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What is the fate of the universe?

1. Static universe 2. Big Crunch 3. Cold and Empty Future
T e B, i : —_— Or GAZTECON
=\ ; — g ' R
BANG

about 400 million yrs.

Big Bang Expansion

Einstein 1917: A < O | | \a

Dark energy tuned against matter

— H=64.23+-0.94, g=-0.43+-0.13
- - H=56.98+-0.53

Hubble 1929:
Universe is expanding
Creationism is born

FIGURE 1
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July 4, 2012: Higgs boson discovered!

CMS Preliminary \Vs=7TeV,L=5.05"Ns=8TeV, L=526fb"

° © @0 7TeVde, 4,22
Data O O O 8TeVde, 4 ,2e2
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What did we learn?

Matthew Schwartz



What is the Higgs field?

* The Higgs field h(x) has a constant nonzero value everywhere
(h) = v = 246 GeV

* Excitations of the Higgs field are Higgs bosons
* How hard it is to excite the Higgs field depends on its potential

6 ————————— _
4; V(h) = A+ m?h? + \h?
I e S S

What do we know about this Higgs potential?



Renormalizability of the Standard Model

\

Classical potential is quartic (4th order)
V(h) = A +m?h* + A\h*

* 3 free parameters (A, m A)
* Must be measured from data



nggs potentlal

| -

1933: Fermi theory of radioactive decay 1998: zero-point energy (dark energy) measured

(h) = v =Gp""? =246 GeV V(v) = (1073 eV)?

Classical potential
Completely fixed!

2012: curvature at minimum measured

V" (v) = mi = (126 GeV)?



Renormalizability of the Standard Model

\

Classical potential is qui';\rtic (4th order)
V(h) =A+ §m2(h —v)?

e 3 free parameters (A, m 1)
* Must be measured from data v

guantum-corrected or
Effective Potential

V(h) Ao *(h —v)? + A iy
— _ _ n — e o e
2" YT et
Y,
v

Quantum corrections are calculable!

Small corrections for 4 ~ v

Can be large for h > v

Limit on calculability is A < Mp; = 10'? GeV
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What could happen?

|\/|p|4 =1

v(h)

Our vacuum is absolutely stable

Our vacuum will eventually decay ...

... but how long will it take?
... and how do we know?
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AI = 1011 GeV

hmin = 1033 GeV

v =247 GeV
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Stability phaseydiagram

200

m, = 173+2 GeV
(measured 1995)

150

Metastability Need precision measurements
And precision calculations
to resolve

100

Top quark mass

50

50 100 150 200

[y = 125+1 GeV
(measured 2012)

jery
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Standard Model Effective Potential

(not to scale!)
Veff(H)
hmax = 1010 GeV
|
i
| |
O \I ! :
i | i ho
i ! ]
! A= 10" GeV i
1 1
v =247 GeV i = 1033 GeV

Are these scales physical?
Is the stability Planck sensitive?
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Problem 1: gauge dependence

Landau gauge (£=0)

Veff(h)

\'/I—\ hmin

|

N 1

a- T Mmax 1 —_S

I\.—-—-Z < h .
' ) True minimum
= 247 GeV /\ f Vimin

Instability scale A, / \/ Vmin > 0 = Absolute stability
= value of h where V(h) =0

* Indicates sensitivity to new physics

3.0x10%}
5x10'
25x10%}
BAOTE e ( SI 'gzgz.omo29
.......... >E
---------- L
N 15%10%
<sSw0T T
"""" 1.0x10%
2x10"0¢ é . —
0 5 10 15 20
—_—
1x10"0F e ¢
0 100 200 300 400 500 * hy, also gauge dependent

hmax @lSO gauge dependent



Problem 2: T =0
V(z)

x(T)=a
Z = (ale~HTa) = / Due—Sele]

N x(0)=a

a b c o
—FET 2
Z=>Y e " yp(a)
E
o1
Isolate ground state energy EFy=—1lim —=InZ
from late times T—oo T

Decay rate is the imaginary
part of the energy

= Im71£207—,1nZ

Clearly this is not exactly what is meant
« Zis real
» True ground state at E. = V(c) has nothing to do with the false vacuum

How do we get an imaginary part?



Problem 3: ' = o0

Assume the “standard” formula:

I
5 —Im71£noo7—,ln/1)qbe Slbe] =5 5" [¢e]¢°

¢y = “bounce” = solution to the Euclidean equations of motion [l¢p — V/ /(gbb) =0
Massive case (Higgs potential)
1 1 .
/ 2 .2 4
S ~\ No solutions
V(o) 2m o“ + 1 o) |::>

Massless case (scaleless potential)

/ _ 1 4 . R,z o 8 R
V'(¢) = TR |:> Too many solutions ¢, (2) =4/ — 75 P

r L'~ lim T -
| — ~# Am T -V# {3 X (translations)
rate per unit volume %

bubbles of true vacuum can form anywhere
not a problem

FN/OOOdR:oo <:| R (rescalings)

bubbles of any size can form
rate is infinite!
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Andreassen, Farhi, Frost, MDS (various)

Summary Our work

Previous work Unnecessary IR cutoffs used No IR cutoffs
Completely analytic
Numerical approximations used rate formula

DeGrassi et al 2012 (arXiv:1205.6497)

180 g
> - Metaéétéi)ility_ oo
O e BT
EN 175 ==" e — Meta-stability
E _o® o © ; ; = B
g B | Uncertainties | |
gmor o incorrect 1 3
[} - X : L - ] At
2 = Stability :

165 — /\’ T

115 120 125 130 135
Gauge dependent Higgs mass M), in GeV
] ] 122 124 126 128
° Improper use of renormalization group ° Gauge invariant ,qumlﬂa used
« Based on heuristic Coleman-Callan formula - Gauge invariance checked explicilty

* Uncertainties handled carefully
« Decay rate derived rigorously in QFT



COMPUTING FUNCTIONAL
DETERMINANTS




How do we calculate a decay rate?

NLO formula; L — Im lim —ln/nge S[ep]—35" [$p]9”

2 T—oco T /\f

Find?:]eepbl:unce ®» = “pbounce” = solution to the Euclidean equations of motion
O¢ — V() =0
Rwo / 8 R 5 parameter family
V(o |:> Py —AR2 4 (2 + x0)2 of bounce solutions
r
X, (translations) |:> I'~ lm TV |:> v #

rate per unit volume
bubbles of true vacuum can form anywhere

R (rescalings) |:> FN/ dR = oo
0

Bubbles of any size can form
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Step 2:

Warm up: 1D scalar theory Reduce o math

problem

1 R,azg _ 8 1
V(g)= he' T 6" () = \/:R”(“W

Need to compute
7 / Dpe—Slen—165" @l _ L _—sie

\/det S”[¢p] \/\ Action is finite:

Sltn] = /d4x [%(Q@b)Q + }l)\qbg} = _83% <0

det 5" [¢p] = | [ s
Compute determinant by multiplying eigenvalues
S"[po]¢ps = (O + 3Ap) 95 = Ajo;

* How do you find the eigenvalues???
* How do you multiply them together (infinite product)?

A. Justdo it & Step 3:

B. Use “elementary Fredholm theory” [Coleman Erice lectures, p. 340]
« a.k.a. Gelfand-Yaglom method

Solve math
problem




A. Explicit eigenvalues Want to solve

(O +3X07) 95 = A,

Choose one R and one center ,(z) =, |8 I

—AR% 412
5 modes with A= 0:

4 translation modes ¢1 = Oudp —  S10us = OS] = 0

Finite Jacobian going to “collective coordinates”
Integral over x0 gives expected V T factor

1 dilatation mode ¢4 = Oros

Infinite Jacobian going to “collective coordinates”
Integral over R gives infinity
Infinities don’t cancel — they multiply 7 — ~o2

det’ = determinant with

How do we find the rest of the eigenvalues? ~ero modes removed
24 R?
Sy = N\
(R? + r2)? %3 =230 det'(-0+Ag3) 1IN
o~~~ > B = det(—0J) B P\
Also need —Uo; = A0, L
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Ste reog r'a p h i C p roj e Cti on Andreassen, Frost, MDS (arXiv:1707.08124)

Rescale away constants

2 R=1 24
O— _0O0_ 24R O

> - ——
(R2 + r2)2 (1+ r2)2

Stereographic mapping to 4-sphere

2x 5
1+ r? =1

nt = -
O-¢; = dp(=L3 +1) - (p5)
5 177 (bb:775+1

" 142 .

Angular momentum operator on 4-sphere
» Eigenfunctions are 4D spherical harmonics

= 1
LZYnjlk = E(n + 1)(” + 2)Ynjlk‘

- n+1)(n+2)
B det'(—=O+ 3X¢7) det'(L—1) [ [ ( )(
det(—0J) det(L?) 1 [ (n+1)(n+2) ,7

Degeneracy: d, = -(n+1)(n+2)(2n+3)
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Andreassen, Frost, MDS (arXiv:1707.08124)

1
det/(—O+3A¢2)  det(3a2)  det’ (WD - 1)

B = 5v X
det(—[l) det(S)\gbb) det (ﬁm) (j
Note: _ .
eigenfunctions of rescaled operator are not * Same eigenfunctions
eigenfunctions of original operator: - Eigenvalues shifted by 1

1
<WD - 1) Pj = Aj9; I:> (—O+3X¢5) ¢ = —A;3X¢5 - ¢
t/ Function not number

Explicitly, eigenfunctions are:

] JOR Degeneracy:
ans m\T", &, '97 ¢ = _Pn_s_1<—> YSlm Qa, Ha (b 1
im ) ro M\ R2 42 ( ) d,n:6(n+1)(n+2)(2n+3):1,5,14,30,.--

2 R : L o, o _

booo0 =\ ~ 7573 Eigenvalues of 355 are — 1 negative eigenvalue (tunneling)
5 zero eigenvalues
n—1)(n+4 2 . e e
A = Anstm = ( U ) _ —2: 0,12, (translation/dilitation)

9 R2_ 2 6 3 3

¢1000 = ;Rm
1
Eigenvalues of 3352~ are

Bonos = 2 R(r*+ R* — 3r*R?)
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Eva I U ate p rOd U C‘t Andreassen, Frost, MDS (arXiv:1707.08124)

Product is UV divergent (large angular momentm n)
* Regulate with dimensional regularization
Possible to evaluate exactly

B \/det’(—D + 3\¢?) J I, [_% n 1]‘“

det(—0)

% 5 [3 5 Ry
= 2exp | — 2 4 6¢(~1) 4+ 3In—~
IT, [~ =] 36\/:;6Xp [25 3 oy

Decay rate is then

1 g, 4 4 det’(—0 + 3\¢?)
v = o€ dx | dRJ;Jy4

det(—07)
o

Jacobian for translation Jacobian for dilitation

1 /6S
r= 1y g 1 [6500

R om
Finite after rescaling Stlll IR divergent
(integral over R)




Integ ral Over R Andreassen, Frost, MDS (arXiv:1707.08124)

0.06

o0 72 2 B(n) 0.05
I _ / @6%:&(“) 5 a0z mkR) (~++) =0 oo\ ()
Vo), R’ o
« Can’t choose u = R inintegrand, since R is integrated over oo |
« Can choose p=p* where p(u*) = 0 (fixed point of 1) 100 107 10 10 r 107 10% 10%
I o %3}&) dR M*
V =€ H ﬁ =

« Knowing 1-loop exponent gives u and R dependence at 2-loops

A Step 4.

dR hS[qb*]Ll R 4 T A ~ ST .
F — n /L = N Y hs[d’b]ﬁo*
2 /O 75 © % AN Use perturbation

LSuperIeading dependence on h

theory properly

« All terms fixed by 1-loop RGEs important.
« After some careful power-counting and resummation

r

det 6¢

—S[¢b]
5 (RI) (Raon [52

_mAS[;) - W[ A 4N,

Nl g
50* )‘1—100p (N) S [¢b] 250*
R=p~t=(p*)~!



(Gauge bosons

Quadratic fluctuations around the bounce in Fermi gauges: Lcr = L

28
1 — 1
Ltermi = EA“ |:(—|:| + gQng)éuu + %auay] A, + §G [—D + )\qf)g] G + gAu(é?u(ﬁb)G — qubAMa“G —cle

(8MAM)2

Bounce is spherically symmetric, use 3D spherical harmonics
Radial fluctuations of longitudinal, scalar, and Goldstone modes couple
 Need

—A+ 3+ 979 —2—@ 9P, — gPu0:
det LR ALy VD
2064+ gtdr + 30—V os A AR
LA A
det | ftim .
0 0 — A,

Mapping to 4-sphere does not help
Need new tricks to compute this ratio



Gelfand-Yanglom method

det O 11 A1
det 02 N Hj )\2j

Want to compute 2 =

1. Find zero-modes regular at r=0 O191 =0 and O2¢2 =0

2. Ris given by the simple formula R = lhm el )] X llim ¢1(r)]

r—0 gbl( ) r—00 (hg (fr)
That’s it!
det[% As = } tn+)n+2)—1  s(s—1) J
Example r,= % ] H al _

det | s A, 5 n+1 Jn+2)  (s+2)(s+3)

B P . 2R*(s—1), s(s —1) 4
¢1(T)_(R2+r2)2 <R+ s+2 Jr(8+2)(s+3) )
Ga(r) =r* im 22(7) _ J
— Imgn-! —> p- D

s+2)(s+3
el s 1) e
o Ga(r) (51 2)(5 +3)




Integrate gauge boson fluctuations

3 s(s+2)
Ay, =02+ 20, —
s =0+ T(?T - 7

2+/s(s+2
—Ay+ 3 + 9%} ~ I 90, — 99e0r | (W4
_2/6 A - L+ g )| Ta ) =0

200, + goudr + 290y~ g, A+ A Vs

* Need to find 3 linearly independent solutions
* Would have been impossible, but...
« Don'’t need full solutions, just asymptotic behavior (large and small r)
« Can simplify with auxiliary equations | Endo etal, 2017

l A lot of hard work
8g?
K=14\/1+ —)\

Cdet MEEC det T(0) det ¥(oco) o /s\

Cdet MSLG det U(0) det U(oo) 5+ 2 c, = + 5)0(2 +
- s+

* Result is non-perturbative in g
« Still need to take product over spins s
« Still need to renormalize



Renormalize

Subract order g2 terms

siGre]  _ 2(8+4s? +4s+2)
[ln R aig ] ub s2(s+1)2 4/(s)
2 (s* 4+ 9s% + 2052 + 185+ 8 2
e ) sut()| £
$2(s+ 1)%(s+2) A

4

- 12¢’(s)} 5

N 2(25+5) (3s* + 125 + 18s? + 125 + 4)
s2(s+1)%(s + 2)?

Add in g2 terms with d-dimensional loops in MS
sty (O = (E2) [ e b e
B i’i - ----Q--- ii [32 + g + §7E + ; lnﬂRQNQ}
B ‘fé - ----Q--- - _9; [3;48 + 2?96 + g’YE + glanz;ﬂ]

oo
°° °°




THE LIFETIME OF THE
S TANDARD MODEL




Decay rate in Standard Model

Final formula

r —S[gn) L 3 A det Oh det OZG det OWG det Oz [det O,
= “Tm Vo J2(RJIp) (R —
y = gt Vsue Jo(RIn) (RJa)\ | 520 Oy, \ det’ Oz det’ Owe \| det O3, \/ det Oy,
el (O v [ ]
N AT e AP W DA S . 6.2
B, o s 62

Everything known analytically:
det@zg B _§ _ﬁ _1 AG _ﬁ AG gZ e
det’ O _eXp{ 2Sﬁ“( 123 ) 2% \ Tigy ) T Sleos | gy ) T 30
det @WG o . _& _ QAG _@ _ 9QAG gW G
det’ Owe P { 350 < 123 )~ Pat \ Tygy ) T 2o { Ty ) S

AR )
o {w“”) (“%) 9 <3_TH>] 9 {w“*) (3 *;) oyt <3_T’””>] (45)

det ji/ljt — exp NC Sql)/(/) /?J_t2 Sfﬁff i (?Jtz)
det Mt_t A P A




Numerical results

Inputs with negligible uncertainty:
Gr = 1.115x107°GeV~%  mb® = 80.385 GeV, my"* = 91.1876 GeV, mP*° = 4.93 GeV

Inputs with non-negligible uncertainty:

M = 1731406 oV mP™ = 125.00+£0.24 GeV  @s(mz) = 0.1181£0.0011 2% T
-« Convert to MS at weak scale 0.041 AMu)
. 0.03f
* 2-loop threshold corrections 0.02l
« 2-loop electroweak/strong mixed contributions 0.01f
« 3 and 4 loop strong contributions 0.00 \
. . -0.01¢
* 3-loop running for all, with 4-loops for o

N N N N A N N N N
100 108 100 1014'|'1o18 1022 102 10%°

Scale where B, (1*) = 0is  fix = 3.11 x 10'" GeV

Quartic at p*:
M) = —0.0138 » Sets units for decay

2 T~ () ~ 1070 GeV*
L T ~ e——ﬁu*) 6—800/\

Compare to lifetime of the universe ( All order ~ 100 in exponent

Hy = 674580 = 144 x 1072 GeV Hy =107 GeV*



Decay rate Of our universe Andreassen, Frost, MDS (arXiv:1707.08124)

Put all the factors in

T _Sley] 4 det Oh det O 7o det OWG det Oy |det O,
— =€ VSU ']G RJT 7 = =
% ?_,8;6/ , det Oh det’ OZG det’ OWG det Oy | det Oy,
0 102 105 N ),
10-2 1017 1019 1025 0.995
A TAe  —Si ot [ Ay A\, ]
,U/* —fe b7 0x S ¢ < — 1 - *—
X e A\ s N NG P
1070 GeV*4\ ™ D g
~= 0.653

B 10—279 10—39 10—186 10—61 10—2
=10 683Gev4><( 162>X( 35)X( 127>><( 102 X( 2)
10 mi 10 mp, 10 Qs 10 thr. 10 NNLO
409

— 1076835202 GeV
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Sta b i I ity p h ase d iag ram Andreassen, Frost, MDS (arXiv:1707.08124)

178

Meta-stability
Meta-stability

pole
t

+102
o = 1019517 years

Meta-stability

il Top mass and o
biggest experimental
uncertainties

0.112 0.114 0.116 0.118 0.120 0.122
ag(myz)

0.05 0.10 0.15 0.2(

ag(my)



Conclusions: the fate of the universe

1. Static universe 2. Big Crunch 3. Cold and Empty Future

Dark Energy
Accelerated Expansion

— » Our Time Direction Afterglow Light
E = Pattern  Dark Ages Development of

e A ) 380,000 yrs. Galaxies, Planets, etc.
\ 2 ° |
st T )

- : Inflatiol
S e °
i BIG Qui
) - uctuati
BANG CRUNCH

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

4. Vacuum decay

 Universe is infinite
* Decay rate is finite
e Somewhere a bubble of true vacuum has formed

(10132 light years away)
* Wallis barreling towards us at the speed of light




DERIVING THE DECAY RATE
FORMULA

Colelman & Callan (1977)
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Tunneling and WKB

Coleman (Erice p.266): “Every child knows that the
amplitude for transmission obeys the WKB formula”

T:exp{_/bdxm}

Coleman 1977
a b

« T can be written as e~ °&[#?]
N

“bounce” path x,(t)

Invert 3 b »  Solution to equations of motion with
otential “‘inverted” potential —V/(x)
P « Starts at a, ends at a, passes through b

Rate I' oc T = ¢ 5[zv]

QFT: Rate TI' o< ¢ °&(%]

QFT bounce has ¢»(7) = a at |Z| = oo

a a
a
p(0) = b Z . a ‘ .
a a
a



Tunneling from path integral

Vi(x)

Coleman and Callan 1977

x(T)=a
/ Z = (ale~HTa) = / Due—Sele]
N\ .

x(0)=a
a b c
—FET 2
Z=>Y e " yp(a)
E
o1
Isolate ground state energy EFy=—1lim —=InZ
from late times T—oo T

Decay rate is the imaginary
part of the energy

= ImTIEI;O?an
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Saddle points

0.2F
0.1F
0.0F
—-0.1f
-0.2f
-0.3f

Matthew Schwartz

x(T)=a
Z = (ale 7T |a) = / Dye el
z(0)=a

Dominated by saddle points
= solutions to the Euclidean equations of motion

e 5 _ / gt B(@tx)—V(x)] Sg = / dr B(@Tx)+V(x)]

Ofx = —V'(x) 07w =V'(x)

7

particle rolling down the inverted potential

03:
0.2f
0.1f
0.0F
-0.1f
-0.2¢

| with boundary conditions z(0) = z(7) = a

~15 <10 -05 00

05

10 15



Oct 11, 2017 Matthew Schwartz

Saddle points e —— 5

2|
0.3} :
0.2} | — Iy
0.1} = |
0.0} 0{'
~0.1} Y
—02¢ - ; False vacuum _
-15 -10 -05 00 05 10 15 (- T S -
.
1.5¢
1.0}
<
0.5
00F

00 05 10 15
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Matthew Schwartz

Saddle points 5

.
0.3} :
02} ] = L
0.1} = | bounce
0.0} O:"'
—0.1} _1:_
—0.2} ; False vacuum
15 —10 -05 00 05 10 15 O """"" 1'0' — '1'5' — 20 —
-
1.5F
[ )
1.0}
B
(.5
0.0 °
00 05 10 15
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Saddle points e —— 5

of
03} :
0.2F E = 1_‘
0.1} | = | bounce
0.0} ] 0:"'
~0.1} ] _11_
—02¢ ] f False vacuum ]
-15 -10 -05 00 05 10 15 O - 5 - 10 s -1-5- — 20 -

Bounce is a saddle point of action:
local maximum along one direction

1.5]
1.0}
)

0.5]

0.0}

00 05 10 15
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Maximum - negative eigenvalue of S” - Z has an imaginary part

x(T)=a
Z = / Drxe 8] (1) = anyn(T)
z(0)=a
/x(T):O'D —Sglz]—18%[z]x? [_872' + V”(f)] Yn = AnYn
_ Te z]— 5 Splx]a®—--
z(0)=0 /dTynym — 5nm

7T)=0
_ e—SE[a_:] /SL‘( ) Dxe—% de{—m(')zm—l—mV”(i‘) :1:}
z(0)=0 One of these is negative (A, <0)
if T is a maximum of S in some direction

— /d£0"'d§ne[_ > 3 Ankn]

_\/ﬁ\/ﬁ s -
VAV | f
1.0} '

r 1 — |

§:Im711_r>rio7—_an?é 0 % 05l

: . 0.0}

But Z is real! So how did this happen? ;
o(T)= 00 05 10 15

Z = (ale 17 |a) = / Dge 3l
z(0)=a
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The Shot

0.3 ]
0.2}
0.1
0.0}
-0.1f
-0.2}

~15 Z10 -05 00

05

15

Matthew Schwartz
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The Shot

0.3 ]
0.2}
0.1
0.0}
-0.1f
-0.2¢

15 -10 05 00 05 10 15

x(T)=a
Z = (ale "7 |a) = / Dire-5el]
x(0)=a

~ e—SE[mshot] (>> e—SE[a:bounce])

_ o~ BT
Bounce is exponentially subdominant
Consistent expansion must drop it
True vacuum dominates

Matthew Schwartz




Contour mtegratlon

Real axis = sum of steepest descent contours

tatic false / / / /
vacuum shot C(bounce CFV

——@=

Integrate = ¢S @shor) 4 z§

i shot —
along real axis + e 5 @bounce) _ ;T .

+ e—S(wFV) 4 i—T
S 2
~ e_ (xshot)

Y
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Discontinuity

Can we just integrate along the FV contour?

—

static false
vacuum

bounce

Yes, at least for this toy integral
Z:/ dze=5®)
C
No

» Not clear what “fixing to a contour” means for a path integral
« Saddle point approximation loses the imaginary part

« Expanding around the saddle gives a real integral

« Imaginary part comes from region far away
« Saddle point approximation does work for the discontinuity

12| e =1/2: ¢

~_ un_—
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3. DIRECT METHOD

Andreassen, Farhi, Frost, MDS (2016)
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Quantum mechanics - [~k vio] v

y
FV R (%) w
— gl
— 50|y
X
a b\_—/

Poy(T) = / dofo(a, T
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Quantum mechanics - [~k vio] v

FvV R V(x) w
— g
— 50|¢
X
a b\_/

Pey(T) = / (e D P

Two time scales
* T > Tgosh — removes transients
T < Ty --avoids all y in true vacuum

1 d
I'=— Ilim lim —— — FPpy
Tsil;sh o0 ﬁ_)o PFV dT




Gamow’s method

V(z) * Hermitian Hamiltonian - energies are real

- y*y independent of time
/E(w, t) = Ce'kr=Fl | pe~ilke=F1)

T r Enforces T << Ty, (no return flux)

Choose outgoing boundary conditions: D=0, ¥ (,t) = Ce'** =50

« Modes now have outgoing flux

« Zeros of D - energies are quantized

J = i(Y* 0 — Y0,*) = —2p * Resonances ~ bound states
V(z)

* Violates unitarity - energies are complex

1 : 1
E=Ey— 3T p,t) = BTty (z)

« Probability is time dependent

* —I't a )
P = /w Y ~e Assume E, E, etc components already died off

Enforces T >> T, (only metastable FV decay)
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Adirect approach  r-- jm  m zoore

Back to our definition

T >>T,sn (only metastable FV decay)

Pey(T) = /FV dz [¢(z, T)|2 T << Ty (no return flux)
V(x)
€«<——R— > X
a b
Propagator from a to x; in time T
. - N sf z(T)=wy
Start with: ¢(z,t =0) = 6(z — a) D(a,z;,T) = Dy o5l

»  We will compute

1 dP o=
Tr = li =
R T/Tl;il—m Pry dT 7 /\/
,1—1/,1—'slosh_>OO

Pr(T) = /R dz; |D(a, x5, T))

\ J
Y
probability of finding v
in region R attime T




Step 1: Split up propagator

ZIZ(T):xf
D(a,zs,T) = Dy *S17] N
ZIZ(O):CL L
Split path integral into before b and after b: by
2(T)=z; XI
D(CL,J?f,T) — D£C€ZS[$] /dté(t—tb[gj])

z(0)=a /\/ a

ty[x] = First time path x(t) hits b

~0 —— T
:I:(t) = b m(T):xf. \—/\/
= /dt Dz 512§t — ty[2]) Dy ']

\IE(O)ZCI, ka(t):b

_ Y Y
D(a,b,t)  D(b,xs, T —1t)

hits b only once, at t * Regular propagator from b to x;
« Paths can go back past b

D(a,z¢,T) :/dtD(a,b,t)D(b,xf,T—t)



Step 2: Apply T << Ty,

D(a,z;,T) = /dtD(a, b,t)D(b, s, T — 1)

Regular propagator from b to x;

* Hits b only once, at t Paths can go back past b

PR(T) = / dz; |D(a,z5,T)[?
R

= /dxfdtldtgl_?(a, b, tl)D* (a, b, tQ)D(b, Zf, 1T — tl)D(b, Lf, 1T — tg)

\ J
\. J v

Y
(xg, T|b,t1) (b, ta|lx s, T)

T << Ty, (no return flux)

Propagation from b out of R is negligible: /da:f ) (5] =1
R

b PR(T) = /dtldtgl_)(a, b, tl)D*(CL,b, tQ) <b, tg’b, t1>

T
_ / dtD(a, b, t)D* (a, b, t) + c.c.
0



Step 3: Simplify Vi)

Pp(T) = / dtD(a,b,t)D* (a, b, ) + c.c. | \e—r—2/ x
0 \\_/

'k = lim 1 dPg ~ lim D(a,b,T)D*(a,b,T)

r/Tni0 Pev dT ~ 1500 [0 [ D(ayx, T)[

T/Tslosh — 00

Go to Euclidean time and take [ t>> 1,

fm(T)za Do e—Sul] 5(7'b [x])

. x(=T)=a
'k = 2Im lim
T 00 x(T)=a Sl
- o= e )

* Non-perturbative definition of the decay rate
« Does not require analytic continuing potential
* Does not require saddle-point approximation
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. Bounce dominates numerator
Expansion

fx(T)Za Do e—Selz] (5(7'b [a:])

. z(=T)=a
I'e = 2Im lim
T—o00 z(T)=a —Sg[z
-~ Ja(=7)=a Dr e~ el S

Sshot - ETVT+ Sg’ - iETVT + Sg

botential | i FV dominates denominator
o 1 ~ exp(_Sshot’) + eXp(_Sbounce)
or 1 ~ eXp(_Sshot) + eXp<_Sbounce> + eXp(_SFV)

) —1 b 0 al 2

Srv = EpyT = ibpyT
3k . - - - Sbounce - EFVT+ S% = ZEFvT + S%
. paths 0 0
2 shot Se>S55>0
T 1f e N | b / =2.5 =1.2
~ 0-/ bouy\ \ /
-l static FV 1@ shot must go faster than bounce,

- : 0 B 55 —> it has more kinetic energy \
.

action
e_SFV >> e_Sbounce >> e_Sshot




T
FaCtor Of 1 /2 I'=Im (FV contour) = %2 Im (bounce contour)

forces all paths to hit b at time t=0

bounce static false

vacuum

T— 00

z(T)=a —Sp[a]
o y—yq Dxe™E d(1p[x])
I'g = 2Im lim (I( 7=
T —iT

ST Dy e—ssll

x(—T)=a
Expand around bounce: (1) = Z(7) + Y _ &nyn(7)
/' o
Hits b at its maximum \ linear in &

FNLO B e SE (7]

2Im [ d"¢ J[7.(C), (Je~2 =< O[Enyn (0)]
[ Doz e 25Elerv]sa® r\
« Half the fluctuations don’t hit b, half do

« Gaussian integral is symmetric.
« Can remove 0-function restriction and multiply by 72

e—SElrFv] T 500

Must hit b

—1/2

det’ (=02 + V"(z(t)))

[NLO _ el [ Spla]
det(—02 + V" (a))

e~Selrvl 27

» Agrees with Coleman-Callan formula at NLO, but valid to all orders

* Does not rely on saddle-point approximation
» Actually connects formula to decay rate




EFFECTIVE POTENTIALS




How do we compute V47

Classical potential: V' (h) = A + m?h? + \h*

- Renormalizable
- Three parameters (A, m and 1), measured from data

How can the quantum-corrected potential be computed?



How do we compute V47

Classical action
= [ouet = [on D DA —
\

N o

_ _ Integrate out everything but H
Effective Action

I = /d%{ — Z[H|HOH — Vog(H) + - - - }

* Generally non-local (has nasty things like In

LO/mE iy
2
H . OKif H ~ (H)

« Nearly impossible to compute

S
« Can'’t include loops of H itself this way

If we integrate over everything, /;F _ /DH .. -DAeiS

effective action is just a number
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Method 2: Legendre transform

Classical action We want an effective action
oS
05 0 or 0
OH | H=v OH |H=mH,
LN

Classical minimum True quantum minimum

1. Compute W[J] "1/ E/DH...pAeifd‘*x{HJH}

oW \N

2. Solve H — —— for J[H] Current introduced by hand
6] So that " depends on something

3. Compute I'|H|=W|JH]|| — /d%HJ[H]

or
Has the property that SH - J|H] so that (?TE[ = (0 when J=0 (i.e. in original theory)

» Agrees with method 1 in perturbation theory
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Tree-level (classical)

What do you get? /
1 4 212
Vet = Z)\h —m~h
h2(g2 +g2) 2h2 y2h2
4 _ B4 2 2)2 1 2 4 4 :
+h 204872 [ 591 +6(91 +92)" In 10 —10g3g3 — 1595 + 12¢5 In 2% 12 + 144y} — 96y} In 202 }
—1 Ah* 2 + 2 A3p12 +
T [ng% (ln (fBiI:u4 §wgs) . 3> ewgl (n fwgzgifl? Ewg3) _ 9)] ABA
one-loop R
Veff(h)

hmax = 1010 GeV

v =247 GeV h. = 1033 GeV
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What do you get? Tree-level (classical)
1 v
V:aff - Z)\h4 — m2h2

1
A ( -|-
g [ (T ) <_-9

one-loop R

{

Two curious features



1. Gauge-dependence

Method 1 to compute I" is gauge-invariant:

/ DHe' = / DH Dy ---DAe™
\ )
Y
Completely integrate over gauge-orbits

Action/energy at minimum also gauge-invariant: ¢’ — /DH- DA

Method 2 to compute I introduces a charged source J

W) — / DH .. DAciJ d*a{e+TH)

r=w-HJ .
6T « Action away from minimum has current present
SH J « Action at minimum has no current, should be gauge-invariant
Encoded in 0 0
Nielsen identity 8—§ +C(h, f)% Ver(h, &) =0
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Potential at minimum indep. of rescaling

A /
/
[ /
r /
r /
5¢ // ——
L //
/
\// | | | »
i / 15
r /
L /
5| R
-10r « Rescaling field leaves Vi, unchanged

Nielsen identity

0 0
68_5 + C(h,f)% Vveff(hv g) =0
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But is it?

3.0x10%}
25%x10% N O .
g
— 2.0x10%}
N
L
1.5x10%
1.0x 102
0 5 10 15 20

§

(—Vmin)1/4 appears linearly-dependent on gauge parameter &
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\What about field values?

Veff(h)
hmax =,10° GeV

Landau gauge (£=0) —> \r/i\
: 1
q-T T 1 o
; A= 10" GeV !
v = 247 GeV 0 hmin = 103 GeV

Instability scale A, = value of h where V(h) =0

5x10 /
4x100r e
A T * hnin also gauge dependent
.................... hmax @lSO gauge dependent
2x10"}
also strongly gauge-dependent
1x10%0F
0 100 200 300 400 500

S



2. Large Logarithms

Can be resummed with RGE:

Explicit u dependence

0 0 0
(M@ + b 90 Vh%> Ve =0

N

compensated for by rescaling couplings and fields

« Same RGE as 1Pl Green’s functions or off-shell matrix elements
* QObservables/S-matrix elements satisfy simpler RGE:

0 0
(M— + Bz‘—) o =0
H d9i

» Field-rescaling term canceled by LSZ wavefunction Z-factors

‘ Effective potential depends on the normalization of fields??!!



Resum logarithms

1. Compute V¢ to fixed order (say 2-loops) at scale (say) pug ~ 100 GeV

2. Solve RGE (u%+ﬁ——7haah>%ff:0

Vet (R, gis 1) = Veg(eX HOW R gi(1), 1)

n
T(po, 1) /7 ")dIn pif
m

0

3. Setu~h

Ve (h, o) = Veg (e 0™ h, g;(R), h)

Potential depends on scale yy where it is calculated??!!

0 0
—> (5—,% - vhah) V(R pto) = 0
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Potential at minimum

-10 1

Nielsen identity (gauge invariance) Calculation-scale invariance

0 0
0 _
g_é- C(hag)% ‘/;sz(h7 5) =0 (a,u() /yhah) V(h,/,l,()) =0

Vmin Should be gauge invariant and independent of how it is calculated



Even gauge-invariant I" is unphysical

Even if we source a gauge-invariant field ¢Vl = /DH ... DAet S el TH}

W] = /DH.”DAeifd‘lx{/J—l—JHTH}
eVl = /DH DA S LT H} I'(h) is now gauge-invariant

0 0
Effective potential still depends on how it is calculated (a — ’yh%) V(h, o) =0
0

« This is OK.
« Off-shell quantities can be unphysical
- Observables should be physical What about field values?

* S-matrix elements Instability scale?

* Vacuum energy (Vmin) Inflation scale?

* Tunnelling rates Planck/new physics sensitivity?

» Critical temperature
Are these questions about observables?
But are they?




SCALAR QED




Matthew Schwartz

Oct 11, 2017

Scalar QED

1

1
L= —ZFﬁy + §|Du¢|2 — V(o)

\/\ Vo(¢) = %qﬁ‘l

mass term gives small corrections, so we drop it

1-loop potential in R;: gauges:

NE 2 5\ A2/ A\ 3
—gt 2 (e 2 A (22
(@) =915 [46 (n 12 6)+16 (nm? 2)

)\2 1 2 1 1
n (_ B _62)\§> (lnqb— _ §) + —Kiani + ZK41HK2]

144 12 w2 2) 4

Not gauge-invariant

For most values of e and A, there is no minimum

64

—

When )\ ~ = Vo= V]
6772

And.... Vi, depends on §

Ki:%(Aim)

A

—~ /9

\/
Veff(d))

Spontaneous
symmetry breaking
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When i -
A\~
Solve b e
RGEs: 6‘3_16w2(3)+
Br= 16 (3664 — 122\ + 10;2)
2 T T
e /
ok i ‘/
5 el
L . 1672
AMp) |
-10'1”0 1o‘l‘2° 10:70 '1o:2° 1c;3° 101"‘0 10

Hx

~

-

2
2 e* (o)
e (p) = —
1 - G n e
2 2
Mp) = el(g) 19 + v/719 tan ( v ;19 In e(g) )

e runs relatively slowly
For any e, A runs through all values

There is always a scale uyx where

e(px)?
1672

Apx) ~

Near this scale, V¢ is pertubative



Proper loop expansion

\ 7\ Comparable when
Vo(9) = £:0' e
V(o) = 6oy Ee“ <ln ifz - 2) * i; (1 %z - g) > 1672

+<>\2 1 2)\€> (ln¢—z—3>+1Kiani+1Kfan4 e Then VO and V1

144 W R . J of order f;

/‘ f K2 =L (3 VW 200%)

These terms all have extra i suppression

Expanding in /; with A ~ A

A het 5 3. ed 3
. LO _ 7 4 4 _Z 4 T 22 LO __ 4 4
order /i : V=% e ( s tal u) —> Viin = — e ()

order p%: V0=

he2X (€ € e\
T6n2" (8 20 6y )

Problem: higher-loop contributions also of order /42



2-Loop potential in scalar QED

 Known in Landau gauge
« Some terms computed by Kang (1974), not in MS
 Some terms at order %% unknown

We computed all the relevant 2-loop graphs:

_ IPgle’ 2 €9 £\, e 5 2 AG A§
@Q _(16W2)25[—121n 7+(8 3In @)1 ?_Q_E_Tfsl =+ @]
_ Rgte | 2 €9 ep T 3

@ —m_(2+6§)ln . —(3+7¢)n F+4+§+ §+—§}

m _ et -(18+6§)ln2%—(21+7§)ln ¢ A T 15, 3 g]

M_(l&r?)?_ P TIR R

14724
h2 4.6 2
_ o o2y B 3T
(1672)? 1 o2 4

Then the relevant part of the 2-loop potential is

ho\? ¢ 62 3., A¢ ¢
Vy = (16”2) eS¢t [(10 — 6£) In? % + (—3 + 4€ — 5gln @) ln%

11X\ Tl 3
+€ (_2+41n662>+ﬂ +--- terms of order &



Potential at minimum

_ het 5 3. ed he? )\ g 2)\@54
RRETRS <_§+ " 7) T ( 2™ ot )
R2eb o €0 62 3.. A ed 1 1. X\
+(167)2¢4|:(10—6£) — (—34—45—551 602 )] 74_6(_5_'_4_11 ﬁ)_'_g]
« Solve V'(¢=v) =0 for A(v):
het heb ev 5 €V Ehp 2 cv }
A= 1o (6 361n—) + Ty {—160 — 24€ + (376 + 90¢) ln; —2401In ’ = +9€In { T (1 - 61ng>}

* Pluginto V(v):

4 652 2
VLAY G B NG o N e Ly S
Vinin = v 167r2( 8>+v (16792 12 62 — 9¢ + ( 60+18£)lnu +2§1 T2 \1 GIDM

Still gauge-dependent!

Problem : v = <¢> is gauge-dependent

Express Vnin in terms of only other dimensionful scale: n



In terms of

h
1672

« Tree-level vev is v=px
4
¢ (1x) {6 — 30 ln[e(“x)]] » Exact (non-perturbative) definition of jix

Define pux by | AMux) =

Then, vev is:

he? (40 94 20 £ 3 g rlEn 1
= — {4+ T Ilne— —1In?e— >+ Z€I 2] [ 1-61 }—— +&Ine )
v MX+MX167TQ{ 5 + 5 ne 3 n‘e 2+2§ ne+4 n 167r2( 6lne) 6§ §

« gauge-dependent vev is OK — not physical

Potential at minimum is:

eth 4, (3 en (71 62 ) ehn (& 3
L= _Z — = —— Sl Y
Viin = 77t ( 8) T Tom2)2x < g 3 i e) et 4 peine

* gauge-dependent vacuum energy is not OK
Still gauge-dependent!

What's missing? :
| More diagrams!



Oct 11, 2017 Matthew Schwartz

Daisy resummation

Higher order graphs can scale like inverse powers of A:

Effective masses depend on A
Only one series of graphs contribute at order ~

We can sum the series:

Ve6daisies — ¢4 h <_€2>\€> [)‘<¢) + (1 _ M) In (1 — M)]

1672 24 A A




Full potential at NLO:

PNLO _ he? )\¢4 (§ B él 2)\§¢4>

1672 24 6
h%eS 5 €0 62 3 ed 1 1. X 71
+ (16#2)2¢ [(10—6{)11"1 ;—F ( 3 +4& — §§ln?>l ;—F{( 5 +Zln@> +€}
BN (6N [A9) A(9) (@)
T (‘ﬂ) [T+(1T)ln(17)]
Now... vacuum energy is gauge-invariant!
3het eSh? 71 62
Vmin — A oo — — —1 101
gt T (1672 )2“X ( 6 3 crom 6)
Field values are still gauge-dependent:
e? 1
v —,uX+,uX1Fé 5 {—430—1—%41116— ?1 2 —g+g£1ne+ gln {122(1 —61ne)] —6§+€lne}-
Alz,uf—l—u[lh;; {—g—k%lne—?l 2 —g—l-gflne—l-%l [léh (1-61In e)]—%&%—ﬁlne}.



S TANDARD MODEL




| essons from scalar QED

1. Gauge invariance requires consistent expansion in /;

/ To NnLO order \

Drop some n-loop contributions Include contributions from > n loops

2. Don'’t resum logs by solving RGE for V¢
(M% + B 81 - ’Yh%) Vet = 0

« Mixes up orders in k in an uncontrolled way

3. Do resum logs by using couplings at some scale py

» Natural condition for uy is that V o' (¢=nx) =0

4. Don’t express V,,, in terms of v = <¢>

« Express Vi, in terms of uy instead
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Standard Model

1 h2(g2 + g2
VIR = A s ( e :

2h2 2h2
~10 1504 + 12441 1449 — 96141 }
/ \ 9192 92"' 92 n =" 42 + yt yt 1 2/1/2/

Tree-level Y

Part of 1-loop A\ ~ O(h)

[ —5¢1 +6(g7 +¢3)*In

d .
— VIO =0is

« Scale h=ux where 7

1 4 2 92 4 4 2 92+92 92 y2
A= 25672 [91 + 29195 + 39> — 48y, — 3 (91 +93) In > 1 2 —6g§1n22 ~|—48yfln?t]

* Run couplings with 3-loop B-functions, find numerical solutions

Veff(h)
WX = 2.46 x 10'Y GeV Hmax 1070 GeV

et = 3.43 x 10%° GeV > ~ e

1
1
1
1
\"

=247 GeV Wmin =




Standard Model at NLO

* We know the 1-loop contribution to V.0

-1 )\h4 2 2 >\3h12 2 4 2 2
V(l,NLO)(h) — 5 ng% In (fBgl :_fWQQ) —3 +§-ng In gW.QZ (gBl.Zl + {WQZ) —9 )\h4
2567 4p 64p

* We know the 2-loop contribution to V.o in Landau gauge

1 1 2 4
2y = i [89§y? (37 — 8¢ +9) + Sy (~6rerw — 3} + 48r, — 6raw — 69 —7°) + +%(132mz — 6612 + 306ryyrz — 15313, — 367y + 9247 — 40807 + 4359 +
3y2gs gg 2 2 2 2
B (S0, 4y — 30— Grory — 120+ W21y + 15+ 20 + + 2 (6r(31r: + 3w — 470) — 1020} — Orfy, + T08r% + 2883 + 2067%) +
YEIY (o 2 YL939Y o 2 +yi(42(32—8 +9) = 963 (e — 1w + 1)) + 5 (g8 — Bgiu? 1) Lip 22
+73 (27r7 — 5dryrz — 681 — 2877 + 189) + L2221 (9r7 — 18ryrz + dry + 4417 — 57) + g \Hy ST —oTy 92 (Tt —Tw 7 92 = 3924 + v/ 257 +
g8 9 5 9 5 Yi 9+ 9% 4_ o2 2 4 2(m 2 o, 64gs
+@(36Ttr2+54rt — 414y +69rf, +1264ry + 15615 +632r7 — 144y — 2067+907%) + +3g€( 52 ) (992 — 6939% + 179y + 247 (Tgy — T35 + R gz)
13 Y 2
4.2 2 2 2 6
n 48
+%(12mz — 612 — 6ryy (5377 + 50) + 21312, + 475 (5T, — 91) + 817 + 4672) + +%§(92 ) <1Sg§g% Y p— 2) ] .
93 9y + 93

« We don’t know the Daisy contribution. But we do know if
vanishes in Landau gauge at NLO

Veﬁdaisies — ¢4 h (_62)\§) [)\(Qb) + ( A(Qb)) hl( )‘<¢))

1672 24 Y D\ D\

« Assuming everything works like in scalar QED, we have everything we
need for NLO
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Results

Absolute stability: for what values of the Higgs and top masses is is Vi, = 07?

il Meta-stability

pole

122 124 126 128 0.112 0.114 0.116 0.118 0.120 0.122

ag(mz)



Results

Absolute stability: for what values of the Higgs massis Vi, = 0 at fixed top mass?

Holding top mass fixed

129.9;

1-loop, traditional method

N
N
©
oo
T
I

1297 o e ]
’ :

2 loops, traditional method (Landau gauge) -

Absolute stability bound on Mgy
N
(o]
(0]

129.5F ]
NLO, consistent method ]
129.4}
42930
0 50 100 150 200
&t

« Absolute stability bound lowered by 300 MeV
» Larger shift that including the 2-loop V¢



Conclusions

Tunneling involves many exotic elements of quantum field theory

180

* Tunneling rates et s
« Two time scales relevant for tunneling: Tgogh << T << Ty,

« Asymptotic expansions and analytic continuation critical

« Can be avoided with a direct approach 176

- Metastability

» Requires consistent use of perturbation theory
* A~ h power counting

« UV physics does not decouple
« Stability is necessarily Planck-sensitive
« Can make lifetime shorter, not longer

Do we know Iif the universe is stable?

« Our universe will probably decay, eventually.

* We don’t know how long it will last



2. SCHRODINGER
EQUATION

Gamow (1928) & Siegert (1939)



1. THE POTENTIAL
DEFORMATION METHOD

(CONTINUED)

Colelman & Callan (1977)



Potential deformation

static false
vacuum
@ @

I

T 2 4
Sy(w) = = —g— + 2
o(®) 12 9977y ~ « realatg=+1
_ Z, = / dre=9(*) <« realatg=-1
deform potential —o0 « an analytic function of g

to prevent tunneling
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g=1+1€ —00

More standard example = [ o

Divergent along
physical

/ integration contou
— = . (real axis)

Analytically
continue
to g:-

* Fix integration to be along contour passing through saddle at x=0
* Return to g=1, keeping integration along green contour
* Znow has imaginary part at g=1

S = N W s D

Well-defined procedure. But is the imaginary part the decay rate?
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Add convergence factor 2 o

Si(r)=— —g— + —
o(0) =5 —97 F 5
* Modifying potential/action away from region of interest should not affect rate
g = exp (Z%) - (Zg) z e 100
M g = +1 80
% )
Zyg :/ dae5a(®)
— o0

« realatg=+1
* realatg=-1
[ A | «  Z4is an analytic function of g

g = exp (ie) «  We can still fix the contour at g=-1
g = —exp (—ie) and follow it back.
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P h . I I . .t e T << T\ (no return flux)
ysical limits e
['=— lim lim —— — Ppy

S Tsish%w%AOPdeT
potential +(T)=a

E Z = (ale "7 |a) = / Dxe Sl
i 2(0)=a

| ~ e_EoT + e_EFVT

1
h — lim Tan:min(Eo,EFV)

T— 00

Taking T — oo picks out true ground state Eg,

.| paths
shot
— 1 ]
-1 static FV '
0 5 10 15 20

T

action




- . » T >> Tg0sn (ONly metastable FV decay)
Physical limits
2.07 B
potential

T << Tno (no return flux)
1 d
I'=— lim lim —— —Ppy
Tsilc—;sh o0 WTI_._)O PFV dT
! "(T)=a
-\ . Z = <a|6_HT|a> — / Dye el
1oL \\ ] 33(0)2(1,
[ ““ P ~ e_EOT—I—e_EFVT
05 U PP EE et ] 1
] — lim —=InZ = min(Ey, K
00 ] h Tl—I>noo T n mll’l( 0, FV)
_0'5: Taking T — oo picks out true ground state E,
—23 | —l' | 0 | 1 | 2
5 paths We want to T << T (no return flux)
' shot { 1. Deform the potential so FV is true ground state
1t
| /bounce | 2. Take T — o0
« Picks out Erv(g) [75> 1., (only metastable FV decay)
-1 static EV 3. Deform back
0 5 10 15 20
. T
action

The T — oo limit does not commute with analytic continuation
* min(Ep, Epy) is not analytic

T — oo limit
& like i — 0 limit
T~ /dwe—sE N /dme_w% forces saddle point approximation
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Saddle point approximation

Zy :/dxe%(_%w2+%x4)

1 2
z/dxe_%gc2 {1—|—gw4—|—— (gx4) +w

4 2 \4
3g 105g? 3465g® 675675g" 4364B605g°> 7027 425405 g°
=V2m| 1+ . - v + +
32 128 2048 8192 65536

» Asymptotic series
» Coefficients grow factorially
« Summing the series does not reproduce the original function

b Performing the saddle point approximation does not commute with

analytic continuation 1

c\ﬁ move contour from real line to thimble

(—

e
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Examples

2 ot

€T

Deform to stabilize
false vacuum

\{_/

N

L

T - * limit fixes to green contour

Matthew Schwartz

Deform to stabilize /
bounce \

®
Z has imaginary part *

equal to all of the bounce contour ~—1 —

bounce static false

vacuum

Deform to stabilize
shot

1) e
"7

m

Z has imaginary part
equal to half of the
bounce contour

Z has imaginary part
equal to minus half of the bounce contour

* Probability grows with time
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Discontinuity

Can we just integrate along the FV contour?

—

static false
vacuum

bounce

Yes, at least for this toy integral
Z:/ dze=5®)
C
No

» Not clear what “fixing to a contour” means for a path integral
« Saddle point approximation loses the imaginary part

« Expanding around the saddle gives a real integral

« Imaginary part comes from region far away
« Saddle point approximation does work for the discontinuity

12| e =1/2: ¢

~_ un_—



Summary of tunneling rates

Precise definition of decay rate involves two limits ' = — lim lim —— —PFPrv

T << Ty (no return flux)

Three methods to compute I' |
1
[
- Solve Schrodingers equation A »
 Impractical for QFT 0.0/ Toos - 5
T PyeTT ounce static false
‘ NL R T vacuum

« Take T >  limit shot

» Deform back and compute imaginary part

Is the result the decay rate?

\
« Direct approach using Minkowski space causal propagators
3 + Does not rely on saddle-point approximation €«<—R—
\

2 + Deform potential to stabilize false vacuum

* Does not rely on deforming potential
* QFT derivation is simple — no bold leap of faith
* Non-perturbative formula (

I'r = 2Im li

x(T)=a _Sulx
fw((—%)m Dz el ]5(Tb[$]))
T—iT

Ji I, Daemsela



Summary of potential deformation method

1. Deform the potential so FV is true ground state | T <<Tu. (no return flux)
2. Take T > «
* Picks out Ery(g) T >> Tg0sn (Only metastable FV decay)
« Fixes integration contour to be the steepest descent contour passing through
the static FV saddle point
3. Deform back

OR

« Compute Z by integrating along the steepest descent contour passing through
the static FV saddle point

OR

« Compute I' by integrating along the steepest descent contour passing through
the bounce, taking the imaginary part, and multiply by 1/2

« Mathematically consistent procedure to get imaginary part out of an analytic real function Z
« Has the right ingredients associated with the necessary limits

Does this procedure give
the decay rate?
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From Buttazzo et al (arXiv:1307.3536)

Sensitivity to new physics

Old way: v A 3 .
when is A; = Anp? L _—~u s 0
A hl s
g 172}
H L

« gauge dependent, since A; is gauge-dependent 170

Stability 1

: . T 2 s 126 128 130 13
New gauge-invariant way L
1
 Add 06 = —5
A2
NP

« See how big Ayp must be so that V,, =0

|H|6 to the SM Lagrangian




Planck-sensitivity

Does the tunneling rate depend

on quantum gravity?

« Guidice, Strumia et al (arXiv:1307.3536): 1%
 Instability scale below Mpl, so no.

Bk =0 at n= 1017 GeV < Mp, 178

Rapid instability

- Metastability

176

« Sher, Brandina et al (arXiv:1408.5302):
field at center of bubble
is greater than Mpl, so yes

S
d5(r =0) = 10"°GeV ~ Mp

L QA~'
170H %>,

168
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My, corrections:

-> —_>

Standard Model potential * Lifetime = 0 sec
Liftetime = 106 years » Arbitrarily small bubbles form and grow

Vsm
0 \/_\
~~—"

1 1
A AV = —a——HS + g— K8
/ dd AV Nz, +5M§,1

0 \/\ o

\/\/ h
« Planck sensitivity not due to coincidence that 3, =0 at u ~ Mp,
« Tunneling is non-perturbative and always UV sensitive.

» Lifetime can be anything!




