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Goals of pileup removal

1. Reconstruct kinematic observables
« Easiest pileup removal technique: small R
* Anti-k; R=0.4 standard
« about as small as we can go

2. Reconstruct substructure observables
* Do boosted techniques work at high piluep?
« WantR = 1.0 or larger
« Can we maintain correlations between observables at high pileup
 PU removal should be observable-independent

3. Maintain search reach
« Remove PU from signal and background
 How does PU removal work with jet grooming?
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Measures of success

1. S/B or SIWB
» Appropriate for search reach studies

2. Offset (p;°°" — p;™t) and dispersion/resolution
« zero offset not essential -- can be corrected (as in ATLAS)

3. Pearson linear correlation coefficient
« Standard statistical measure
* Nice properties: constant offset = 100% correlated
» Ideal combination of offset and dispersion.
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Correlation coefficients

Divorce rate in Maine
VS

m Divorce rate in Maine
m Per capita consumption of margarine (US)
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Area subtraction

Estimate amount of pileup contamination p in an event from control regions
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Use to correction jet 4-momentum
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Works great on data

Use it to correct jet shapes (e.g. mass)
[Soyez, Salam, Kim, Dutta, Cacciari; arxiv:1211.2811]
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1. Charged Hadron Subtraction
 Used by CMS (at least). Simply drop charged particles not from primary vertex

« Since ~65% of particles are charged, this works well.
« At very large pileup, the other 35% can really hurt



Dljet Mass
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 Used by CMS (at least). Simply drop charged particles not forme firterery vertex
« Since ~65% of particles are charged, this works well.
« At very large pileup, the other 35% can really hurt

2. Jet vertex fraction = fraction of charged energy coming from pileup vertex
« Cutting on JVF cleans event sample
» Also does not scale well at large pileup

Can we do better?



Cleansing

We want to correct each jet in an observable-independent way
» Important for multivariate analysis
* Theory-independent

We want to combine tracking and calorimeter information optimally

Two simple insights

1. Correcting subjets allows for observable-independence

2. Charged/neutral ratio is less variable in pileup than in jets.
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Use subjets

« Natural infrared safe constituents are subjets
« Find jets, then recluster at smaller R.
« Can drop some soft subjets (e.g. filtering, trimming, pruning)

A A

Let's try to correct each subjet:

» Observable independent

« Same correction should reproduce most infrared-safe observables
« Jet4-momentum
« Jet shapes (mass, n-subjettiness, moments)



Inputs to cleansing

Let us assume we can measure

tot
Py =total momentumin a subjet (charge+neutral)
p%LV = total charged energy in subjet coming from leading vertex

pg,PU = total charged energy in subjet coming from PU vertices — 7

Goal: combine these to get

pLV= 4-momentum of subijet, leadi rt I C,PU
y jet, leading vertex only ~splV Py
A A
[ N\ [ ).
po VAN \ 1V e Neutral
NV

Charged — / .\'\.X/ \
\ ] . \j
Y

tot
Py




1. Neutral proportional to charged (NpC)

energy in charged particles 2

Assume ~ = - ~ 2 o
7 total energy Is constant 3 (isospin limit)
i ) 1 . )
. et,sub __  jet _ — jet,chg-PU or, after charged-hadron subtraction
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0 Iﬂ; sub p]: s . > p]: ,rescaled-chg-
Cacciari, Salam, Soyez arXiv:1404.7353
0.12F o, = 50 GeV subjet, no pileup ]
= 0.10¢ ]
= 008 /\
2 0.06F .. ; -
L Pr / Very broad distribution
0.04; o :
0.02¢

0.08.'

« Energy in charged and neutral very uncorrelated
« Does not work very well
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2. JVF cleansing

Assume charged/neutral ratio in each subijet is the same for PU or LV

pC,LV //\

pﬁv — pZOt e LVT CPU - multiplication (not subtraction)
P TP « can be significantly different

JVF
 Exact at zero PU
« Works very well at low pileup
« Degrades somewhat at higher pileup
Dijet Mass Dijet Mass
2000 - 2000
= 2" 73~ ‘with 140 pileup o0 JVF cleansing
- el ‘B 1600 B
f— ‘E 14005— g™
§ f'— ; 12005— S )
E— -:_=" s 10005— F
E E_.f: % 800F-
6002'—_ - E 6002— =
i3 39.2% correlated = e 93.4% correlated
200F- 200 i Skl
B T TR P B P B T T 05 —~500""~405 6005004000200 1400 800" Ja00 2000

Primary collision only (truth) Primary collision only (truth)



Correlation coefficients

US spending on science, space, and technology
VS
Suicides by hanging, strangulation and suffocation
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LINEAR CLEANSING
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Diversify:
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Balanced portfolio

« Same gain, on average
* Less volatility



Pileup Is stochastic: mathematica
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Piluep Is stochastic: pythia
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energy in charged particles

3. Linear cleansing V= otal energy

Key insight: Piluep is stochastic (Poisson) .
If you average a bunch of Gaussians, the width scales like \/TPU
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Correlations
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.




Gaussian cleansing
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Correlations
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RESULTS AND
COMPARISONS
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Many plots here: http://jets.physics.harvard.edu/Cleansing

Dijet mass (kinematic variable)
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Correlation coefficients vs Np,
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Look at and
Our orlglnal results (KLSW) CSS arXiv:1404.7353
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Trl mimi ng Different goals, different methods

« Just remove pileup / \

- Pileup + grooming
(eg for prlecI;|‘S|on QCD) (e.g. to maximize search reach)
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Conclusions

1. Pileup subtraction is naturally done at subjet level
« Same corrections apply to kinematic variables and shape variables

2. How can we combine charged/neutural, leading/pileup to get subjet momenta?
pr Y pfft ‘ v
C,PU H
Pr

a) JVF cleansing: at low PU, charge/neutral same in LV and LV+PU
b) Linear cleansing: at infinite pileup, charge/neutral in PU is exactly known
c) Gaussian cleansing: charge/neutral in LV and PU follow Gaussians
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Final thoughts

For anti-k; R=0.4, Np,=40, pileup removal is basically solved
» Area subtraction + CHS + JVF offset works nearly perfectly
« Everything works
* Do not need subjets

Serious challenge:
Can jet substructure techniques be used at very high luminosity?

« Jet mass at R=1.0 is a good test
* Np, =140

Cleansing works well
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BACKUP SLIDES
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Offset and dispersion
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Simulation details

» Resonance decaying to light quarks generated with MadGraphb v1.5.8
» Pythia v8.176 tune 4C, used for pileup and showering.

» Amount of pileup drawn from Poisson.

FSR, ISR, UE included.

Charged particles with pr < 0.5 GeV discarded.

\4

Remaining particles grouped in An x A¢ = 0.1 x 0.1 calo cells.
Only cells with E > 1 GeV are kept.
Jets with p7 > 150 GeV and |n| < 2.5 after pileup are kept.
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