learn	discrimination
Cohen,	Freytsis,	Ostdiek (arXiv:1706.09451)
Metodiev,	Nachman,	Thaler (arXiv:1708.02949)
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Jet	images	+	weak	supervision

8

• Learning	from	mixed	samples	without	labels	as	good	learning	from	pure	samples
• Labels	not	needed	even	for	complex	inputs

Fully	supervised

Weak	supervision
(Mixed	samples)

Only	
~1%	spread

MDS,	Komiske,	Metodiev,	Nachman (arXiv:1801.10158)
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Pileup Images

Eric M. Metodiev (MIT) PUMML July 19, 2017 12 / 23

Pileup	removal	as	regression	problem

Can	measure
1. Leading	vertex	charged	particles
2. Pileup	charged	particles
3. Total	neutral	particles

Leading	vertex	
neutral	particles?
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CNNs	for	Pileup	Removal
Pileup Images

Eric M. Metodiev (MIT) PUMML July 19, 2017 12 / 23

• Separate	observable	energy	deposits	into	3	images	

Input	to	CNN	and	train

Komiske,	Metodiev,	Nachman,	MDS	(arXiv:1707.08600)

10
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PileUp Mitigation	with	Machine	Learning	(PUMML)

Leading Vertex with Pileup PUMML PUPPI SoftKiller

Figure 3: Depictions of three randomly chosen leading jets. Shown from left to right are

the neutral leading vertex particles, with pileup added, with PUMML applied, with PUPPI

applied, and with SoftKiller applied. From examining these events, it appears that PUMML

has learned an e↵ective pileup mitigation strategy.

• Energy Correlation Functions, ECF(�)
N [41]: Specifically, we consider the logarithm

of the two- and three-point ECFs with � = 4.

Fig. 4 illustrates the distributions of several of these jet observables after applying the

di↵erent pileup subtraction methods. While these plots are standard, they do not give a per-

event indication of performance. A more useful comparison is to show the distributions of the

per-event percent error in reconstructing the true values of the observables, which are shown

in Fig. 5. To numerically explore the event-by-event e↵ectiveness, we can look at the Pearson

linear correlation coe�cient between the true and corrected values or the interquartile range

(IQR) of the percent errors. Table 1 summarizes the event-by-event correlation coe�cients

of the distributions shown in Fig. 4. Table 2 summarizes the IQRs of the distributions shown

in Fig. 5. PUMML outperforms the other pileup mitigation techniques on both of these

metrics, with improvements for jet substructure observables such as the jet mass and the

energy correlation functions.

It is important to verify that PUMML learns a pileup mitigation function which is not

overly sensitive to the NPU distribution of its training sample. Robustness to the NPU on

which it is trained would indicate that PUMML is learning a universal subtraction strategy.
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Truth PUMML

Truth

With	140	
piluep events

PUMML

• Excellent	leading	
vertex	(truth)	reconstruction

With	140	
piluep events

• Excellent	observable	reconstruction • Excellent	stability	for	variable	piluep #

Komiske,	Metodiev,	Nachman,	MDS	(arXiv:1707.08600)

11
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Other	ML	applications
Check	out	ML-for-Jets	conference	@	Fermilab (Nov	14-16,	2018):	
https://indico.cern.ch/event/745718/timetable

• Model-independent	BSM	searches

Farina,	Nakai,	Shih (arXiv:1808.08992)

Collis,	Howe,	Nachman (arXiv:1805.02664)

• Jet	charge

• Strange	quark	tagging Nakai,	Shih,	Thomas	(in	prep.)

Fraser,	MDS	(arXiv:1803.08066)

Heimel et	al.	(arXiv:1808.08979)

autoencoder

bottleneck

• Jet	representations	as	unordered	sets

• Particle	Clouds	
• Energy	flow	networks

Gouskos,	Qu	(in	prep.)

Komiske,	Metodiev,	Thaler (arXiv:1810.05165)

• Interpretable	network	respresentations

Andreassen,	Feige,	Frye,	MDS.	(arXiv:1804.09720)

JUNIPR

• Adversarial	networks

Louppe,	Kagan,	Cranmer	(arXiv:1611.01046)
Shimmin et	al.	(arXiv:1703.03507)

on the jet pT, which shows some small pT-dependent
e↵ects, but no large features. As an alternative
strategy, we trained a network using an adversar-
ial strategy with respect to log(m/pT), which more
closely mimics the approach used in Ref. [9]; the
training succeeded in finding a network with a flat
response in log(m/pT), but the distortion in jet mass
was much more significant. In principle, it is possi-
ble to use the adversary to enforce a two-dimensional
decorrelation, but since the pT-dependence is not se-
vere here, we leave this for future study.
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FIG. 4. Signal e�ciency and background rejection
(1/e�ciency) for varying thresholds on the outputs of
several jet-tagging discriminants: traditional networks
trained to optimize classification, networks trained with
an adversarial strategy to optimize classification while
minimizing impact on jet mass, the unmodified ⌧21, and
the two DDT-modified variables ⌧ 0

21, and ⌧ 00
21. The signal

samples have mZ0 = 100 GeV for this example. Gener-
alization to other masses is shown in Sec. VII.

V. STATISTICAL INTERPRETATION

The ability to discriminate jets due the hadronic
decay of a boosted object from those due to a quark
or gluon is an important feature of a jet substruc-
ture tagging tool, but as discussed above it is not the
only requirement. Due to the necessity of accurately
modeling the background, it is desirable that the jet
tagger avoid distortion of the background distribu-
tion. Simpler background shapes are especially pre-
ferred because they allow for robust estimates that
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FIG. 5. Top left, relationship between jet mass and neu-
ral network output in background events for a network
trained to optimize classification compared to an adver-
sarial network trained to optimize classification while
minimizing dependence on jet mass. Top right, rela-
tionship between jet mass and jet substructure variable
⌧21 and the DDT-modified ⌧ 0

21 and ⌧ 00
21 which attempt

to minimize dependence on jet mass. Bottom left, pro-
file of neural network output versus jet mass for the ad-
versarial trained network with varying jet pT thresholds.
Bottom right, contour plot of neural network output ver-
sus jet mass in background events for the adversarially-
trained network. The signal sample used in training has
mZ0 = 100 GeV; generalization to other masses is shown
in Sec. VII.

are constrained by the sidebands; backgrounds that
can be modeled with fewer parameters and inflec-
tions avoid degeneracy with signal features, such as
a peak.

Fig. 5 shows qualitatively that the adversarial net-
work’s response is not strongly dependent on jet
mass. But a quantitative assessment is more dif-
ficult. Mass-independence is not in itself the goal;
instead, we seek reduced dependence on knowledge
of the background shape and reduced sensitivity to
the systematic uncertainties that tend to dilute the
statistical significance of a discovery.

However, our lack of knowledge of the true back-
ground model in general also makes it non-trivial to
rigorously define and estimate the background un-
certainty. In practice, experimentalists use an as-
sumed functional form, with parameters constrained
by background-dominated sidebands to predict the

5

• Decorrelates NN	
output	from	mass

• Generative	adversarial	networks	(GANs)

Oliveira,	Paganini,	Nachman.	(arXiv:1707.08966)

L E A R N I N G  T H E  ( S I M U L AT E D )  D ATA  D I S T R I B U T I O N

57http://torch.ch/blog/2015/11/13/gan.html

• Phase	space	sampling

Bothmann,	del	Debbio (arXiv:1808.07802)

Klimek,	Perelstein (arXiv:1810.11509)
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Conclusions
• Machine	learning	is	a	rapidly	growing,	exciting	area	of	high	energy	physics

• Early	successes
• Discrimination:	

• Quark	vs	Gluon,	Boosted	Tops,	W’s,	jet	charge
• Data	driven	discrimination

• Weak	supervision:	do	not	need	labeled	samples
• Bump	hunting

• Train	on	sidebands,	look	for	anomalies
• Efficiency	improvements

• CaloGAN,	PS	generators:	simulate	in	microseconds	

• Future
• More	testing	on	data
• Learning	physics:	can	we	learn	something	we	didn’t	already	know?
• Symbolic	ML:	can	it	do	QFT?
• Killer	ap for	reinforcement	learning	in	HEP?


