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A dijet event from atlas
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What is a jet?
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antiquark jet

antiquark
» Quarks and gluons (partons) are produced at short distance, where QCD is weak
 Partons radiate and fragment into stable hadrons at long distance
* No interference between short and long distances

Factorization
do = [production] x [hadronization]

short distance long distance
N 7

Can calculate separately

Short distance physics (e.g. supersymmetry)
imprinted on jets!




What is a jet?

quark

E = energy
gluon

Cross section for producing an a gluon is dominated by small angles

Interference is subleading

dE d@ in the collinear limit
dO' ~ (Vg 5 0 \

(semi-classical) probability
\ for emission

Small E Small angle
- Soft divergence —> collinear divergence
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Parton shower

Jet production is well-described by semi-classical parton shower picture
« Quark starts out off-shell at short distances ~ 10-3 fm
« As it moves out, has probability for emission
« When it gets ~1 fm away, shower stops and hadronization occurs

N

quark

> JET




Jet to Parton map

Short distance process produces quarks We observe jets:
q
q\q q /QCD\A
e q TR e 0
(\// g q X2 1

Can we invert ?
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How do we study jets

Jets are not well defined. Many different jet algorithms
» Cone algorithms
* Cluster algorithms
 Global algorithms (event shapes)

Radiation is assigned to jets differently



lterative jet algorithms

« Start with input 4-vectors ‘
* e.g. stable particles, topoclusters,
calorimiter cells, etc.

 Calculate the pairwise distance

Rij = \/(0: = 02 + (1 — 1)? O




lterative jet algorithms

« Start with input 4-vectors
* e.g. stable particles, topoclusters,

calorimiter cells, etc.

 Calculate the pairwise distances
Rij = \/(Qi = 0;)% 4+ (n; —n;)?

» Merge the two closest particles




lterative jet algorithms

« Start with input 4-vectors
* e.g. stable particles, topoclusters,

calorimiter cells, etc.

 Calculate the pairwise distance
Rij = \/(Qz' = 0;)% 4+ (n; —n;)?

» Merge the two closest particles
» Repeat until no two particles are closer than R

1.8




lterative jet algorithms

« Start with input 4-vectors
* e.g. stable particles, topoclusters,

calorimiter cells, etc.
 Calculate the pairwise distance
Rij = \/(Qz' = 0;)% 4+ (n; —n;)?

» Merge the two closest particles
» Repeat until no two particles are closer than R

O
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Two R=1.0 Jets




Different distance measures

+ kr algorithm ;
di; = min(p7;, pr;) (R—o) , dip = D7y
* C/ A algorithm
4y = (ﬁf, dip =1
+ anti-kr algorithm

o o [AR\? _
dij = min(p7, pr5) (—> . dip = pr;

Can be thought of as inversions of different parton showers



Summary so far

« Existence of jets comes from collinear singularities in QCD
 In collinear limit, interference is unimportant
and semi-classical picture applies
« Parton showers use a semi-classical Markov process to simulate QCD
« Jet algorithms attempt to invert the parton-to-jet mapping

Parton
Shower

Jet Algorithms

» This is a great first approximation,
but reality is much more interesting



Real events are complicated!!

Radiation from other jets and
underlying event complicates jet
reconstruction

Image taken from R. Teuscher



Beyond the first approximation

- Contamination from underlying event/other jets
- Parton-shower is not invertible

- Jet = parton worked great at LEP and Tevatron
- At LHC, detectors are so good, we can look inside jets

- Interference is sometimes important
- Critical for measuring Color correlations of jets

- Last few years have seen many qualitatively new ways of
thinking about jets



thms, different results

Different algor

Cacciari, Salam, Soyez JHEP 0804:063 (2008)




e.g. reconstruct W invariant mass

W — qq

1

; 1200 |
0.8F- - ey
0.6 1000
0.4f : e

3 o 800
0.2: . B

oF 600
i 1 m- E
0.4 8 400~
0.6 i

C 200
08fF -

_1'|||l|||lnn||ullllllnlnllnll|||l||| BRI s W, N I G T ey



Parton shower Is not invertible
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Parton shower gives an event N e
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What is the inverse?
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All of them! -- Qjets

 Add randomness into the jet algorithm

* Instead of choosing smallest d;,

Ellis, Horning, Krohn, Roy and MDS
PRL (2012) to appear

choose pair with a probability

P x exp(—adij)

 Generates ensemble of trees for each event
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What did we do with the Qjets?

As an example, we can prune them

Ellis, Vermilion, Walsh Phys.Rev. D80 (2009)

* Pruning discards radiation in clustering that is soft but not collinear

e
i 1.1 \

Zij = — — < Zeut AR;; > Dyt
pr, + j% |

B e P> 2 pruned
unpruned

JJHI h

0.05

0.04

Other variants filtering or 0.03 | .

trimming work similarly -~ 3 .
0.02 =

L]

Butterworth, Cox, Forshaw Phys.Rev. D65 (2002) 0.01 L E

Krohn, Thaler, Wang JHEP 1002 (2010) 40 145 150 155 160 165 170 175 180 185 190




W jet mass with pruned Qjets
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Distributions become much smoother

Classical anti-k- Pruned Qjets anti-k;
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Need fewer events for same precision

For example,
« Take 10 boosted W events (p>500)

« Construct jet mass
* Look at variance of the the mean W-jet mass over many pseudo-experiments

Algorithm Mass uncertainty Relative Luminosity
required

K 3.15 GeV 1.00
Qjets 0:=0 2.20 GeV 0.50
Qjets 0:=0.001 2.04 GeV

Qjets needs half as much luminosity as conventional jet algorithms



Signal vs background

W jets (one event)

QCD jets (one event)
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Volatility V — ——— is apurely Q-observable
(m)



\Volatility p—

(m)

QCD jets are broader than boosted W jets
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L
(m)

Volatility yp =

QCD jets are broader than boosted W jets
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W-tagging: cut on volatility

SIC from _TMVA

Qjets+n-subjettiness
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Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 100 akt m12= 995.577
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Work in progress, with D. Krohn and D. Kahawala




Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 10 akt m12= 995.577
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Work in progress, with D. Krohn and D. Kahawala



Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 1 akt m12= 995.577
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Work in progress, with D. Krohn and D. Kahawala



Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 0.1 akt m12= 995.577
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Work in progress, with D. Krohn and D. Kahawala



Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 0.01 akt m12= 995.577
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Work in progress, with D. Krohn and D. Kahawala



Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 0.001 akt m12= 995.577
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Work in progress, with D. Krohn and D. Kahawala



Qjets on dijet events (no pruning)

eta, phi vs frequency, pT, 1TeV scalar, alpha= 0.001 akt m12= 995.577
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May help resolve
ambiguities with
overlapping jets
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Work in progress, with D. Krohn and D. Kahawala



Summary of Qjets

Parton shower is not invertible: Jet-to-parton map is not unique
« Why always pick the most-probable shower history?
« Use all possible shower histories!

Robust to choice of jet algorithm

* Don’t need algorithm at all (at least with pruning)

N dz L dmin
wz(j) Eexp{—a( jdmin )}
\

a=0 works great!
W-mass measurement: 0.45 times luminosity required as with classical jets

Boosted W’s versus QCD jets background
« Significance improvement of 2.5 over simple mass window cut
» Significance improvement of 1.7 over n-subjettiness

Lots of potential applications — we’re just starting to think about them



What else is wrong with the jet-to-parton

f)
map: It treats jets as 4-vectors

Gallichio and MDS Phys.Rev.Lett. 105 (2010) 022001

« Jets have color , and color connections
* Used by DO (published) and ATLAS (Moriond, hopefully)

° Quark and gluon jetS may be diﬁerent Gallichio and MDS Phys.Rev.Lett. 107 (2011) 172001
 New physics is quark heavy, backgrounds are gluon heavy
« Although difficult, quark and gluon discrimination could be
extremely useful

« Jets have Charge Krohn, Lin, MDS, work in progress

« Jets from boosted objects have substructure
« E.g. top-tagging from boosted top jets — used by CMS!

Kaplan, Rehermann, MDS, Tweedie Phys.Rev.Lett. 101 (2008) 142001

* BOOSted nggS sSearces Butterworth, Davison Rubin, Salam Phys.Rev.Lett. 100 (2008)




measuring Color flows in jets
Signal o Background

H — bb




How do they show up?

Monte Carlo simulation
» Color coherence (angular ordering, e.g. Herwig)
* Color string showers in its rest frame (pt ordering, e.g. Pythia)
* Boost — string showers in string-momentum direction




How do they show up?
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Shower same event
millions of times

Higgs: 5
Amyp = 1
Ay =2 3

Add up E7 in
each cell:




Signal vs bakcground
Higgs:

Signal (Higgs) Background (QCD)
Color singlet Color connected to beam



Pull

*Find jets (e.g. anti-k;)
*Construct pull vector (~ dipole moment)
on radiation in jet




Can we validate? Yes! on ttbar

Measure pull

Clean top tag on leptonic
side



Measured by DO
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DO ruled out color octet W

Andy Haas and Yvonne Peters, hep-ex:1101.0648
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Work in progress with
Jet Charge David Krohn and Tongyan Lin

 Measured at LEP for light-quark forward backward asymmetries

(Q) = Zﬂ%@i

/ _
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jet p_T-weighted charge, min pj/= 5& GeV, Zprimel000_uu.dat
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Consistent among flavors

distribution for d-type quarks for different processes
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W' vs Z' log likelihood
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Quark versus Gluon jets

Subtle subject
» Monte Carlo event generators may not be trustworthy
« Some data from LEP, but not at the precision that ATLAS and CMS can
measure

Two parts
1. Assuming Pythia is correct, how can we distinguish Q from G?

Gallichio and MDS Phys.Rev.Lett. 107 (2011) 172001

2. How can we validate on data?
*  Where do we find pure samples of quark and gluon jets?

Gallichio and MDS JHEP 1110 (2011) 103




L
How to compare variables?

» Look at distributions of each variable, normalized to equal area

mass/Pt

W
IIII|IIII|IIII|IIII|IIII|IIII|




L
How to compare variables?

» Look at distributions of each variable, normalized to equal area
* Look at efficiencies as a function of sliding cut

mass/Pt

0 0.05 0.1 ols 02 025 03 035

Sliding Cut
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How to compare variables??

This generates the “Receiver Operator Characteristic’ (ROC)

ROC Curve for mass/Pt
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We looked at 10,000 variables

The menu, including varying jet size
m Distinguishable particles/tracks/subjets

m multiplicity, (pr), op,, (k1),
m charge-weighted pr sum

m Moments

m mass, girth, jet broadening
m angularities

m optimal kernel

m 2D: pull, planar flow

m Subjet properties

m Multiplicity for different algorithms and Ry
m First subjet’s pr, 2nd’s pr, etc.

m Ratios of subjet pp’s.

m k7 splitting scale

Show http://jets.physics.harvard.edu/qvg




S
We looked at 10,000 variables

Best 2 were

@ Charged particle count
« Better spatial and energy resolution works better

* e.g. particles > topoclusters > calorimeter cells > subjets

and

@ Linear radial moment (girth)
« Similar to jet broadening

Show http://jets.physics.harvard.edu/qvg




Higher p+

Charged Particle Count
t 200 GeV

— 1600 GeV
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Higher pr means more tracks and more ‘time’ to establish C'4/CF.
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Girth

Weight pr deposits by distance from jet center
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2D distributions show that they are fairly uncorrelated

Quark Gluon
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luon Reiection — best group of 5
& i e charged mult & girth
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Result
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Conclusions

“These are not your daddy’s jets” -- Steve Ellis

The LHC is so great that we can go well-beyond the jet-to-parton map
« Detectors can measure jet substructure
* Need to look at substructure to find new physics in huge backgrounds

Beyond the jet-to-parton map
* Qjets
* Not mostly likely shower history,
but weighted distribution of all shower histories
« Can improve mass resolution and discovery potential in boosted objects
« Volatility does better for W-tagging than any other single variable
« Jets have color
» Color represetations can be measured: adjoint vs singlet
« Color connections
* Quark jets and gluon jets distinguishable: 40% Q vs 3% G
» Charge particle count and linear radial moment work best
« Jet substructure
* many worked out applications over the last few years
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Backup Slides



Where are the quark jets?

2 Jets

100%

20 40 80 160 320 640
pr Cut on All Jets (GeV)



O H-  hbr i -:i
Look at all samples

Chance EACH Jet is Quark
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pr Cut on All Jets (GeV)

\What about cross sections?
*Can cuts purify the samples?



Throw them into a Boosted Decision Tree

Optimize efficiency using BDT classifier with parton momenta as
inputs (6 or 9 inputs)

No Cuts 200 GeV Quark Purity
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Now look at the y+ 2 jets sample

Th Ty Boem] i

uuuuuuuuuuu

Look at the best discriminants, ranked by cuts

*The rapidity of the photon and
the rapidity of the second hardest jet look good

* But cutting on just n, or just n;, does not help much



Look at correlations

Quark
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Likelihood
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BeSt Slngle Vanable BDT result$

Quark Purity for Different pr \
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BDTs led us to the variable,
but with the variable we don’t need BDTs
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What about pure gluons?

200 GeV Gluon Purity
104 M
e
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Gluon Purity

b+2 jets or trijets look promising
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Throw it atthe BDT

Best Samples for Gluon Purity
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* Now try to find a single variable that works as
well...



Finding Pure Gluon jets

Trijet Sample with Different Kinematic Cuts
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Summary of finding quarks/gluons

- For quarks, look at gamma + jet

- cuton
i1+ ARy,

- For gluons
- Look at b+2 jets

- look at trijets
- Cuton

|77j3| - |77j1 - 77j2|



Chance EACH Jet is Quark
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pr Cut on All Jets (GeV)

So chance that all 4 jets > 100 GeV are quark ~ (30%)* ~ 1/125
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200 GeV Quark Purity
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200 GeV Quark Purity
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