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What	is	the	fate	of	the	universe?
1.	Static	universe 3.		Cold	and	Empty	Future

L ≤ 0

1998:	Cosmic	acceleration	
directly	measured	with
supernovae

L > 0! 

2.	Big	Crunch

Einstein	1917:
Dark	energy	tuned	against	matter L > 0

Hubble	1929:
Universe	is	expanding
Creationism	is	born



July	4,	2012:	Higgs	boson	discovered!

What	did	we	learn?
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What	is	the	Higgs	field?
• The	Higgs	field	h(x)	has	a	constant	nonzero	value	everywhere

• Excitations	of	the	Higgs	field	are	Higgs	bosons
• How	hard	it	is	to	excite	the	Higgs	field	depends	on	its	potential

V (h) = ⇤+m2h2 + �h4

What	do	we	know	about	this	Higgs	potential?

hhi = v = 246 GeV
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V (h) = ⇤+m2h2 + �h4

• 3	free	parameters	(L,	m	l)
• Must	be	measured	from	data

Renormalizability of	the	Standard	Model	

Classical	potential	is	quartic	(4th	order)
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Higgs	potential

1933:	Fermi	theory	of	radioactive	decay 1998:	zero-point	energy	(dark	energy)	measured
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2012:	curvature	at	minimum	measured
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V 00(v) = m2
h = (126 GeV)2

Classical	potential	
Completely	fixed!



• 3	free	parameters	(L,	m	l)
• Must	be	measured	from	data ✓

Renormalizability of	the	Standard	Model	

Classical	potential	is	quartic	(4th	order)

V (h) = ⇤+
1

2
m2(h� v)2 +

�2

16⇡2
h4 ln

h

v
+ · · ·

V (h) = ⇤+
1

2
m2(h� v)2

• Quantum	corrections	are	calculable!
• Small	corrections	for
• Can	be	large	for		
• Limit	on	calculability	is	

h ⇠ v
h � v

h . MPl = 1019 GeV

quantum-corrected	or
Effective	Potential
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Natural	units	Mpl =	1

10-124

MPl
4	=	1

10-68

V(h)
Calculable	region

Uncalculable region
(Quantum	gravity	large)

Classical	region
(quantum	corrections	small)
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Our	vacuum	is	absolutely	stable

0

MPl
4	=	1

1

Our	vacuum	will	eventually	decay	…
…	but	how	long	will	it	take?
…	and	how	do	we	know?

What	could	happen?

V(h)

h
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0

Veff(H)

H

v	=	247	GeV
hmin =	1033 GeV

LI =	1011 GeV

hmax =	1010 GeV

Standard	Model	Effective	Potential
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Higgs	boson	mass

mt =	173±2	GeV
(measured	1995)

Need	precision	measurements
And	precision	calculations	
to	resolve
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Standard Model Effective Potential
Oct 11, 2017 Matthew Schwartz

0

Veff(H)

h

v = 247 GeV hmin = 1033 GeV

LI = 1011 GeV

hmax = 1010 GeV

Are these scales physical?

Is the stability Planck sensitive?

(not to scale!)



Problem 1: gauge dependence
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Instability scale LI
=  value of h where V(h) = 0

• Indicates sensitivity to new physics

• hmin also gauge dependent
• hmax also gauge dependent
• …

0

Veff(h)

h

v = 247 GeV

Landau gauge (x=0)

True minimum
Vmin

Vmin > 0 à Absolute stability

x

LI

(�Vmin)
1/4

x

hmin

hmax



Problem 2: G = 0
Oct 11, 2017 Matthew Schwartz
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Figure 4: Left: Generic potential with a false and true vacuum. Right: The inverted
potential. The stationary path x̄(⌧) is the solution to the equations of motion of a ball
rolling down the inverted potential with boundary conditions x(0) = xi and x(T ) = xf .

However, if we evaluate the limit for the unphysical g, and then analytically continue to the
case of interest, we obtain an imaginary part. This then is the precise meaning of Eq. (3.4):

�

2
= Im

0

@ lim
T !1
g<0

1

T
lnZg

1

A

g=1

(3.6)

The notation is meant to indicate contortions of taking the limit with negative g, then
analytically continuing to positive g and then taking the imaginary part.

Why does the limit not commute with the analytic continuation? There is no reason to
expect it should. According to Eq. (3.2), function Zg is schematically given by e

�Ea(g)T +
e
�Ec(g)T . As T ! 1, this picks out min(Ea, Ec), which changes non-analytically as g varies
from positive to negative. Ideally, one would like a proof that any deformation of V (x) to
Vg(x) leads to the same imaginary part after analytic continuation back and forth, and this
is generally assumed to be true. Let us set aside this subtlety in Eq. (3.4) and move on to
calculating the path integral using the saddle-point approximation.

The path integral can be approximated by summing over stationary points of the Eu-
clidean action. For each stationary point, that is, for each solution x̄(t) to the Euclidean
equations of motion, the saddle-point approximation of the path integral around x̄ evaluates
to

Ix̄ ⌘
Np

det[�@2
t + V 00(x̄)]

e
�

1

~SE(x̄)(1 +O(~)) (3.7)

where we have put the ~ back in for clarity, and N is some constant related to the normal-
ization of the path integral. We also recall that the stationary paths x̄(⌧) are solutions to
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Z ⌘ ha|e�HT |ai =
Z

x(T )=a

x(0)=a

Dxe�SE [x]

where the right-hand side is the path integral using the Euclidean action SE[x]. By inserting
a complete set of energy eigenstates, the matrix element can be written as

Z =
X

E

e
�ET

�E(xi)�
?

E
(xf ) (3.2)

Then we see that the lowest energy can be deduced from

E0 = � lim
T !1

1

T
lnZ (3.3)

Roughly speaking, we expect that when there is a decay, E0 will have an imaginary part
corresponding to the decay rate, and so2:

�

2
= Im lim

T !1

1

T
lnZ (3.4)

There are many ways to connect the imaginary part of an energy to a decay rate, but the
connection is not automatic. For example, in Section 2.2 we found the decay rate to be
the imaginary part of a eigenstate of the Hamiotonian with (unphysical) Gamow-Siegert
radiative boundary conditions. For normalizable modes of a Hermitian Hamiltonian, all
the energies including E0 are real. For physical potentials, which are bounded from below,
the energies and Euclidean action are bounded from below as well. Correspondingly Z is
manifestly real. Hence Eq. (3.4) must be defined in a much more careful manner.

Consider the asymmetric double-well potential in Fig. 4. Clearly if in Eq. (3.1) one takes
xi = xf = c, where c is the location of the true minimum of the potential, the result will
be approximately e

�EcT , where Ec is the true ground state energy. One might hope to find
a complex energy associated with a metastable state at x = a by setting xi = xf = a in
Eq. (3.1). However, the points xi and xf only contribute through the wavefunction factors
�E(xi) and �

?

E
(xf ) in Eq. (3.2), which do not contribute to E0. Thus the ground state energy

will result from Eq. (3.3) with any xi and xf . In particular, we do not need the wavefunction
factors in Eq. (3.2) to be large in any sense. As long as they are non-zero; the T ! 1 limit
as written will still always extract the ground state.

In order to get an imaginary part, then, we must do something more tortuous. We must
first deform the potential V (x) to Vg(x), where g is a parameter which links the physical
problem (say g = 1) to a di↵erent problem, in which a is the true ground state (say g < 0,
see Fig. 5). If we then take the limit in Eq. (3.3) of Zg for general g, we see:

� lim
T !1

1

T
lnZg =

⇢
Ea(g) g < 0
Ec(g) g = 1

(3.5)

where Ea and Ec are the ground states of the wells near the points a and c respectively. If
we simply evaluate the limit for the g of interest (g = 1), we get the wrong answer (Ec).

2
Note that there will be a sign ambiguity in the evaluation of Eq. (3.4), as we will see later in this section.

The calculation should always be done so that � > 0, which corresponds to the physical decay rate.
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Isolate ground state energy
from late times

Decay rate is the imaginary
part of the energy

Clearly this is not exactly what is meant
• Z is real
• True ground state at Ec = V(c) has nothing to do with the false vacuum 

How do we get an imaginary part?

Z =
X

E

e�ET | E(a)|2



Problem 3: G =
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�

2
= Im lim

T !1

1

T ln

Z
D�e�S[�b]� 1

2S
00[�b]�

2

Assume the “standard” formula:

“bounce” =  solution to the Euclidean equations of motion

Separating out the translation modes Eq. (2.6) becomes

�
⇠ = �b(x) + ⇠

µ

s
2⇡

S[�]
@µ�b(x) +

X
⇠j�j(x) (2.13)

To integrate over translations, we use collective coordinates [1, 52–55], parametrizing fields
with

�
x0,⇣ = �b(x

µ + x
µ

0
) +

X
⇣j�j(x

µ + x
µ

0
) (2.14)

By expanding Eq. (2.14) for small xµ

0
and comparing to Eq. (2.13) we see that the Jacobian

to go from ⇠
µ to x

µ

0
is

J =

r
S[�b]

2⇡
(2.15)

Then the path integral can be written as

Z

CFV

D�e
�S[�] = N

✓
S[�b]

2⇡

◆2 Z
d
4
x0

s
1

det0 S 00[�b]
(2.16)

where det0 refers to the functional determinant with the zero eigenvalues taken out by hand
and N some (infinite) constant. Noting that the integral over d

4
x0 gives the volume of

euclidean space time, we find

�

V
=

1

2

✓
S[�b]

2⇡

◆2

e
�S[�b]+S[�FV]Im

s
det[S 00[�FV]]

det0[S 00[�b]
(2.17)

3 Scale Invariance

Any classically scale invariant action will admit an infinite family of bounces related by scale
transformations. To be explicit, we take the potential V (�) = 1

4
��

4 and assume throughout
this paper that � < 0. Then there is a 5-parameter family of bounces given by

�
R,x

µ
0

b
(x) =

r
8

��

R

R2 + (x+ x0)2
(3.1)

These Fubini-Lipatov instantons [76, 77] all satisfy ⇤�b � ��
3

b
= 0 and all have the same

Euclidean action

S[�b] =

Z
d
4
x


1

2
(@µ�b)

2 +
1

4
��

4

b

�
= �

8⇡2

3�
> 0 (3.2)

There are four normalizable fluctuations around the bounce corresponding to translations

�µ =
q

2⇡

S[�b]
@µ�b. These are handled using collective coordinates as discussed above. We

therefore take x0 = 0 without loss of generality. We also use r =
p
xµx

µ as our radial
coordinate so that the bounce is

�b(x) =

r
8

��

R

R2 + r2
(3.3)

10

Massive case (Higgs potential)

Massless case (scaleless potential)

⇤�� V 0(�b) = 0

V 0(�) =
1

2
m2�2 +

1

4
��4

V 0(�) =
1

4
��4

�b =

No solutions

Too many solutions

x0 (translations)� ⇠ lim
T!1

T · V#�

V
⇠ #

• rate per unit volume
• bubbles of true vacuum can form anywhere
• not a problem

R (rescalings)� ⇠
Z 1

0
dR = 1

• bubbles of any size can form
• rate is infinite!

∞



Summary
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane (upper left) and in the �–yt plane, in terms of parameter renormalized at the Planck
scale (upper right). Bottom: Zoom in the region of the preferred experimental range of Mh and
Mt (the gray areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to ↵s(MZ) = 0.1184 ± 0.0007, and the grading of the colors indicates the size of the theoretical
error. The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

determined at hadron colliders su↵ers from O(⇤QCD) non-perturbative uncertainties [41]. A

possibility to overcome this problem and, at the same time, to improve the experimental

error on Mt, would be a direct determination of the MS top-quark running mass from ex-

periments, for instance from the tt̄ cross-section at a future e+e� collider operating above

the tt̄ threshold. In this respect, such a collider could become crucial for establishing the

structure of the vacuum and the ultimate fate of our universe.

As far as the RG equations are concerned, the error of ±0.2 GeV is a conservative

estimate, based on the parametric size of the missing terms. The smallness of this error,

compared to the uncertainty due to threshold corrections, can be understood by the smallness

of all the couplings at high scales: four-loop terms in the RG equations do not compete with

finite tree-loop corrections close to the electroweak scale, where the strong and the top-quark

Yukawa coupling are large.

The LHC will be able to measure the Higgs mass with an accuracy of about 100–200

MeV, which is far better than the theoretical error with which we are able to determine the

condition of absolute stability.

18

Previous work
DeGrassi et al 2012 (arXiv:1205.6497)

Gauge dependent

Unnecessary IR cutoffs used

Uncertainties 
incorrect

Numerical approximations used

• Improper use of renormalization group
• Based on heuristic Coleman-Callan formula  

• No IR cutoffs
• Completely analytic 

rate formula

• Gauge invariant formula used
• Gauge invariance checked explicilty
• Uncertainties handled carefully
• Decay rate derived rigorously in QFT

Our work
Andreassen, Farhi, Frost, MDS (various)
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How do we calculate a decay rate?
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�

2
= Im lim

T !1

1

T ln

Z
D�e�S[�b]� 1

2S
00[�b]�

2NLO formula:

Separating out the translation modes Eq. (2.6) becomes

�
⇠ = �b(x) + ⇠

µ

s
2⇡

S[�]
@µ�b(x) +

X
⇠j�j(x) (2.13)

To integrate over translations, we use collective coordinates [1, 52–55], parametrizing fields
with

�
x0,⇣ = �b(x

µ + x
µ

0
) +

X
⇣j�j(x

µ + x
µ

0
) (2.14)

By expanding Eq. (2.14) for small xµ

0
and comparing to Eq. (2.13) we see that the Jacobian

to go from ⇠
µ to x

µ

0
is

J =

r
S[�b]

2⇡
(2.15)

Then the path integral can be written as

Z

CFV

D�e
�S[�] = N

✓
S[�b]

2⇡

◆2 Z
d
4
x0

s
1

det0 S 00[�b]
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where det0 refers to the functional determinant with the zero eigenvalues taken out by hand
and N some (infinite) constant. Noting that the integral over d

4
x0 gives the volume of

euclidean space time, we find

�
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2
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2⇡
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e
�S[�b]+S[�FV]Im

s
det[S 00[�FV]]
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3 Scale Invariance

Any classically scale invariant action will admit an infinite family of bounces related by scale
transformations. To be explicit, we take the potential V (�) = 1

4
��

4 and assume throughout
this paper that � < 0. Then there is a 5-parameter family of bounces given by

�
R,x

µ
0

b
(x) =

r
8

��

R

R2 + (x+ x0)2
(3.1)

These Fubini-Lipatov instantons [76, 77] all satisfy ⇤�b � ��
3

b
= 0 and all have the same

Euclidean action

S[�b] =

Z
d
4
x


1

2
(@µ�b)

2 +
1

4
��

4

b

�
= �

8⇡2

3�
> 0 (3.2)

There are four normalizable fluctuations around the bounce corresponding to translations

�µ =
q

2⇡

S[�b]
@µ�b. These are handled using collective coordinates as discussed above. We

therefore take x0 = 0 without loss of generality. We also use r =
p
xµx

µ as our radial
coordinate so that the bounce is

�b(x) =

r
8

��

R

R2 + r2
(3.3)

10

⇤�� V 0(�b) = 0

“bounce” =  solution to the Euclidean equations of motion�b =

5 parameter family 
of bounce solutions

x0 (translations) � ⇠ lim
T!1

T · V#
�

V
⇠ #

• rate per unit volume
• bubbles of true vacuum can form anywhere

R (rescalings) � ⇠
Z 1

0
dR = 1

• Bubbles of any size can form

Step 1: 
Find the bounce

V (�) =
1

4
��4



Warm up: 1D scalar theory
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V (�) =
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therefore take x0 = 0 without loss of generality. We also use r =
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Separating out the translation modes Eq. (2.6) becomes
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⇠ = �b(x) + ⇠

µ
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S[�]
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X
⇠j�j(x) (2.13)

To integrate over translations, we use collective coordinates [1, 52–55], parametrizing fields
with

�
x0,⇣ = �b(x

µ + x
µ

0
) +

X
⇣j�j(x

µ + x
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0
) (2.14)

By expanding Eq. (2.14) for small xµ

0
and comparing to Eq. (2.13) we see that the Jacobian

to go from ⇠
µ to x

µ
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J =
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(2.15)

Then the path integral can be written as
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det0 S 00[�b]
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where det0 refers to the functional determinant with the zero eigenvalues taken out by hand
and N some (infinite) constant. Noting that the integral over d

4
x0 gives the volume of

euclidean space time, we find
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3 Scale Invariance

Any classically scale invariant action will admit an infinite family of bounces related by scale
transformations. To be explicit, we take the potential V (�) = 1
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Action is finite:

Need to compute

detS00[�b] =
Y

j

�j

Z =

Z
D�e�S[�b]� 1

2�S
00[�b]� =

1p
detS00[�b]

e�S[�b]

Compute determinant by multiplying eigenvalues

• How do you find the eigenvalues???
• How do you multiply them together (infinite product)?

A. Just do it
B. Use “elementary Fredholm theory” [Coleman Erice lectures, p. 340]

• a.k.a. Gelfand-Yaglom method 

S00[�b]�j = (�⇤+ 3��2
b)�j = �j�j

Step 2: 
Reduce to math 

problem

Step 3: 
Solve math 

problem
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There are four normalizable fluctuations around the bounce corresponding to translations
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@µ�b. These are handled using collective coordinates as discussed above. We

therefore take x0 = 0 without loss of generality. We also use r =
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coordinate so that the bounce is
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Choose one R and one center

Want to solve

5 modes with lj= 0:

To evaluate the these path integrals, we must be precise about the integral measure. We
do this by expanding the fields in some basis �j:

� = �b(x) +
X

⇠j�j(x) . (2.6)

The path integral measure can then be defined as D� =
Q

j
d⇠j.

An orthogonal basis is naturally provided by eigenfunctions of an operator. It is often
convenient to take the operator to be S

00[�b], so that

S
00[�b]�j = (�⇤+ V

00[�b])�j = �j�j (2.7)

To find the inner product on these basis functions, we note that

�k

Z
d
4
x�j�k =

Z
d
4
x�j(�⇤+ V

00[�b])�k = �j

Z
d
4
x�j�k (2.8)

where integration-by-parts has been used in the last step. So functions with di↵erent eigenval-
ues are orthogonal according to the inner product h�i|�ji =

R
d
4
x�i�j. It is also convenient

to normalize the fluctuations so that

h�i|�ji = 2⇡�ij (2.9)

Then we find

Z
D�e

�S[�b]� 1
2�S

00
[�b]� = e

�S[�b]
Y

j

Z 1

�1
d⇠je

� 1
2�j⇠

2
j 2⇡ = e

�S[�b]
Y

j

s
1

�j

(2.10)

The point of the normalization convention in Eq. (2.9) is to make removing a normalized
fluctuation equivalent to removing its eigenvalue from the product in Eq. (2.10).

If one of the eigenvalues is negative, then this expression (after analytic continuation)
will have an an imaginary part, as desired. There is at most a single negative eigenvalue [75].
It corresponds to the bounce being a local maximum of the action on the direction from �FV

(see Fig. 1) but a local minimum in all other directions.
If there are zero eigenvalues, then Eq. (2.10) is infinite. Examples are the translation

modes, which are proportional to @µ�b. To check, using S
0[�b] = 0 and that S[�] has no

explicit position dependence, we find

S
00[�b]@µ�b = @µ(S

0[�b]) = 0 (2.11)

confirming that @µ� are zero modes. To set the normalization of these modes according to
our convention, we note that

h@µ�b|@⌫�bi =
1

4
�µ⌫

Z
d
4
x(@��b)(@��b) = �µ⌫S[�b] (2.12)

Thus the rescaled modes
q

2⇡

S[�]
@µ�b are normalized according to Eq. (2.9).

9

4 translation modes

�d = @R�b

�T = @µ�b

1 dilatation mode

• Finite Jacobian going to “collective coordinates”
• Integral over x0 gives expected V T factor

• Infinite Jacobian going to “collective coordinates”
• Integral over R gives infinity
• Infinities don’t cancel – they multiply Z = 12

How do we find the rest of the eigenvalues?

�⇤b�j = b�j
b�j

det’ = determinant with 
zero modes removed 

(�⇤+ 3��2
b)�j = �j�j

B =
det0(�⇤+ ��2

b)

det(�⇤)
=

Q
j �j

Q
j
b�jAlso need


�⇤� 24R2

(R2 + r2)2

�
�j = �j�j
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Putting this all together we have

�

TV
=

2

TV

Im


N

R Q
d+1
i=1

d⌧i

(2⇡)
1
2

Q
1

n=d+2
d⇠n

(2⇡)
1
2
J(�c) exp

�
�S

⇥
�c(⌧) +

P
1

n=d+2 ⇠n�n(⌧)
⇤��

N
Q

1

n=0
d⇠n

(2⇡)
1
2
exp

�
�S

⇥P
1

n=d+2 ⇠n�n

⇤�

(15)

where we have held o↵ expanding the action in these fluctuations for now, as it turns out to
be much easier in a di↵erent coordinate system.

In the next section we choose �n(⌧) to be the eigenfunctions of the Laplacian, which as
we will see in the next section are mapped onto the Spherical Harmonics on Sd through a
stereographic projection.

4 Transforming to the sphere - stereographic projec-

tion

The following change of coordinates was introduced by ??Adler??, and makes the calculation
much easier (for more details see appendix A). The transformation x ! ⌘ where (for � = 1)

⌘
µ =

2xµ

1 + r2
, ⌘

d+1 =
1� r

2

1 + r2
= � 1 (16)

where  = 2
1+r2

, from which we see

⌘
2 = 1 (17)

and r
2 = x

2
0 + x

2
1 + · · ·+ x

2
d�1. That is, our d dimensional spacetime has been mapped onto

the surface of a d+ 1 dimensional unit sphere. This change of variables takes

d
d
x =

d⌦

d
(18)

where d⌦ represents integration over the surface of the unit sphere, and the operator

�@
2
� ⌘ �r

2
Rd� = 

1+ d
2


�r

2
Sd +

d

4
(d� 2)

�⇣

1� d

2�

⌘
= 

1+ d
2


L
2 +

d

4
(d� 2)

�⇣

1� d

2�

⌘

(19)

where

L
2 = �

1

2

X

a,b


⌘
a
@

@b
� ⌘

b
@

@a

�2
(20)

5

R=1

⌘5 =
1� r2

1 + r2

Stereographic mapping to 4-sphere

⌘2 = 1

�b = ⌘5 + 1
• Angular momentum operator on 4-sphere
• Eigenfunctions are 4D spherical harmonics

~L2
4Ynjlk =

1

6
(n+ 1)(n+ 2)Ynjlk

Rescale away constants

O · �j = �b(�~L2
4 + 1) · (�b�j)

Degeneracy:

with ~L
2
�nslm = s(s+ 2)�nslm. The eigenvalues only depend on n:

�
�

n
= �nslm =

(n� 1)(n+ 4)

6
= �

2

3
, 0, 1,

7

3
, · · · (3.22)

The eigenvalues of bO� are

b��

n
= �

�

n
+ 1 =

(n+ 1)(n+ 2)

6
=

1

3
, 1, 2,

10

3
, · · · (3.23)

The indices in �nslm are integers constrained by 0  |m|  l  s  n = 0, 1, 2, · · · . The
degeneracy of each eigenvalue is therefore

dn =
1

6
(n+ 1)(n+ 2)(2n+ 3) = 1, 5, 14, 30, · · · (3.24)

The eigenfunctions are normalized as

h�nslm|�n0s0l0m0iV =
12

2n+ 3

(n� s)!

(n+ s+ 2)!
�nn0hY

slm
|Y

s
0
l
0
m

0
i⌦ (3.25)

with hY
slm

|Y
s
0
l
0
m

0
i⌦ in Eq. (3.20).

The modes with s = l = m = 0 are spherically symmetric, functions of only r. The mode
with n = 0 that has ��

0
= �

2

3
is

�0000 =

r
2

⇡

R

R2 + r2
, �

�

0
= �

2

3
, d0 = 1 (3.26)

This mode is directly proportional to the bounce itself: �0000 =
q

��

4⇡
�b. The negative

eigenvalue arises because the action has a local maximum at the bounce in the direction
going from �FV to �b (see Fig. 1).

There are 5 modes with n = 1, with �
�

1
= 0. The spherically symmetric one is

�1000 =

r
2

⇡
R

R
2
� r

2

(R2 + r2)2
, �

�

1
= 0, d1 = 5 (3.27)

This is proportional to the dilatation mode: �1000 = �

q
��

4⇡
R�d. The other n = 1 modes,

which also have �1 = 0, are the zero modes for translations.
The modes with n > 1 are not particularly interesting:

�2000 =

r
2

⇡

R (r4 +R
4
� 3r2R2)

(r2 +R2)3
, �

�

2
= 1, d2 = 14 (3.28)

and so on.

14

B =
det0(�⇤+ 3��2

b)

det(�⇤)
=

det0(~L2
4 � 1)

det(~L2
4)

=

Q
n

h
� (n+1)(n+2)

6 + 1
idn

Q
n

h
� (n+1)(n+2)

6

idn

Andreassen, Frost, MDS (arXiv:1707.08124)

O = �⇤�
24R2

(R2 + r2)2
O = �⇤�

24

(1 + r2)2
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B =
det0(�⇤+ 3��2

b)

det(�⇤)
=

det(3��2
b)

det(3��2
b)

⇥
det0

⇣
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3��2
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⌘

det
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1
3��2

b
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• Same eigenfunctions
• Eigenvalues shifted by 1

✓
1

3��2
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⇤� 1

◆
�j = �j�j

�
�⇤+ 3��2

b

�
�j = ��j3��

2
b · �j

Note: 
eigenfunctions of rescaled operator are not 
eigenfunctions of original operator:

Function not number

mode will be normalizable according to this metric. Furthermore, this basis still lets us
evaluate the path integral, since

Z
d
4
x�jS

00[�b]�k = �

Z
d
4
xV

00[�b]�j
bO��k = �jh�j|�jiV �jk (3.12)

Thus the path integrals are still Gaussian in the fluctuations. The integral over a fluctuation

normalized with h�j|�jiV = 2⇡ then gives the usual factor of
q

1

�j
. Note that these obser-

vations apply to any theory, not just a scale invariant one: one can always simultaneously
diagonalize fluctuations around the bounce and fluctuations around the false vacuum.

Now we restrict to the scale-invariant case, with V (�) = 1

4
��

4. Explicitly, our eigenfunc-
tions should satisfy

O��n = �
�

n
�b, O� =

1

3��2

b

⇤� 1 (3.13)

and be orthogonal with respect to the inner product
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4
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24R2

(R2 + r2)2
�j(x)�k(x) (3.14)

Remarkably, we can find the solutions in closed form. For x0 = 0 in Eq. (3.1), they are
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l
(x) the associated Legendre polynomial and Y
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The full eigenfunctions in Eq. (3.15) satisfy Eq. (3.13), i.e.
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Explicitly, eigenfunctions are:
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The indices in �nslm are integers constrained by 0  |m|  l  s  n = 0, 1, 2, · · · . The
degeneracy of each eigenvalue is therefore
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1
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The eigenfunctions are normalized as
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i⌦ in Eq. (3.20).

The modes with s = l = m = 0 are spherically symmetric, functions of only r. The mode
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This mode is directly proportional to the bounce itself: �0000 =
q

��

4⇡
�b. The negative

eigenvalue arises because the action has a local maximum at the bounce in the direction
going from �FV to �b (see Fig. 1).
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This is proportional to the dilatation mode: �1000 = �
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which also have �1 = 0, are the zero modes for translations.
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and so on.

14
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Degeneracy:

1 negative eigenvalue (tunneling) 
5 zero eigenvalues

(translation/dilitation)
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The indices in �nslm are integers constrained by 0  |m|  l  s  n = 0, 1, 2, · · · . The
degeneracy of each eigenvalue is therefore
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This mode is directly proportional to the bounce itself: �0000 =
q
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4⇡
�b. The negative

eigenvalue arises because the action has a local maximum at the bounce in the direction
going from �FV to �b (see Fig. 1).
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5.1 Real Scalars

The case of a single scalar field was introduced in Section 3. The Euclidean Lagrangian is

L =
1

2
(@µ�)

2 +
�

4
�
4 (5.1)

The Euclidean equations of motion �⇤�+ ��
3 = 0 are solved by � = �b. The operator for

quadratic fluctuations around �b is

M� = �⇤+ 3��2

b
(5.2)

Thus real scalar fluctuations correspond to the case studied in Section 4 with x = �1.
For x = �1, the finite contribution from the sum over n � 0 is singular, (Sfin(x) in

Eq. (4.8) is singular as x ! �1). This is due to the zero modes at n = 1 corresponding
dilatations and translations around the bounce. To compute the determinant with zero
modes removed, we must first rescale the operator. We therefore define

O� = �
1

3��2

b

M� =
1

3��2

b

⇤� 1 (5.3)

Recall from Section 3.1 that this rescaling allows the change to collective coordinates to
have a finite Jacobian. The Jacobians for dilatation and translations are given in Eqs. (3.29)
and (3.30).

To compute det0 O� we must remove these modes from the sum in Eq. (4.7) and add in
only the n = 1 contributions to the false vacuum fluctuations. We note that the n = 1 terms
in Eq. (4.7) give

d1 ln
�1(x)

�1(0)
= 5 ln(x+ 1) (5.4)

This is also singular at x = �1. Removing the n = 1 terms from the sum, we find a smooth
limit as x ! �1:

S
�
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x!�1

[Sfin(x)� 5 ln(x+ 1)] =
15

2
+ 6�E � i⇡ � 12⇣ 0(�1) + ln

7776

3125
(5.5)

Note that we should leave the x
2 terms in the subtraction at n = 1 to avoid overcounting,

since these are included in the loops. For det0 we should only remove the n = 1 modes for
the bounce, not the false-vacuum, however �1(0) = 1 so removing the false-vacuum n = 1
mode has no e↵ect.

Combining with the divergent part from Eq. (4.19), we then have
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(5.6)

Here, bO� means the operator with �b = 0, corresponding to fluctuations around the false
vacuum. Note how the factors of �E have dropped out.
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Product is UV divergent (large angular momentm n)
• Regulate with dimensional regularization
• Possible to evaluate exactly

Since the dilation and translation modes are both normalizable, computing the Jacobian
is straightforward:
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r
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r
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5⇡
(3.29)

The Jacobian for the translation modes with this metric di↵ers from Eq. (2.15):
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r
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2⇡
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R

r
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5⇡
(3.30)

Note the important factors of R in both Jacobians – these are expected by dimensional
analysis but obscure without the rescaling (cf. Appendix A). So we find
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(3.31)

Note that all the eigenvalues of bO� and O� are dimensionless, so this expression has the
correct units.

We have shown that by rescaling the operators for fluctuations around the bounce and
the false vacuum, the natural basis for field fluctuations changes, and the Jacobian for going
between this basis and the basis containing a collective coordinate for dilatations is finite.
Since the final result in Eq. (3.31) should be independent of this rescaling, there must be
something that compensates for the infinite Jacobian if we do not rescale. In Appendix A
we show that in fact without rescaling det0 is infinite as well.

3.2 Solving the Scale Invariance Problem

The next problem is that the integral over R in Eq. (3.31) is infinite. Even without evalu-
ating the functional determinants, we can determine the R dependence of the integrand in
Eq. (3.31) completely by exploiting renormalization group invariance of �. To see this, and
to resolve the infrared divergence issue, it is critical to be consistent in power counting the
loop expansion, or equivalently, orders of ~. A similar consistency was essential to resolve
the gauge invariance problem of the ground state energy density in [17,38]. In the following,
we insert appropriate factors of ~. Powers of ~ will always correspond to powers of couplings
such as � in this scalar field theory or g2 in a gauge theory.

To leading order (LO) in ~, the rate is determined entirely by the exponential factor in
Eq. (3.31). Expanding this factor out explicitly we have

�

V
= e

1
~

8⇡2

3�(µ)

Z
dR

R5
· · · (3.32)

where �(µ) is the MS coupling at the scale µ and · · · refer to the rest of Eq. (3.31). Everything
after the exponential comes from a one loop calculation and is subleading in ~. It is commonly

said that the leading order prediction for the rate is �/V = e
8⇡2

~3�(µ) . However, such a claim
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Since the dilation and translation modes are both normalizable, computing the Jacobian
is straightforward:

Jd =

r
h�d|�diV

2⇡
=

1

R

r
6S[�b]

5⇡
(3.29)

The Jacobian for the translation modes with this metric di↵ers from Eq. (2.15):

JT =

r
h@µ�b|@µ�biV

2⇡
=

1

R

r
6S[�b]

5⇡
(3.30)

Note the important factors of R in both Jacobians – these are expected by dimensional
analysis but obscure without the rescaling (cf. Appendix A). So we find
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V
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Z
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s
det bO�

det0 O�

(3.31)

Note that all the eigenvalues of bO� and O� are dimensionless, so this expression has the
correct units.

We have shown that by rescaling the operators for fluctuations around the bounce and
the false vacuum, the natural basis for field fluctuations changes, and the Jacobian for going
between this basis and the basis containing a collective coordinate for dilatations is finite.
Since the final result in Eq. (3.31) should be independent of this rescaling, there must be
something that compensates for the infinite Jacobian if we do not rescale. In Appendix A
we show that in fact without rescaling det0 is infinite as well.

3.2 Solving the Scale Invariance Problem

The next problem is that the integral over R in Eq. (3.31) is infinite. Even without evalu-
ating the functional determinants, we can determine the R dependence of the integrand in
Eq. (3.31) completely by exploiting renormalization group invariance of �. To see this, and
to resolve the infrared divergence issue, it is critical to be consistent in power counting the
loop expansion, or equivalently, orders of ~. A similar consistency was essential to resolve
the gauge invariance problem of the ground state energy density in [17,38]. In the following,
we insert appropriate factors of ~. Powers of ~ will always correspond to powers of couplings
such as � in this scalar field theory or g2 in a gauge theory.

To leading order (LO) in ~, the rate is determined entirely by the exponential factor in
Eq. (3.31). Expanding this factor out explicitly we have

�

V
= e

1
~

8⇡2

3�(µ)

Z
dR

R5
· · · (3.32)

where �(µ) is the MS coupling at the scale µ and · · · refer to the rest of Eq. (3.31). Everything
after the exponential comes from a one loop calculation and is subleading in ~. It is commonly

said that the leading order prediction for the rate is �/V = e
8⇡2

~3�(µ) . However, such a claim

15

5.1 Real Scalars

The case of a single scalar field was introduced in Section 3. The Euclidean Lagrangian is

L =
1

2
(@µ�)

2 +
�

4
�
4 (5.1)

The Euclidean equations of motion �⇤�+ ��
3 = 0 are solved by � = �b. The operator for

quadratic fluctuations around �b is

M� = �⇤+ 3��2

b
(5.2)

Thus real scalar fluctuations correspond to the case studied in Section 4 with x = �1.
For x = �1, the finite contribution from the sum over n � 0 is singular, (Sfin(x) in

Eq. (4.8) is singular as x ! �1). This is due to the zero modes at n = 1 corresponding
dilatations and translations around the bounce. To compute the determinant with zero
modes removed, we must first rescale the operator. We therefore define

O� = �
1

3��2

b

M� =
1

3��2

b

⇤� 1 (5.3)

Recall from Section 3.1 that this rescaling allows the change to collective coordinates to
have a finite Jacobian. The Jacobians for dilatation and translations are given in Eqs. (3.29)
and (3.30).

To compute det0 O� we must remove these modes from the sum in Eq. (4.7) and add in
only the n = 1 contributions to the false vacuum fluctuations. We note that the n = 1 terms
in Eq. (4.7) give

d1 ln
�1(x)

�1(0)
= 5 ln(x+ 1) (5.4)

This is also singular at x = �1. Removing the n = 1 terms from the sum, we find a smooth
limit as x ! �1:

S
�

fin
= lim

x!�1

[Sfin(x)� 5 ln(x+ 1)] =
15

2
+ 6�E � i⇡ � 12⇣ 0(�1) + ln

7776

3125
(5.5)

Note that we should leave the x
2 terms in the subtraction at n = 1 to avoid overcounting,

since these are included in the loops. For det0 we should only remove the n = 1 modes for
the bounce, not the false-vacuum, however �1(0) = 1 so removing the false-vacuum n = 1
mode has no e↵ect.

Combining with the divergent part from Eq. (4.19), we then have

Im

s
det bO�

det0 O�

=
25

36

r
5

6
exp


3

2"
�

5

4
+ 6⇣ 0(�1) + 3 ln

Rµ

2

�
(5.6)

Here, bO� means the operator with �b = 0, corresponding to fluctuations around the false
vacuum. Note how the factors of �E have dropped out.
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does not really make sense – not only is this equation dimensionally inconsistent, there is
no indication at what scale µ to choose – so it is really no prediction at all. Indeed, the
leading prediction must start at one loop. And, as we will see the leading prediction actually
involves terms at two loops and higher. We will refer to the leading finite prediction with
correct units as the NLO rate.

Now, � is physical, so µ
d

dµ
� = 0. This implies that the implicit µ-dependence of �(µ)

must be compensated by explicit µ-dependence in the NLO contribution. In turn, the µ

dependence of �(µ) is fixed by its RGE. Thus we know the exact µ dependence of the
integrand to one-loop-higher order than we know the µ-independent part. By dimensional
analysis, the only scale around to compensate µ is R, and therefore we also know the full R
dependence of Eq. (3.32) to one loop:

�

V
=

Z 1

0

dR

R5
e

1
~

8⇡2

3�(µ)�
8⇡2

3
�(µ)

�(µ)2
ln(µR)

(· · · ) (3.33)

At one loop, the terms in (· · · ) have no explicit dependence on µ, by RG invariance, and
therefore no dependence on R either, by dimensional analysis. Here �(µ) is the �-function
coe�cient in the RGE for �, µ d

dµ
� = �(µ). Now we see clearly the IR divergence problem.

All of the R dependence in the one loop rate is explicit and the integral over R is infinite.
The only hope is for two-loop and higher-order contributions to come in and resolve the

infinity. At first pass, this seems impossible, simply by counting factors of ~: terms in (· · · )
at two loops and higher are necessarily ~ suppressed compared to the terms we have written.
The resolution is that after the integral, superleading ~ dependence is generated, as we will
now see.

First of all, let us assume the MS coupling �(µ) has a minimum at some scale µ = µ
?,

so �(µ?) = 0. If this is not true, then the running coupling �(µ) is unbounded from below
and rate is actually infinite. In fact, in this quartic scalar field theory, �(µ) is monotonic, so
we are going to have to assume there are other fields in the theory to continue. For a more
general theory, we can perform the path integral over all other fields around the bounce,
leading to a decay rate formula of exactly the same form as Eq. (3.33), but with the �-
function for � depending all all other couplings in the theory. In this case, �(µ) can vanish,
as for example it does in the Standard Model for the Higgs quartic at the scale µ

?
⇠ 1017

GeV.1

Since � is independent of µ we are free to choose µ = µ
?. Let us do so. Then the

exponential in Eq. (3.33) has no R dependence (since �(µ?) = 0) at all and the integral is
surely infinite. With µ = µ

?, the leading R dependence in the exponential factor comes in
at two loops, and has the form

�

V
=

Z 1

0

dR

R5
e
� 1

~S[�
?
b ]+~S[�?

b ]
�00?
�?

ln
2
(µ

?
R) (· · · ) (3.34)

1
Note that the vanishing of the � function can be achieved by balancing couplings g2 ⇠ � at the same loop

order. This is di↵erent from the requirement that the e↵ective potential have a minimum, which requires

two-loop terms to cancel one-loop terms [38]. The scale µ?
where the �(µ?

) = 0 can be parametrically

di↵erent from the scale µX where V 0
e↵(µX) = 0.
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= 1

• Can’t choose µ = R in integrand, since R is integrated over
• Can choose µ=µ* where b(µ*) = 0 (fixed point of l)

• Knowing 1-loop exponent gives µ and R dependence at 2-loops

• All terms fixed by 1-loop RGEs important.
• After some careful power-counting and resummation
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Since the dilation and translation modes are both normalizable, computing the Jacobian
is straightforward:

Jd =

r
h�d|�diV

2⇡
=

1

R

r
6S[�b]

5⇡
(3.29)

The Jacobian for the translation modes with this metric di↵ers from Eq. (2.15):

JT =

r
h@µ�b|@µ�biV

2⇡
=

1

R

r
6S[�b]

5⇡
(3.30)

Note the important factors of R in both Jacobians – these are expected by dimensional
analysis but obscure without the rescaling (cf. Appendix A). So we find
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(3.31)

Note that all the eigenvalues of bO� and O� are dimensionless, so this expression has the
correct units.

We have shown that by rescaling the operators for fluctuations around the bounce and
the false vacuum, the natural basis for field fluctuations changes, and the Jacobian for going
between this basis and the basis containing a collective coordinate for dilatations is finite.
Since the final result in Eq. (3.31) should be independent of this rescaling, there must be
something that compensates for the infinite Jacobian if we do not rescale. In Appendix A
we show that in fact without rescaling det0 is infinite as well.

3.2 Solving the Scale Invariance Problem

The next problem is that the integral over R in Eq. (3.31) is infinite. Even without evalu-
ating the functional determinants, we can determine the R dependence of the integrand in
Eq. (3.31) completely by exploiting renormalization group invariance of �. To see this, and
to resolve the infrared divergence issue, it is critical to be consistent in power counting the
loop expansion, or equivalently, orders of ~. A similar consistency was essential to resolve
the gauge invariance problem of the ground state energy density in [17,38]. In the following,
we insert appropriate factors of ~. Powers of ~ will always correspond to powers of couplings
such as � in this scalar field theory or g2 in a gauge theory.

To leading order (LO) in ~, the rate is determined entirely by the exponential factor in
Eq. (3.31). Expanding this factor out explicitly we have
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= e
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8⇡2

3�(µ)

Z
dR

R5
· · · (3.32)

where �(µ) is the MS coupling at the scale µ and · · · refer to the rest of Eq. (3.31). Everything
after the exponential comes from a one loop calculation and is subleading in ~. It is commonly

said that the leading order prediction for the rate is �/V = e
8⇡2

~3�(µ) . However, such a claim

15

= 1
where �? = �(µ?), S[�?

b
] = �
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2

3�?
, �0 = µ

d

dµ
�(µ) and �

0
0?

= �
0(µ?) using the one loop �-

function coe�cients only (cf. Eq. (6.13) for its SM expression). At two loops, there is
an additional single log term in the exponent scaling like ~ ln(µ?R). This will contribute
subleading in ~ after the integral so we have dropped it.

Now we observe that since �
0
0?

> 0 and �
?
< 0 at the minimum, the integral over R is

finite:
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Note that this contribution is parametrically more important as ~ ! 0 than the one-loop
correction which scales like ~0. Indeed, �2 blows up as ~ ! 0, as it must to reproduce the
divergence of the one loop integral. Thus, even though the two loop result is formally higher
order in ~, we cannot justify expanding the exponential to provide only ~ corrections to (· · · )
in Eq. (3.33).

Also note that the divergence returns if �0
?
= 0. Thus the scale invariance is not regulated

by just dimensional transmutation (i.e. by � 6= 0) but requires in addition that the �-function
have a minimum.

A natural concern is that since the two-loop result parametrically dominates over the one-
loop result as ~ ! 0, the three-loop result might dominate over two loops, and so on. To see
if this happens, we examine possible terms in the exponent, as allowed by RG invariance. At
each logarithmic order, the coe�cient of lnn Rµ

? is of order ~n�1 plus terms suppressed by
additional factors of ~. That is, we have lnRµ

?, ~ ln2
Rµ

?, ~2 ln3
Rµ

? and so on. Using the
two-loop term to set up a Gaussian around which we perform a saddle-point approximation
in ~, we find a generic term becomes

Z
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The · · · are all terms subleading in ~. So we see that in fact three-loop and higher-order
contributions are more important than the one- and two-loop terms, but all terms at three
loops and beyond are the same order in ~.

One might worry that since the n = 3 term is more important than the n = 2 term,
the saddle point approximation cannot be justified. Note however that expanding the ex-
ponential of the n = 3 term to next order gives a term scaling like ~4 ln6

Rµ
?. This term is

subleading by a factor of ~ to the terms we keep from the expansion of the n = 6 term. The
same justification explains why we can ignore R dependence coming from the RG invariance
of the non-logarithmic one-loop terms; these are also subleading in ~.

Since an infinite number of terms are relevant, we have to sum the series. Fortunately, this
is possible since all of these terms depend on only the leading order �-function coe�cients.
In a pure scalar field theory, the one loop RGE is easy to solve in closed form. In a general
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Superleading dependence on ~

The 1 is subleading in ~, so we can drop it. The geometric series is easily resummed, giving
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Finally, we can express the answer in terms of the running coupling. The result is
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In this expression �1-loop(µ̂) means solve the coupled RGEs using the one loop �-function
coe�cients only and evaluate at the scale

µ̂ = µ
? exp
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(3.45)

For example, in a complex scalar theory, µ̂ = µ? exp(�
⇡
2

6�
). Note that for small coupling,

the scales µ̂ and �? can be very far apart. Keep in mind however that all the couplings
in �1-loop(µ̂) are evaluated at µ

?, so this resummation does not indicate sensitivity to high
scales; it is merely shorthand for a series of terms all of the same order and the couplings.

Putting everything together and resetting ~ = 1, we find
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Here the extra determinants come from integrating over fluctuations of fields other that � in
the theory around the bounce and false vacuum backgrounds. As long as µ? exists (meaning
�(µ) has a minimum), this is a finite expression derived with consistent power counting. All
of the singularities associated with scale invariance have been completely resolved.

Finally, we point out that one does not have to choose µ = µ
?. For µ 6= µ

? there are terms
linear in ln(µR) in the exponent proportional to �(µ), which generate a slew of additional
terms in Eq. (3.46). For example, Eq. (3.35) becomes
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with �0 the one loop �-function coe�cient for �. The general expression including terms like
this can be used to calculate the scale uncertainty on the final prediction.
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The 1 is subleading in ~, so we can drop it. The geometric series is easily resummed, giving
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Finally, we can express the answer in terms of the running coupling. The result is
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In this expression �1-loop(µ̂) means solve the coupled RGEs using the one loop �-function
coe�cients only and evaluate at the scale

µ̂ = µ
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For example, in a complex scalar theory, µ̂ = µ? exp(�
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6�
). Note that for small coupling,

the scales µ̂ and �? can be very far apart. Keep in mind however that all the couplings
in �1-loop(µ̂) are evaluated at µ

?, so this resummation does not indicate sensitivity to high
scales; it is merely shorthand for a series of terms all of the same order and the couplings.

Putting everything together and resetting ~ = 1, we find
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Here the extra determinants come from integrating over fluctuations of fields other that � in
the theory around the bounce and false vacuum backgrounds. As long as µ? exists (meaning
�(µ) has a minimum), this is a finite expression derived with consistent power counting. All
of the singularities associated with scale invariance have been completely resolved.

Finally, we point out that one does not have to choose µ = µ
?. For µ 6= µ

? there are terms
linear in ln(µR) in the exponent proportional to �(µ), which generate a slew of additional
terms in Eq. (3.46). For example, Eq. (3.35) becomes
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with �0 the one loop �-function coe�cient for �. The general expression including terms like
this can be used to calculate the scale uncertainty on the final prediction.
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Finally, we can express the answer in terms of the running coupling. The result is
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In this expression �1-loop(µ̂) means solve the coupled RGEs using the one loop �-function
coe�cients only and evaluate at the scale
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For example, in a complex scalar theory, µ̂ = µ? exp(�
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6�
). Note that for small coupling,

the scales µ̂ and �? can be very far apart. Keep in mind however that all the couplings
in �1-loop(µ̂) are evaluated at µ

?, so this resummation does not indicate sensitivity to high
scales; it is merely shorthand for a series of terms all of the same order and the couplings.

Putting everything together and resetting ~ = 1, we find
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Here the extra determinants come from integrating over fluctuations of fields other that � in
the theory around the bounce and false vacuum backgrounds. As long as µ? exists (meaning
�(µ) has a minimum), this is a finite expression derived with consistent power counting. All
of the singularities associated with scale invariance have been completely resolved.

Finally, we point out that one does not have to choose µ = µ
?. For µ 6= µ

? there are terms
linear in ln(µR) in the exponent proportional to �(µ), which generate a slew of additional
terms in Eq. (3.46). For example, Eq. (3.35) becomes
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with �0 the one loop �-function coe�cient for �. The general expression including terms like
this can be used to calculate the scale uncertainty on the final prediction.
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Quadratic fluctuations around the bounce in Fermi gauges: 

• Bounce is spherically symmetric, use 3D spherical harmonics
• Radial fluctuations of longitudinal, scalar, and Goldstone modes couple
• Need

In Fermi gauges, the gauge fixing term is

LGF =
1

2⇠
(@µAµ)

2 (5.28)

So that at quadratic order
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Fermi gauges leave the global U(1) symmetry of the Lagrangian intact (the action is invariant
under � ! e

i↵�, Aµ ! Aµ). Note that since the ghost Lagrangian is independent of the
bounce, the functional determinant over ghosts normalized to the false vacuum is just 1.

In Fermi gauges, the equations of motion for Aµ and G are coupled. At quadratic order
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with V
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µ two independent generic vectors and Yslm(↵, ✓,�) the 3D spherical har-
monics in Eq. (3.16). In this basis, and writing G(x) = G(r)Yslm(↵, ✓,�) the fluctuation
operators decouple for each s, l,m and the resulting operators depend only on s. After some
algebra (see [11] for some details), we find for ⇠ = 1 that the aS and aL modes couple to G,
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In Fermi gauges, the gauge fixing term is

LGF =
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Fermi gauges leave the global U(1) symmetry of the Lagrangian intact (the action is invariant
under � ! e

i↵�, Aµ ! Aµ). Note that since the ghost Lagrangian is independent of the
bounce, the functional determinant over ghosts normalized to the false vacuum is just 1.
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monics in Eq. (3.16). In this basis, and writing G(x) = G(r)Yslm(↵, ✓,�) the fluctuation
operators decouple for each s, l,m and the resulting operators depend only on s. After some
algebra (see [11] for some details), we find for ⇠ = 1 that the aS and aL modes couple to G,
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where the gauge-dependent piece is
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Fermi gauges leave the global U(1) symmetry of the Lagrangian intact (the action is invariant
under � ! e

i↵�, Aµ ! Aµ). Note that since the ghost Lagrangian is independent of the
bounce, the functional determinant over ghosts normalized to the false vacuum is just 1.
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with V
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µ two independent generic vectors and Yslm(↵, ✓,�) the 3D spherical har-
monics in Eq. (3.16). In this basis, and writing G(x) = G(r)Yslm(↵, ✓,�) the fluctuation
operators decouple for each s, l,m and the resulting operators depend only on s. After some
algebra (see [11] for some details), we find for ⇠ = 1 that the aS and aL modes couple to G,
through the operator

M
SLG

s
=

0

BB@

��s +
3

r2
+ g

2
�
2

b
�

2

p
s(s+2)

r2
g�

0
b
� g�b@r

�
2

p
s(s+2)

r2
��s �

1

r2
+ g

2
�
2

b
�

p
s(s+2)

r
g�b

2g�0
b
+ g�b@r +

3

r
g�b �

p
s(s+2)

r
g�b ��s + ��

2

b

1

CCA +M
⇠

s
(5.33)

where the gauge-dependent piece is
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Fermi gauges leave the global U(1) symmetry of the Lagrangian intact (the action is invariant
under � ! e

i↵�, Aµ ! Aµ). Note that since the ghost Lagrangian is independent of the
bounce, the functional determinant over ghosts normalized to the false vacuum is just 1.

In Fermi gauges, the equations of motion for Aµ and G are coupled. At quadratic order
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µ two independent generic vectors and Yslm(↵, ✓,�) the 3D spherical har-
monics in Eq. (3.16). In this basis, and writing G(x) = G(r)Yslm(↵, ✓,�) the fluctuation
operators decouple for each s, l,m and the resulting operators depend only on s. After some
algebra (see [11] for some details), we find for ⇠ = 1 that the aS and aL modes couple to G,
through the operator
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where the gauge-dependent piece is
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and �s is in Eq. (4.22). The corresponding false-vacuum operator is MSLG

s
with �b = 0:
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Note that in Fermi gauges the gauge-dependent partM⇠

s
does not depend on �b so contributes

in the same way to M
SLG

s
and cMSLG

s
. This is very useful for establishing gauge invariance

of the result, as we will see.
In Fermi gauges, the transverse modes fluctuate independently, through
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or more simply, they satisfy the Lorentz-invariant equation with operator
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Transverse Fluctuations

For the transverse fluctuations in Fermi gauge, we can calculate the determinant exactly.
In fact we already have, in Section 4. The transverse fluctuation operator MT is the same
as in Eq. (4.1) with x = �

g
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3�
. There are no zero modes, and so including both transverse
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where the finite part is in Eq. (4.8) and for this case
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the divergent part of Eq. (5.38) came from Eq. (4.19).
To compare to other results, it is also helpful to have the determinant at each s value.

That result is in Eq. (4.27):
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Fluctuations with s = 0

For s = 0, Y000 is constant and so the transverse and longitudinal modes decouple. In
this case, only the scalar vector boson polarization and the Goldstone mode remain. The
fluctuation operator is
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det’

det

• Mapping to 4-sphere does not help
• Need new tricks to compute this ratio
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Want to compute 

O1�1 = 0 O2�2 = 01. Find zero-modes regular at r=0

2. R is given by the simple formula 
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Example

The appearance of the digamma function  (z) makes this subtraction more complicated
than the subtraction in Eq. (4.6). Note that  0(s+1) ⇠ 1

s
at large s so there is a logarithmic

divergence encoded in this expression. Performing the sum, we find
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in exact agreement with Eq. (4.8).

4.4 The Gelfand-Yaglom Method

There is a very powerful way of computing functional determinants, that does not require
knowing the exact spectrum of the operators, called the Gelfand-Yaglom method [78]. Re-
views and derivations of the method can be found in [40,45,79–81], here we just summarize
its application to the scale-invariant potential of interest in this paper.

The Gelfand-Yaglom method says that functional determinants can be calculated by
finding zero modes of the operators and evaluating their asymptotic behavior. For example,
for 1-dimensional operators, like the ratio Rs in Eq. (4.27), the method says that
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where �(1) and �(0) are shorthand for the limits in this equation and the functions �s
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The boundary conditions are that the functions be regular at r = 0.
Note how powerful the method is: instead of finding an infinite number of eigenvalues

and taking their product, we simply solve the di↵erential equations in Eq. (4.31), which can
be done numerically, and evaluate the solutions as r ! 1 and r ! 0.

To see how the Gelfand-Yaglom method works, consider the real scalar case (x = �1)
first. First of all, we already know the answer from Eq. (4.27):
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To use the Gelfand-Yaglom method, we find the exact solution to Eq. (4.31) regular at r = 0.
It is
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The appearance of the digamma function  (z) makes this subtraction more complicated
than the subtraction in Eq. (4.6). Note that  0(s+1) ⇠ 1

s
at large s so there is a logarithmic

divergence encoded in this expression. Performing the sum, we find

1X

s=0

h
(s+ 1)2 lnRs(x)� S

s

sub
(x)

i
= Sfin(x) (4.29)

in exact agreement with Eq. (4.8).
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knowing the exact spectrum of the operators, called the Gelfand-Yaglom method [78]. Re-
views and derivations of the method can be found in [40,45,79–81], here we just summarize
its application to the scale-invariant potential of interest in this paper.

The Gelfand-Yaglom method says that functional determinants can be calculated by
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The boundary conditions are that the functions be regular at r = 0.
Note how powerful the method is: instead of finding an infinite number of eigenvalues

and taking their product, we simply solve the di↵erential equations in Eq. (4.31), which can
be done numerically, and evaluate the solutions as r ! 1 and r ! 0.
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To use the Gelfand-Yaglom method, we find the exact solution to Eq. (4.31) regular at r = 0.
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• Need to find 3 linearly independent solutions
• Would have been impossible, but…

• Don’t need full solutions, just asymptotic behavior (large and small r)
• Can simplify with auxiliary equations

In Fermi gauges, the gauge fixing term is
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Fermi gauges leave the global U(1) symmetry of the Lagrangian intact (the action is invariant
under � ! e

i↵�, Aµ ! Aµ). Note that since the ghost Lagrangian is independent of the
bounce, the functional determinant over ghosts normalized to the false vacuum is just 1.

In Fermi gauges, the equations of motion for Aµ and G are coupled. At quadratic order
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with V
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µ two independent generic vectors and Yslm(↵, ✓,�) the 3D spherical har-
monics in Eq. (3.16). In this basis, and writing G(x) = G(r)Yslm(↵, ✓,�) the fluctuation
operators decouple for each s, l,m and the resulting operators depend only on s. After some
algebra (see [11] for some details), we find for ⇠ = 1 that the aS and aL modes couple to G,
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where the gauge-dependent piece is
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4.3 Angular Momentum Decomposition

We will also find it helpful to do the above sum in a di↵erent order, summing over n first
exactly and then regularizing the sum over angular momentummodes s. The operators whose
determinants we are trying to calculate are spherically symmetric. Thus their eigenfunctions
are separable and can be written as

�(r,↵, ✓,�) = fs(r)Y
slm(↵, ✓,�) (4.21)

The 4D Laplacian then reduces to a 1D operator, ⇤� = �s�, where
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and there is a (1 + s)2-fold degeneracy for each s.
In terms of the angular momentum decomposition, the ratio of functional determinants

in Eq. (4.2) becomes
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where
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The exact radial eigenfunctions of these operators are given in Eq. (3.15):
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with �n(x) in Eq. (4.4). There are only eigenfunctions with n � s. Thus,
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with x =
p
1� 24x as in Eq. (4.9). In computing the product in Eq. (4.23), the divergent

contributions all appear at order x and x
2 so we compute subtraction terms
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A lot of hard work

Putting these solutions together we find
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and so
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which is manifestly gauge invariant.
Comparing to Eqs. (5.24) and (5.40) we see that

R
SLG

s
= R

T

s
R

G

s
(5.67)

Thus the scalar and longitudinal vector modes together contribute the same as a transverse
mode to the determinant. As a check, at g = 0, the vector bosons become free RT = 1,
and R

SLG

s
= R

G

s
as expected. Combining with the transverse modes the full determinant for

s > 0 is
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(5.68)

We have shown this result to be manifestly gauge invariant. We also checked through a
numerical implementation of the Gelfand-Yaglom method that the same formula emergences
in R⇠ gauges for each s.

The full functional determinant requires summing over s. We note that at large s,
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thus there are quadratic, linear and logarithmic divergences in the sum.

Renormalization

To regulate the sum over s, we will subtract the divergent terms and add in dimensionally
regulated Feynman diagrams, as explained in Section 4. An important cross check on the
result is that the UV divergences should cancel those from �S[�b] using the renormalized
coupling. In scalar QED, the one loop Z-factor for � is
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The action on the bounce then becomes
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Thus we need the UV divergences in Eq. (5.71) to be matched by the functional determinant
over scalar, gauge and Goldstone modes.
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For  2 which has ⇣ = 0 but ⌘ 6= 0, we can solve Eq. (5.55) exactly. We find that the
non-zero solution regular at r = 0 is

⌘2(r) = r
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with  in Eq. (5.39). At small and large r
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Note the reappearance of the ratio in Eq. (5.40).
Now given ⌘2, we can solve for � using Eq. (5.54). Conveniently, we do not need the full

solution for all r, only its small r and large r behavior. Eq. (5.54) simplifies in these limits
and we find
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To these we could add a homogeneous solution of the form � = r
s. However, this is exactly

the  1 solution which is orthogonal, so adding a  1 component to  2 will not a↵ect the
functional determinant. Dropping the homogeneous solutions is extremely important – it
is the essential simplification allowed by using these auxiliary functions. Using the limiting
forms of ⌘2 and �2, following the procedure outlined in [40], we find
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Here we have written only the terms that contribute at leading non-vanishing order to the
determinant.

For  3, defined to have ⇣ 6= 0, we can solve Eq. (5.56) exactly for ⇣ = r
s. Proceeding as

for  2, we find
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and
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and �s is in Eq. (4.22). The corresponding false-vacuum operator is MSLG

s
with �b = 0:

cMSLG

s
=

0

BB@
��s +

3

r2
�

2

p
s(s+2)

r2
0

�
2

p
s(s+2)

r2
��s �

1

r2
0

0 0 ��s

1

CCA+M
⇠

s
(5.35)

Note that in Fermi gauges the gauge-dependent partM⇠

s
does not depend on �b so contributes

in the same way to M
SLG

s
and cMSLG

s
. This is very useful for establishing gauge invariance

of the result, as we will see.
In Fermi gauges, the transverse modes fluctuate independently, through
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or more simply, they satisfy the Lorentz-invariant equation with operator
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Transverse Fluctuations

For the transverse fluctuations in Fermi gauge, we can calculate the determinant exactly.
In fact we already have, in Section 4. The transverse fluctuation operator MT is the same
as in Eq. (4.1) with x = �

g
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. There are no zero modes, and so including both transverse
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where the finite part is in Eq. (4.8) and for this case
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the divergent part of Eq. (5.38) came from Eq. (4.19).
To compare to other results, it is also helpful to have the determinant at each s value.

That result is in Eq. (4.27):
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Fluctuations with s = 0

For s = 0, Y000 is constant and so the transverse and longitudinal modes decouple. In
this case, only the scalar vector boson polarization and the Goldstone mode remain. The
fluctuation operator is
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• Result is non-perturbative in g
• Still need to take product over spins s
• Still need to renormalize 
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Note that the divergent terms agree with those in Fermi gauge, Eq. (B.16), and when the
scalar contribution is added (with divergence 3

2"
), the poles exactly cancel those in Eq. (5.71).

To perform the subtraction, we need to compute the contribution to the functional de-
terminants in 4D from terms to second order in the couplings. Note that in R⇠ gauge the
transverse modes have the same quadratic fluctuations as the ghosts and they cancel exactly
in 4D. For the other photon polarizations and Goldstones, the fluctuation matrix with ⇠ = 1
is

M
SLG,R⇠
s =

0

BB@
��s +

3

r2
+ g

2
�
2

b
�

2

p
s(s+2)

r2
2g�0

b

�
2

p
s(s+2)

r2
��s �

1

r2
+ g

2
�
2

b
0

2g�0
b

0 ��s + (g2 + �)�2

b

1

CCA (5.79)

Changing basis, following [11] we find a convenient almost diagonal form
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In this form, we see that if we turn o↵ the o↵-diagonal couplings, each diagonal term is a
1D operator and the exact result can then be read o↵, using Eq. (4.27):
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The required subtractions to second order in the diagonal interactions then come from the
expansions of these function to second order in their arguments:
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with  (z) = �
0
(z)

�(z)
the digamma function. The remaining required subtractions involve the

o↵ diagonal couplings in Eq. (5.80). Since these couplings are linear in g there are no
contributions to first order in g (corresponding to no diagrams with one g insertion). The
contributions to second order in g can then be computed turning all the diagonal interactions
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Subract order g2 terms 

To proceed, we want to compute the divergent contributions with Feynman diagrams in
d dimensions and subtract the corresponding contribution from the 4D result to sum over s.
Unfortunately, performing the subtractions in Fermi gauge is di�cult. In Fermi gauge, due
to the g�bAµ@µG term in Eq. (5.29) there is a Feynman rule picking up the momentum of
virtual Goldstones. This extra loop momentum generates new UV divergences and makes
the diagrams di�cult. This is explained in more detail in Appendix B where we compute all
the divergent parts (but not the finite parts). These divergences exactly correpond to those
in Eq. (5.71) as expected.

Fortuntately, we can compute the regularized contribution in any gauge. Indeed we have
checked numerically that our result for the finite s functional determinant is identical in R⇠

gauge and Fermi gauges. In R⇠ gauge, with ⇠ = 1 with Lagrangin in Eq. (5.27), the Feynman
rules are
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In addition, in R⇠ gauge the ghosts do not decouple and have an interaction
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(q), (5.73)

Then we find
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Add in g2 terms with d-dimensional loops in MS 

Note that the divergent terms agree with those in Fermi gauge, Eq. (B.16), and when the
scalar contribution is added (with divergence 3

2"
), the poles exactly cancel those in Eq. (5.71).

To perform the subtraction, we need to compute the contribution to the functional de-
terminants in 4D from terms to second order in the couplings. Note that in R⇠ gauge the
transverse modes have the same quadratic fluctuations as the ghosts and they cancel exactly
in 4D. For the other photon polarizations and Goldstones, the fluctuation matrix with ⇠ = 1
is
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Changing basis, following [11] we find a convenient almost diagonal form
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In this form, we see that if we turn o↵ the o↵-diagonal couplings, each diagonal term is a
1D operator and the exact result can then be read o↵, using Eq. (4.27):
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The required subtractions to second order in the diagonal interactions then come from the
expansions of these function to second order in their arguments:
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with  (z) = �
0
(z)

�(z)
the digamma function. The remaining required subtractions involve the

o↵ diagonal couplings in Eq. (5.80). Since these couplings are linear in g there are no
contributions to first order in g (corresponding to no diagrams with one g insertion). The
contributions to second order in g can then be computed turning all the diagonal interactions
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negligible and gluons have no e↵ect at next-to-leading order. We have set the Higgs mass
parameter m2 to zero; m2

6= 0 corrections will be discussed in Section 7.
From this Lagrangian we see that there are only five parameters relevant to the NLO

decay rate: �, yt, yb and the SU(2)⇥U(1) couplings g and g
0. All these parameters depend on

scale. As explained in Section 3.2, for a consistent power counting the tunneling calculation
has to be done near the scale µ

? where ��(µ?) = 0. In the SM this scale is µ?
⇡ 1017GeV.

The five parameters are determined at much lower scales, µ ⇠ 100 GeV (or µ ⇠ mb for yb).
In determining the parameters matching conversions (also known as threshold corrections)
are made from a physical scheme (like the pole-mass scheme where the W and Z masses
are measured). The ingredients for this matching step are known at NNLO and depend on
additional SM parameters, such as ↵s. After matching, one must run the couplings up to
µ ⇠ 1017 GeV. The RG equations for this running are known at three or four loops and
involve additional parameters like ↵s as well. To be clear, the goal of the matching and
running is to get �(µ?), yt(µ?), yb(µ?), g(µ?) and g

0(µ?) in MS. Thus, it is perfectly consistent
to match at NNLO, run at three or four loops and compute the decay rate at NLO – each
step is a separate well-defined calculation.

6.1 NLO Tunneling Rate Formula

To compute the NLO tunneling rate in the SM we need to combine the formulas from
Section 5.

The bounce spontaneously breaks translation and scale invariance as well as SU(2) ⇥
U(1)Y ! U(1)EM. The zero modes for translations and dilatations must be integrated over
with collective coordinates with appropriate Jacobian factors. The three broken internal
generators produce three zero modes which must be integrated over the volume of the broken
gauge group. As we work to NLO only, we only need the action quadratic in the fluctuations
around the bounce. For gauge bosons, this means the non-Abelian interactions are irrelevant
and each gauge boson can be treated independently. Thus, each gauge group collective
coordinate produces a factor of JG in Eq. (5.15) as for a U(1). In addition, since the
U(1) representing electromagnetism is unbroken, fluctutations of the photon are the same
around the false vacuum and the bounce and therefore do not contribute to the rate. We
can therefore compute the gauge-boson fluctuations by integrating over W

± and Z boson
fluctuations and their associated Goldstone bosons.

Resolving the integral over instanton size R through the technique described in Section 3.2
and using Eq. (3.46), the NLO rate formula in the SM is therefore
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Final formula

Everything known analytically:

This formula is valid for R
�1 = µ = µ

?, with µ? the scale where ��(µ?) = 0. For other
values of µ, there are additional factors of �� not shown, as in Eq. (3.47). The scale µ̂ is in
Eq. (3.45).

The Jacobian factors for dilatations and translations are in Eqs. (3.29) and (3.30):
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For the real Higgs scalar, the determinant with zero modes removed is in Eq. (5.111).
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For gauge bosons, we note that the W and Z bosons couple to �b with strengths gW =
2mW

v
= g and gZ = 2mZ

v
=
p
g2 + (g0)2 respectively. Including the conventional factor

of 1

2
normalizing Abelian versus non-Abelian generators, the gauge bosons and Goldstone

fluctuations give the result summarized in Eq. (5.114)

s
det bOZG

det0 OZG

= exp


�
3

2
Sfin

✓
�

g
2

Z

12�

◆
�

1

2
S
AG

di↵

✓
�

g
2

Z

12�

◆
� S

AG

loops

✓
�

g
2

Z

12�

◆
�

1

2
S
G

fin

�
(6.7)

det bOWG

det0 OWG

= exp


�3Sfin

✓
�

g
2

W

12�

◆
� S

AG

di↵

✓
�

g
2

W

12�

◆
� 2SAG

loops

✓
�

g
2

W

12�

◆
� S

G

fin

�
(6.8)

The top quark contributes as in Eq. (5.115) with a factor of NC = 3 for color
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The bottom quark contribution is identical with yt ! yb and we omit yb for simplicity in the
next set of formulas.
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. With the normalization ⌧j =
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2�j , one has to go twice as far around in each direction (exp(4⇡i⌧j) = )

as expected, so the volume is 16⇡2
.
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…

Then we can perform the sum. That is, we compute
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where  (n)(x) = d
n

dzn
 (z) (defined by analytic continuation for complex n) with  (z) the

digamma function,
x ⌘

p
1� 24x (4.9)

and ⇣ 0(�1) ⇡ �0.165 is the derivative of the ⇣-function at �1.

4.2 Divergent Parts

To the subtracted part, we must add in dimensionally-regularized MS-subtracted divergent
contributions. The subtractions were determined by removing the terms to second order in
x. These terms can be reproduced by computing contributions to second order in x to the
e↵ective action using Feynman diagrams. The Euclidean action whose second variation gives
M(x) in Eq. (4.1) is
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We want to treat the mass term, proportional to x, as an interaction to compute the divergent
contribution to the e↵ective action.

To compute Feynman diagrams in Euclidean space, we expand e
�S. The � sign in front

of S a↵ects all the Feynman rules, and Feynman diagrams produce contributions to �Se↵;
that is, in Euclidean space �1 serves the role that the i prefactor does in Minkowski space.
Thus, the interaction Feynman rule is
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= 3x� e�2

b
(q) (4.11)

In our notation solid lines are propagating � fields and dashed lines are background field
insertions. The injected momentum is distributed according to the Fourier transform of the
bounce-squared [11]:

e
�
2

b
(q) =

Z
d
4
xe

iq
µ
x
µ
�b(x)

2 =
16⇡2

R
2

��
K0(

p
q2R) (4.12)

21



Numerical results
Oct 11, 2017 Matthew Schwartz

new physics is at what scale, ⇤NP, it could come in to stabalize our vacuum? That is, how
strong would it have to be to raise the upper bound on the lifetime to make it absolutely
stable? To determine this scale, we add to the e↵ective potential a gauge-invariant operator

�Ve↵ =
1

⇤2

NP

h
6 (6.17)

This operator contributes to V
LO and modifies the equation for µX , Eq. (6.16). Then we ask

for given SM couplings, what value of ⇤NP will lift the minimum of Ve↵ to zero. The curves
for this condition in the SM are shown in Fig. 3.

6.3 Numerical Results

For numerical calculations, we take as inputsGF ,m
pole

W
,mpole

Z
,mpole

b
,mpole

t ,mpole

h
and ↵s(mZ).

These inputs are converted to MS at a scale µ0 = m
pole

t using threshold corrections known to
two loops in all SM couplings [14,15,83], including mixed strong/electroweak contributions,
and partially to three and four loops in ↵s. The couplings are then run to high energy
using the three-loop renormalization group equations with four-loop running included for
↵s [88–90]. All of these threshold and running calculations are conveniently performed using
the MR package of Kniehl, Pikelner and Veretin [91].

The numerical values are taken from the 2017 Particle Data Group [92]. We take as
inputs

?GF = 1.115⇥10�5GeV�2; m
pole

W
= 80.385 GeV, m

pole

Z
= 91.1876 GeV, m

pole

b
= 4.93 GeV

(6.18)
The uncertainty on these have a negligible e↵ect on the rate so we set their uncertainties to
zero. We also take current world averages [92] 5

m
pole

t = 173.1± 0.6 GeV, m
pole

h
= 125.09± 0.24 GeV ↵s(mZ) = 0.1181± 0.0011 (6.19)

These uncertainties will be propagated through to the final results.
With these values, we find that � has a minimum at

µ? = 3.11⇥ 1017 GeV (6.20)

At this scale, there is an instability (� < 0) and

�(µ?) = �0.0138, yt(µ?) = 0.402, g(µ?) = 0.515, g
0(µ?) = 0.460, gZ(µ?) = 0.691

(6.21)

5
The most precise top quark mass measurements are currently done by matching experimental mea-

surements to Monte Carlo (MC) simulators, and hence it is mMC
t that is being measured, not mpole

t . The

uncertainty in translating from mMC
t to a well defined short-distance mass scheme has been studied, and

early estimates were of order 1 GeV [93], although it may be much smaller, perhaps below 100 MeV [94,95].

For this analysis we will only use the standard PDG values for our central value and uncertainty, and do not

include the mMC
t vs. mpole

t uncertainty. See also [96–98].
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Inputs with negligible uncertainty:

Inputs with non-negligible uncertainty:

• Convert to MS at weak scale
• 2-loop threshold corrections
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�(µ?) = �0.0138, yt(µ?) = 0.402, g(µ?) = 0.515, g
0(µ?) = 0.460, gZ(µ?) = 0.691

(6.21)

5
The most precise top quark mass measurements are currently done by matching experimental mea-

surements to Monte Carlo (MC) simulators, and hence it is mMC
t that is being measured, not mpole

t . The

uncertainty in translating from mMC
t to a well defined short-distance mass scheme has been studied, and

early estimates were of order 1 GeV [93], although it may be much smaller, perhaps below 100 MeV [94,95].

For this analysis we will only use the standard PDG values for our central value and uncertainty, and do not

include the mMC
t vs. mpole

t uncertainty. See also [96–98].
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Scale where bl(µ*) = 0 is
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That is, to 68% confidence, 1088 < ⌧SM
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To be more clear about what the lifetime means, we can ask a related question: what is

the probability that we would have seen a bubble of decaying universe by now? Using the
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Since the bubbles expand at the speed of light, chances are if we saw such a bubble we would
have been destroyed by it; thus it is reassuring to find the probability of this happening to
be exponentially small.

The phase diagrams in the mt/mh and mt/↵s planes are shown in Fig. 2. In these
diagrams, the boundary between metastability and instability is fixed by P = 1, where P is
the probability that a bubble of true vacuum should have formed without our past lightcone,
as in Eq. (6.28). The boundary between metastability and instability is determined by the
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new physics is at what scale, ⇤NP, it could come in to stabalize our vacuum? That is, how
strong would it have to be to raise the upper bound on the lifetime to make it absolutely
stable? To determine this scale, we add to the e↵ective potential a gauge-invariant operator

�Ve↵ =
1

⇤2

NP

h
6 (6.17)

This operator contributes to V
LO and modifies the equation for µX , Eq. (6.16). Then we ask

for given SM couplings, what value of ⇤NP will lift the minimum of Ve↵ to zero. The curves
for this condition in the SM are shown in Fig. 3.

6.3 Numerical Results
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t using threshold corrections known to
two loops in all SM couplings [14,15,83], including mixed strong/electroweak contributions,
and partially to three and four loops in ↵s. The couplings are then run to high energy
using the three-loop renormalization group equations with four-loop running included for
↵s [88–90]. All of these threshold and running calculations are conveniently performed using
the MR package of Kniehl, Pikelner and Veretin [91].
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The uncertainty on these have a negligible e↵ect on the rate so we set their uncertainties to
zero. We also take current world averages [92] 5
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These uncertainties will be propagated through to the final results.
With these values, we find that � has a minimum at

µ? = 3.11⇥ 1017 GeV (6.20)

At this scale, there is an instability (� < 0) and
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surements to Monte Carlo (MC) simulators, and hence it is mMC
t that is being measured, not mpole

t . The

uncertainty in translating from mMC
t to a well defined short-distance mass scheme has been studied, and

early estimates were of order 1 GeV [93], although it may be much smaller, perhaps below 100 MeV [94,95].

For this analysis we will only use the standard PDG values for our central value and uncertainty, and do not

include the mMC
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t uncertainty. See also [96–98].
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Compare to lifetime of the universe

H
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All order ~ 100 in exponent
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Note that the gauge couplings are quite large at this scale.
And, as needed for Eq. (6.2),
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, µ̂ = 0.76µ?, �1-loop(µ̂) = 0.99993�? (6.22)
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Multiplying everything together, we find the decay rate per unit volume is
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The first three uncertainties are from variation of mt, mh and ↵s respectively according
to Eq. (6.19). The fourth uncertainty is theory uncertainty from varying the threshold
matching scale µthr = ⇠m

pole

t with 1

2
< ⇠ < 2 used in converting observables to MS and

as the starting point for RGE evolution. The final uncertainty marked NNLO represents
the unknown two loop contributions to the functional determinant around the bounce. We
estimate this error by scale variation around µ

? by a factor of 1

2
or 2. Noting that the NLO

tt̄ functional determinant contributes in the exponent at around 3% of the tree-level bounce
action; therefore our NNLO estimate of 7% compared to NLO seems reasonable.

The variations in the first line of Eq. (6.26) are not independent and the dependence of �
on the masses and scales is highly non-linear. Nevertheless, since we can compute the e↵ect
on � for any combination of their variations, we can determine their total correlated e↵ect
on the rate. To do this, we maximize or minimize the rate over �

2 = 1 hypersurface. We
find that at 68% confidence 10�1291

<
�

VGeV
4 < 10�481.6 The range of decay rates allowed at

95% confidence is e�2320
<

�

VGeV
4 < 10�359.

6
For reference, this lower bound at 10

�481
is for mpole

t = 173.5 GeV, mpole
h = 125.06 GeV, ↵s(mZ) =

0.1175 and µthr = 1.3mpole
t . As evidence of the correlations and non-linearities, we also note that combining

the 1� errors in quadrature gives 10
�1026 < �

VGeV4 < 10
�450

.
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negligible and gluons have no e↵ect at next-to-leading order. We have set the Higgs mass
parameter m2 to zero; m2

6= 0 corrections will be discussed in Section 7.
From this Lagrangian we see that there are only five parameters relevant to the NLO

decay rate: �, yt, yb and the SU(2)⇥U(1) couplings g and g
0. All these parameters depend on

scale. As explained in Section 3.2, for a consistent power counting the tunneling calculation
has to be done near the scale µ

? where ��(µ?) = 0. In the SM this scale is µ?
⇡ 1017GeV.

The five parameters are determined at much lower scales, µ ⇠ 100 GeV (or µ ⇠ mb for yb).
In determining the parameters matching conversions (also known as threshold corrections)
are made from a physical scheme (like the pole-mass scheme where the W and Z masses
are measured). The ingredients for this matching step are known at NNLO and depend on
additional SM parameters, such as ↵s. After matching, one must run the couplings up to
µ ⇠ 1017 GeV. The RG equations for this running are known at three or four loops and
involve additional parameters like ↵s as well. To be clear, the goal of the matching and
running is to get �(µ?), yt(µ?), yb(µ?), g(µ?) and g

0(µ?) in MS. Thus, it is perfectly consistent
to match at NNLO, run at three or four loops and compute the decay rate at NLO – each
step is a separate well-defined calculation.

6.1 NLO Tunneling Rate Formula

To compute the NLO tunneling rate in the SM we need to combine the formulas from
Section 5.

The bounce spontaneously breaks translation and scale invariance as well as SU(2) ⇥
U(1)Y ! U(1)EM. The zero modes for translations and dilatations must be integrated over
with collective coordinates with appropriate Jacobian factors. The three broken internal
generators produce three zero modes which must be integrated over the volume of the broken
gauge group. As we work to NLO only, we only need the action quadratic in the fluctuations
around the bounce. For gauge bosons, this means the non-Abelian interactions are irrelevant
and each gauge boson can be treated independently. Thus, each gauge group collective
coordinate produces a factor of JG in Eq. (5.15) as for a U(1). In addition, since the
U(1) representing electromagnetism is unbroken, fluctutations of the photon are the same
around the false vacuum and the bounce and therefore do not contribute to the rate. We
can therefore compute the gauge-boson fluctuations by integrating over W

± and Z boson
fluctuations and their associated Goldstone bosons.

Resolving the integral over instanton size R through the technique described in Section 3.2
and using Eq. (3.46), the NLO rate formula in the SM is therefore
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Note that the gauge couplings are quite large at this scale.
And, as needed for Eq. (6.2),
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Multiplying everything together, we find the decay rate per unit volume is
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The first three uncertainties are from variation of mt, mh and ↵s respectively according
to Eq. (6.19). The fourth uncertainty is theory uncertainty from varying the threshold
matching scale µthr = ⇠m

pole

t with 1

2
< ⇠ < 2 used in converting observables to MS and

as the starting point for RGE evolution. The final uncertainty marked NNLO represents
the unknown two loop contributions to the functional determinant around the bounce. We
estimate this error by scale variation around µ

? by a factor of 1

2
or 2. Noting that the NLO

tt̄ functional determinant contributes in the exponent at around 3% of the tree-level bounce
action; therefore our NNLO estimate of 7% compared to NLO seems reasonable.

The variations in the first line of Eq. (6.26) are not independent and the dependence of �
on the masses and scales is highly non-linear. Nevertheless, since we can compute the e↵ect
on � for any combination of their variations, we can determine their total correlated e↵ect
on the rate. To do this, we maximize or minimize the rate over �

2 = 1 hypersurface. We
find that at 68% confidence 10�1291
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Put all the factors in

Andreassen, Frost, MDS (arXiv:1707.08124)

over instanton size R is divergent at next-to-leading order (NLO). We showed that in fact
there are contributions which seem higher-order in ~ but which in fact dominate over the
NLO contribution after the integral over R is performed. Including all the relevant terms,
to all loop-order, we are able to integrate over instanton size exactly giving a finite result.

The second problem we resolved is also related to instanton size. Since fluctuations
associated with changing the size R are unsuppressed, one has to allow for large deviations
in field space. Changing to collective coordinates allows the integral over all R to be done,
however, it generates an infinite Jacobian. We showed that this infinite Jacobian is in fact
compensated by an infinity in the functional determinant previously missed. To handle
the infinity and the zero, we employ a judicious operator rescaling inspired by a conformal
mapping to the 4-sphere. We find the spectrum of the rescaled operators exactly and give
an analytic formula for the Jacobian (now finite) as well as the functional determinant with
zero modes removed (also finite now).

The third problem we resolved has to do with fluctuations of vector bosons around the
instanton background. When a global internal symmetry is spontaneously broken there are
additional zero modes. In previous treatments the Jacobian for going to collective coordinates
for these symmetries was found to be infinite. We show that this infinity was an artifact of
working in R⇠ gauge where the symmetry is actually explicitly broken by the gauge-fixing.
Instead we work in Fermi gauges, and using the same technique as for the dilatation zero
mode, show that the Jacobian for internal symmetries is finite.

The next new result in our paper is a complete analytic computation of the functional
determinant around the instanton background for real and complex scalar fields, vector
bosons and fermions. Moreover, we showed that the final result is gauge-invariant (of the
parameter ⇠ in Fermi gauges and between Fermi and R⇠ gauges). For the scalars, the
insight which allowed for these exact results was to use the exact spectrum known from the
operator rescaling and mapping to the 4-sphere [63–65]. For the vector bosons, we exploited
a remarkable simplification of the fluctuation equations discovered in [39,40]. These authors
found that the equations that couple the scalar and longitudinally polarized gauge bosons
with the Goldstone bosons can be written in terms of a set of simplified equations using
auxiliary fields. Although the treatment in [39, 40] assumed a mass term for the scalar, so
that their results do not exactly apply to the case of the Standard Model, our treatment
very closely parallels theirs.

Combining all our results together we produced a complete prediction for the lifetime of
our metastable vacuum in the Standard Model. We find the lifetime to be

⌧SM = 10139
+102
�51 years (8.1)

The enormous uncertainty in this number is roughly equal parts uncertainty on the top quark
mass, uncertainty on the value of the strong-coupling constant ↵s and theory uncertainty
from threshold corrections, that is, from matching between observable pole masses and MS
parameters at the electroweak scale. The uncertainty from error on the Higgs boson mass is
small as is, thankfully, uncertainty associated with the unknown NNLO corrections to the
decay rate.
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negligible and gluons have no e↵ect at next-to-leading order. We have set the Higgs mass
parameter m2 to zero; m2

6= 0 corrections will be discussed in Section 7.
From this Lagrangian we see that there are only five parameters relevant to the NLO

decay rate: �, yt, yb and the SU(2)⇥U(1) couplings g and g
0. All these parameters depend on

scale. As explained in Section 3.2, for a consistent power counting the tunneling calculation
has to be done near the scale µ

? where ��(µ?) = 0. In the SM this scale is µ?
⇡ 1017GeV.

The five parameters are determined at much lower scales, µ ⇠ 100 GeV (or µ ⇠ mb for yb).
In determining the parameters matching conversions (also known as threshold corrections)
are made from a physical scheme (like the pole-mass scheme where the W and Z masses
are measured). The ingredients for this matching step are known at NNLO and depend on
additional SM parameters, such as ↵s. After matching, one must run the couplings up to
µ ⇠ 1017 GeV. The RG equations for this running are known at three or four loops and
involve additional parameters like ↵s as well. To be clear, the goal of the matching and
running is to get �(µ?), yt(µ?), yb(µ?), g(µ?) and g

0(µ?) in MS. Thus, it is perfectly consistent
to match at NNLO, run at three or four loops and compute the decay rate at NLO – each
step is a separate well-defined calculation.

6.1 NLO Tunneling Rate Formula

To compute the NLO tunneling rate in the SM we need to combine the formulas from
Section 5.

The bounce spontaneously breaks translation and scale invariance as well as SU(2) ⇥
U(1)Y ! U(1)EM. The zero modes for translations and dilatations must be integrated over
with collective coordinates with appropriate Jacobian factors. The three broken internal
generators produce three zero modes which must be integrated over the volume of the broken
gauge group. As we work to NLO only, we only need the action quadratic in the fluctuations
around the bounce. For gauge bosons, this means the non-Abelian interactions are irrelevant
and each gauge boson can be treated independently. Thus, each gauge group collective
coordinate produces a factor of JG in Eq. (5.15) as for a U(1). In addition, since the
U(1) representing electromagnetism is unbroken, fluctutations of the photon are the same
around the false vacuum and the bounce and therefore do not contribute to the rate. We
can therefore compute the gauge-boson fluctuations by integrating over W

± and Z boson
fluctuations and their associated Goldstone bosons.

Resolving the integral over instanton size R through the technique described in Section 3.2
and using Eq. (3.46), the NLO rate formula in the SM is therefore
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Note that the gauge couplings are quite large at this scale.
And, as needed for Eq. (6.2),

�
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The action on the bounce is
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The terms in Eq. (6.2) evaluate to
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Multiplying everything together, we find the decay rate per unit volume is
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The first three uncertainties are from variation of mt, mh and ↵s respectively according
to Eq. (6.19). The fourth uncertainty is theory uncertainty from varying the threshold
matching scale µthr = ⇠m

pole

t with 1

2
< ⇠ < 2 used in converting observables to MS and

as the starting point for RGE evolution. The final uncertainty marked NNLO represents
the unknown two loop contributions to the functional determinant around the bounce. We
estimate this error by scale variation around µ

? by a factor of 1

2
or 2. Noting that the NLO

tt̄ functional determinant contributes in the exponent at around 3% of the tree-level bounce
action; therefore our NNLO estimate of 7% compared to NLO seems reasonable.

The variations in the first line of Eq. (6.26) are not independent and the dependence of �
on the masses and scales is highly non-linear. Nevertheless, since we can compute the e↵ect
on � for any combination of their variations, we can determine their total correlated e↵ect
on the rate. To do this, we maximize or minimize the rate over �

2 = 1 hypersurface. We
find that at 68% confidence 10�1291

<
�

VGeV
4 < 10�481.6 The range of decay rates allowed at

95% confidence is e�2320
<

�

VGeV
4 < 10�359.

6
For reference, this lower bound at 10

�481
is for mpole

t = 173.5 GeV, mpole
h = 125.06 GeV, ↵s(mZ) =

0.1175 and µthr = 1.3mpole
t . As evidence of the correlations and non-linearities, we also note that combining

the 1� errors in quadrature gives 10
�1026 < �

VGeV4 < 10
�450

.
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over instanton size R is divergent at next-to-leading order (NLO). We showed that in fact
there are contributions which seem higher-order in ~ but which in fact dominate over the
NLO contribution after the integral over R is performed. Including all the relevant terms,
to all loop-order, we are able to integrate over instanton size exactly giving a finite result.

The second problem we resolved is also related to instanton size. Since fluctuations
associated with changing the size R are unsuppressed, one has to allow for large deviations
in field space. Changing to collective coordinates allows the integral over all R to be done,
however, it generates an infinite Jacobian. We showed that this infinite Jacobian is in fact
compensated by an infinity in the functional determinant previously missed. To handle
the infinity and the zero, we employ a judicious operator rescaling inspired by a conformal
mapping to the 4-sphere. We find the spectrum of the rescaled operators exactly and give
an analytic formula for the Jacobian (now finite) as well as the functional determinant with
zero modes removed (also finite now).

The third problem we resolved has to do with fluctuations of vector bosons around the
instanton background. When a global internal symmetry is spontaneously broken there are
additional zero modes. In previous treatments the Jacobian for going to collective coordinates
for these symmetries was found to be infinite. We show that this infinity was an artifact of
working in R⇠ gauge where the symmetry is actually explicitly broken by the gauge-fixing.
Instead we work in Fermi gauges, and using the same technique as for the dilatation zero
mode, show that the Jacobian for internal symmetries is finite.

The next new result in our paper is a complete analytic computation of the functional
determinant around the instanton background for real and complex scalar fields, vector
bosons and fermions. Moreover, we showed that the final result is gauge-invariant (of the
parameter ⇠ in Fermi gauges and between Fermi and R⇠ gauges). For the scalars, the
insight which allowed for these exact results was to use the exact spectrum known from the
operator rescaling and mapping to the 4-sphere [63–65]. For the vector bosons, we exploited
a remarkable simplification of the fluctuation equations discovered in [39,40]. These authors
found that the equations that couple the scalar and longitudinally polarized gauge bosons
with the Goldstone bosons can be written in terms of a set of simplified equations using
auxiliary fields. Although the treatment in [39, 40] assumed a mass term for the scalar, so
that their results do not exactly apply to the case of the Standard Model, our treatment
very closely parallels theirs.

Combining all our results together we produced a complete prediction for the lifetime of
our metastable vacuum in the Standard Model. We find the lifetime to be

⌧SM = 10139
+102
�51 years (8.1)

The enormous uncertainty in this number is roughly equal parts uncertainty on the top quark
mass, uncertainty on the value of the strong-coupling constant ↵s and theory uncertainty
from threshold corrections, that is, from matching between observable pole masses and MS
parameters at the electroweak scale. The uncertainty from error on the Higgs boson mass is
small as is, thankfully, uncertainty associated with the unknown NNLO corrections to the
decay rate.
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Conclusions:	the	fate	of	the	universe

4.	Vacuum	decay

• Universe	is	infinite
• Decay	rate	is	finite
• Somewhere	a	bubble	of	true	vacuum	has	formed	

(10139 light	years	away)
• Wall	is	barreling	towards	us	at	the	speed	of	light

1.	Static	universe 3.		Cold	and	Empty	Future2.	Big	Crunch
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Coleman (Erice p.266): “Every child knows that the 
amplitude for transmission obeys the WKB formula”
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x

V (x)

x

�V (x)

a b c a b c

Figure 4: Left: Generic potential with a false and true vacuum. Right: The inverted
potential. The stationary path x̄(⌧) is the solution to the equations of motion of a ball
rolling down the inverted potential with boundary conditions x(0) = xi and x(T ) = xf .

However, if we evaluate the limit for the unphysical g, and then analytically continue to the
case of interest, we obtain an imaginary part. This then is the precise meaning of Eq. (3.4):

�

2
= Im

0

@ lim
T !1
g<0

1

T
lnZg

1

A

g=1

(3.6)

The notation is meant to indicate contortions of taking the limit with negative g, then
analytically continuing to positive g and then taking the imaginary part.

Why does the limit not commute with the analytic continuation? There is no reason to
expect it should. According to Eq. (3.2), function Zg is schematically given by e

�Ea(g)T +
e
�Ec(g)T . As T ! 1, this picks out min(Ea, Ec), which changes non-analytically as g varies
from positive to negative. Ideally, one would like a proof that any deformation of V (x) to
Vg(x) leads to the same imaginary part after analytic continuation back and forth, and this
is generally assumed to be true. Let us set aside this subtlety in Eq. (3.4) and move on to
calculating the path integral using the saddle-point approximation.

The path integral can be approximated by summing over stationary points of the Eu-
clidean action. For each stationary point, that is, for each solution x̄(t) to the Euclidean
equations of motion, the saddle-point approximation of the path integral around x̄ evaluates
to

Ix̄ ⌘
Np

det[�@2
t + V 00(x̄)]

e
�

1

~SE(x̄)(1 +O(~)) (3.7)

where we have put the ~ back in for clarity, and N is some constant related to the normal-
ization of the path integral. We also recall that the stationary paths x̄(⌧) are solutions to
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Z ⌘ ha|e�HT |ai =
Z

x(T )=a

x(0)=a

Dxe�SE [x]

where the right-hand side is the path integral using the Euclidean action SE[x]. By inserting
a complete set of energy eigenstates, the matrix element can be written as

Z =
X

E

e
�ET

�E(xi)�
?

E
(xf ) (3.2)

Then we see that the lowest energy can be deduced from

E0 = � lim
T !1

1

T
lnZ (3.3)

Roughly speaking, we expect that when there is a decay, E0 will have an imaginary part
corresponding to the decay rate, and so2:

�

2
= Im lim

T !1

1

T
lnZ (3.4)

There are many ways to connect the imaginary part of an energy to a decay rate, but the
connection is not automatic. For example, in Section 2.2 we found the decay rate to be
the imaginary part of a eigenstate of the Hamiotonian with (unphysical) Gamow-Siegert
radiative boundary conditions. For normalizable modes of a Hermitian Hamiltonian, all
the energies including E0 are real. For physical potentials, which are bounded from below,
the energies and Euclidean action are bounded from below as well. Correspondingly Z is
manifestly real. Hence Eq. (3.4) must be defined in a much more careful manner.

Consider the asymmetric double-well potential in Fig. 4. Clearly if in Eq. (3.1) one takes
xi = xf = c, where c is the location of the true minimum of the potential, the result will
be approximately e

�EcT , where Ec is the true ground state energy. One might hope to find
a complex energy associated with a metastable state at x = a by setting xi = xf = a in
Eq. (3.1). However, the points xi and xf only contribute through the wavefunction factors
�E(xi) and �

?

E
(xf ) in Eq. (3.2), which do not contribute to E0. Thus the ground state energy

will result from Eq. (3.3) with any xi and xf . In particular, we do not need the wavefunction
factors in Eq. (3.2) to be large in any sense. As long as they are non-zero; the T ! 1 limit
as written will still always extract the ground state.

In order to get an imaginary part, then, we must do something more tortuous. We must
first deform the potential V (x) to Vg(x), where g is a parameter which links the physical
problem (say g = 1) to a di↵erent problem, in which a is the true ground state (say g < 0,
see Fig. 5). If we then take the limit in Eq. (3.3) of Zg for general g, we see:

� lim
T !1

1

T
lnZg =

⇢
Ea(g) g < 0
Ec(g) g = 1

(3.5)

where Ea and Ec are the ground states of the wells near the points a and c respectively. If
we simply evaluate the limit for the g of interest (g = 1), we get the wrong answer (Ec).

2
Note that there will be a sign ambiguity in the evaluation of Eq. (3.4), as we will see later in this section.

The calculation should always be done so that � > 0, which corresponds to the physical decay rate.
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Z ⌘ ha|e�HT |ai =
Z
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Dominated by saddle points
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where the right-hand side is the path integral using the Euclidean action SE[x]. By inserting
a complete set of energy eigenstates, the matrix element can be written as
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Then we see that the lowest energy can be deduced from
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Roughly speaking, we expect that when there is a decay, E0 will have an imaginary part
corresponding to the decay rate, and so2:
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There are many ways to connect the imaginary part of an energy to a decay rate, but the
connection is not automatic. For example, in Section 2.2 we found the decay rate to be
the imaginary part of a eigenstate of the Hamiotonian with (unphysical) Gamow-Siegert
radiative boundary conditions. For normalizable modes of a Hermitian Hamiltonian, all
the energies including E0 are real. For physical potentials, which are bounded from below,
the energies and Euclidean action are bounded from below as well. Correspondingly Z is
manifestly real. Hence Eq. (3.4) must be defined in a much more careful manner.

Consider the asymmetric double-well potential in Fig. 4. Clearly if in Eq. (3.1) one takes
xi = xf = c, where c is the location of the true minimum of the potential, the result will
be approximately e

�EcT , where Ec is the true ground state energy. One might hope to find
a complex energy associated with a metastable state at x = a by setting xi = xf = a in
Eq. (3.1). However, the points xi and xf only contribute through the wavefunction factors
�E(xi) and �

?

E
(xf ) in Eq. (3.2), which do not contribute to E0. Thus the ground state energy

will result from Eq. (3.3) with any xi and xf . In particular, we do not need the wavefunction
factors in Eq. (3.2) to be large in any sense. As long as they are non-zero; the T ! 1 limit
as written will still always extract the ground state.

In order to get an imaginary part, then, we must do something more tortuous. We must
first deform the potential V (x) to Vg(x), where g is a parameter which links the physical
problem (say g = 1) to a di↵erent problem, in which a is the true ground state (say g < 0,
see Fig. 5). If we then take the limit in Eq. (3.3) of Zg for general g, we see:

� lim
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1
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lnZg =

⇢
Ea(g) g < 0
Ec(g) g = 1

(3.5)

where Ea and Ec are the ground states of the wells near the points a and c respectively. If
we simply evaluate the limit for the g of interest (g = 1), we get the wrong answer (Ec).

2
Note that there will be a sign ambiguity in the evaluation of Eq. (3.4), as we will see later in this section.

The calculation should always be done so that � > 0, which corresponds to the physical decay rate.
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6= 0

But Z is real! So how did this happen?

One of these is negative (l1 < 0 )
if    is a maximum of S in some directionx
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The Shot

Shot stays at true vacuum most of the time 

Z ⌘ ha|e�HT |ai =
Z

x(T )=a

x(0)=a

Dxe�SE [x]

= e�E0T

• Bounce is exponentially subdominant
• Consistent expansion must drop it
• True vacuum dominates

⇣
� e�SE [xbounce]

⌘
⇡ e�SE [xshot]
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Figure 8: The saddle points {�1, 0, 1} and associated steepest descent contours for S(x) =
�

x
2

2
+ x

4

4
. Left: the real line (dotted) can be written as a sum of all three contours R =

C�1 + C0 + C1. Actually, there is an ambiguity for this action (it is on a Stokes line); the
complex conjugate contours are equally valid. Right: a plot of Re (S[x]) in the complex
plane where we can clearly see the lines of steepest descent through each saddle point.

in Eq. (3.16) (say J1) is exponentially larger than the rest. So if we are going to perform
an expansion which is accurate up to exponentially small corrections, we cannot keep the
subdominant term. At the level of Eq. (3.16), we write this as:

Z = J1 + J2 (3.18)

to indicate that while the equation is exact at this level, the boxed term is exponentially
dominant so, when approximating, the second term is meaningless. Unfortunately, it may
be J2 that has the imaginary part.

The imaginary contribution is perhaps easiest to appreciate through an example. Suppose
we have the following function S:

S(x) = �
x
2

2
+

x
4

4
(3.19)

and we want to integrate as in Eq. (3.12) along the real line. This function has saddle points
at x = �1, 0, 1, with approximations:

I�1 =
p

⇡~ exp
✓

1

4~

◆
I0 =

p
�2⇡~ I1 =

p

⇡~ exp
✓

1

4~

◆
(3.20)

Around x = 0, the quadratic action S(x) = �
x
2

2
has increasing real part along the

imaginary axis. Around x = 1, S(x) = �
1

4
+ (x � 1)2 which has increasing real part along

the real axis. Thus going from x = 1, the steepest descent contour moves along the real axis,
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can be deformed di↵erent ways from the

physical case (h, g) = (1, 1) (top). For (h, g) = (�5, 1), the FV is stabilized, and the real axis
lines up with the FV contour (green). The correct factor of 1

2
results. For (h, g) = (1,�1), the

bounce is stabilized (red). The imaginary part computed this way is the naive one,missing
the factor of 2. For (h, g) = (5, 1), the shot is stabilized (blue).
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Can we just integrate along the FV contour? 
Yes, at least for this toy integral
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• Not clear what “fixing to a contour” means for a path integral
• Saddle point approximation loses the imaginary part

• Expanding around the saddle gives a real integral 
• Imaginary part comes from region far away

• Saddle point approximation does work for the discontinuity
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Figure 1: On the left, an example of a physical potential with an unstable region FV,
a destination region R, and a barrier. We label the local minimum inside the FV region
by a and the turning point by b (defined by V (b) = V (a)). On the right, the probability
PFV(T ) (see Eq. (2.3)) for this system (beginning in a Gaussian wavepacket centered at a)
computed by numerically solving Schrödinger’s equation. We see that the probability to
find the particle in the false vacuum decays exponentially for intermediate times between
the short timescale of sloshing inside the false vacuum and the long timescale on which the
wavefunction begins to flow back into the false vacuum.

given approximately by the WKB formula:

T (E) ⌘
 E(b)

 E(a)
⌘ e

�W
⇡ exp


�

Z
b

a

dx

p
2m(V (x)� E)

�
(2.1)

Here, a and b are the turning points where V (a) = V (b) = E. It is of course quite logical
that the decay rate should be proportional to how much of the wavefunction gets through
the barrier, � ⇠ |T (E)|2. However, if the particle is in an energy eigenstate, there is no
time-dependence, so it cannot decay. To go from T (E) to �, a step often skipped, requires
considerably more thought.

A simple picture often used to convert T (E) to a decay rate depicts a particle with
momentum p =

p
2mE, and velocity v = p

m
in the well hitting the barrier with a rate

v

2a
, and each time tunneling through with probability given by the transmission coe�cient,

|T (E)|2 (see e.g. [24]). With this logic, the decay rate is

� ⇠
p

2am

����
 E(b)

 E(a)

����
2

⇡
p

2am
e
�2W (2.2)

Indeed, if one solves the Schrödinger equation numerically, one can see the wavefunction
oscillate back and forth in the well; the largest flux leaks out during the times when the
wavefunction is closest to the barrier. Fig. 1 shows this exponential decay with time and the
small oscillations. Snapshots of the wavefunction oscillating in the well are shown in Fig. 2.
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Figure 2: The numerical evolution of a particle initially localized in the false vacuum. At
each time step, the potential is shown (black), along with the probability | (x, t)|2 (red),
and we also show the probability magnified by 50⇥ (purple) so that we can see the small
amount leaking through the barrier). By looking at the evolution of the wavefunction we see
the sloshing behavior near the false vacuum, associated with the initial gaussian state not
being an exact resonance. In the first two rows the central value of the wavefunction can be
seen moving back and forth within the false vacuum well. When it hits the right wall around
times 3-4, the most wavefunction amplitude escapes through the barrier. In the third row we
have jumped ahead to see the nonlinear behavior when there is enough wavefunction density
in the outside region that it is no longer simply flowing out.

2.1 Precise definition of the decay rate

To make the above formula more precise, we need an exact definition of the decay rate to
which we can then look for approximations. A reasonable, physical, definition of the decay
rate of a system comes from PFV(t), the probability of finding a state  initially confined to
a false vacuum region (FV) in that same region after a time T :

PFV(T ) ⌘

Z

FV

dx | (x, T )|2 (2.3)

We expect that for a decaying system the probability should fall exponentially:

PFV(T ) ⇠ e
��T (2.4)

And so we might define:

� = �
1

PFV

d

dT
PFV (2.5)

7

i@t (x, t) =


� 1

2m
@2x + V (x)

�
 (x, t)
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To make the above formula more precise, we need an exact definition of the decay rate to
which we can then look for approximations. A reasonable, physical, definition of the decay
rate of a system comes from PFV(t), the probability of finding a state  initially confined to
a false vacuum region (FV) in that same region after a time T :
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PFV(T ) (see Eq. (2.3)) for this system (beginning in a Gaussian wavepacket centered at a)
computed by numerically solving Schrödinger’s equation. We see that the probability to
find the particle in the false vacuum decays exponentially for intermediate times between
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Here, a and b are the turning points where V (a) = V (b) = E. It is of course quite logical
that the decay rate should be proportional to how much of the wavefunction gets through
the barrier, � ⇠ |T (E)|2. However, if the particle is in an energy eigenstate, there is no
time-dependence, so it cannot decay. To go from T (E) to �, a step often skipped, requires
considerably more thought.

A simple picture often used to convert T (E) to a decay rate depicts a particle with
momentum p =
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2mE, and velocity v = p
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Indeed, if one solves the Schrödinger equation numerically, one can see the wavefunction
oscillate back and forth in the well; the largest flux leaks out during the times when the
wavefunction is closest to the barrier. Fig. 1 shows this exponential decay with time and the
small oscillations. Snapshots of the wavefunction oscillating in the well are shown in Fig. 2.

6

i@t (x, t) =


� 1

2m
@2x + V (x)

�
 (x, t)

P ⇠ P0e
��T

� = � lim
T

Tslosh
!1

lim
T

TNL
!0

1

PFV

d

dT
PFV

Two time scales
• T > Tslosh – removes transients
• T < TNL -- avoids all y in true vacuum
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Figure 3: Example of a potential that has a well region labeled FV, a barrier region B, and
is constant in the region R which extends to indefinitely to the right.

Then we could define the decay rate as the fraction of probability flowing through the
outward-pointing boundary @R, in the same time limits as above:

�R ⌘ � lim
T/TNL!0

T/Tslosh!1

1

PFV (T )

Z

@R

dxiJi(x, T ) (2.9)

Because of the conservation equation (@iJi = �@t | |
2), this is exactly equivalent to Eq. (2.7).

Next, we need to be able to compute � in Eq. (2.7), either using the WKB approximation
or with some other method.

2.2 Real and complex energy eigenstates

The type of potentials under consideration, such as the one in Fig. 1 comprise a well region
labeled FV, where the particle is initially, a barrier region B, between points a and b (to be
specified precisely later), and an approximately free destination region R. For now, let us
assume that the potential is constant in R and extends infinitely to the right, as V (x) in
Fig. 3.

A concrete example illustrating the points of this section is given in Appendix A. More
details and alternative derivations can be found in [3, 25–29].

Since the system extends infinitely to the right, there will be energy eigenstates �E(x) for
any E. Most of these are approximately free (plane waves) confined to region R, with little
support in the FV region. Some, however, do have large support in the FV region. These
are the resonances. To be specific, we can define the resonant energies E as those whose
probability in the FV region has a local maximum: @EPFV[�E] = 0 (now the probability PFV

defined in Eq. (2.3) is viewed as depending on �E instead of on T , since energy eigenstates
have time-independent probabilities). In general, there will be a finite number of such
resonance energies E1 < E2 < · · · < En < Vmax. Up to exponential corrections, these are

9

• Hermitian Hamiltonian à energies are real

Choose outgoing boundary conditions: D=0, 
• Modes now have outgoing flux

• Violates unitarity à energies are complex

J = i( ?@x �  @x 
?) = �2p

E = E0 �
i

2
�

P =

Z
 ? ⇠ e��t

 (x, t) = e�iE0t� 1
2�t 0(x)

• Probability is time dependent

 III(x, t) = Cei(kx�Et)

 III(x, t) = Cei(kx�Et) +De�i(kx�Et)

• Zeros of D à energies are quantized
• Resonances ~ bound states

à y*y independent of time
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Figure 3: Example of a potential that has a well region labeled FV, a barrier region B, and
is constant in the region R which extends to indefinitely to the right.

Then we could define the decay rate as the fraction of probability flowing through the
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2), this is exactly equivalent to Eq. (2.7).

Next, we need to be able to compute � in Eq. (2.7), either using the WKB approximation
or with some other method.

2.2 Real and complex energy eigenstates

The type of potentials under consideration, such as the one in Fig. 1 comprise a well region
labeled FV, where the particle is initially, a barrier region B, between points a and b (to be
specified precisely later), and an approximately free destination region R. For now, let us
assume that the potential is constant in R and extends infinitely to the right, as V (x) in
Fig. 3.

A concrete example illustrating the points of this section is given in Appendix A. More
details and alternative derivations can be found in [3, 25–29].

Since the system extends infinitely to the right, there will be energy eigenstates �E(x) for
any E. Most of these are approximately free (plane waves) confined to region R, with little
support in the FV region. Some, however, do have large support in the FV region. These
are the resonances. To be specific, we can define the resonant energies E as those whose
probability in the FV region has a local maximum: @EPFV[�E] = 0 (now the probability PFV

defined in Eq. (2.3) is viewed as depending on �E instead of on T , since energy eigenstates
have time-independent probabilities). In general, there will be a finite number of such
resonance energies E1 < E2 < · · · < En < Vmax. Up to exponential corrections, these are
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E0

E1

Enforces T << TNL (no return flux)

Assume E1 E2 etc components already died off

Enforces T >> Tslosh (only metastable FV decay)



A direct approach
Oct 11, 2017 Matthew Schwartz

t=0

| |
2

V

t=1 t=2 t=3

50 | |2

t=4 t=5 t=6 t=7

t=20 t=21 t=22 t=23

Figure 2: The numerical evolution of a particle initially localized in the false vacuum. At
each time step, the potential is shown (black), along with the probability | (x, t)|2 (red),
and we also show the probability magnified by 50⇥ (purple) so that we can see the small
amount leaking through the barrier). By looking at the evolution of the wavefunction we see
the sloshing behavior near the false vacuum, associated with the initial gaussian state not
being an exact resonance. In the first two rows the central value of the wavefunction can be
seen moving back and forth within the false vacuum well. When it hits the right wall around
times 3-4, the most wavefunction amplitude escapes through the barrier. In the third row we
have jumped ahead to see the nonlinear behavior when there is enough wavefunction density
in the outside region that it is no longer simply flowing out.
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rate of a system comes from PFV(t), the probability of finding a state  initially confined to
a false vacuum region (FV) in that same region after a time T :

PFV(T ) ⌘

Z

FV

dx | (x, T )|2 (2.3)

We expect that for a decaying system the probability should fall exponentially:

PFV(T ) ⇠ e
��T (2.4)

And so we might define:

� = �
1

PFV

d

dT
PFV (2.5)

7

� = � lim
T

Tslosh
!1

lim
T

TNL
!0

1

PFV

d

dT
PFV

Back to our definition

T << TNL (no return flux)

T >> Tslosh (only metastable FV decay)

�R ⌘ lim
T/TNL!0

T/Tslosh!1

1

PFV

dPR

dT

V(x)

a
R x

b

D(a, xf , T ) ⌘
Z x(T )=xf

x(0)=a
Dx eiS[x]

PR(T ) =

Z

R
dxf |D(a, xf , T )|2

 (x, t = 0) = �(x� a)• Start with:
• We will compute

probability of finding y
in region R at time T

Propagator from a to xf in time T



Step 1: Split up propagator
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Split path integral into before b and after b:

D(a, xf , T ) =

Z
dt D̄(a, b, t)D(b, xf , T � t)

D(a, xf , T ) ⌘
Z x(T )=xf

x(0)=a
Dx eiS[x]

D(a, xf , T ) =

Z x(T )=xf

x(0)=a
Dx eiS[x]

Z
dt �(t� tb[x])

First time path x(t) hits btb[x] ⌘
t T0

a

b

xf

x

D̄(a, b, t) D(b, xf , T � t)

=

Z
dt

Z

x(0)=a
Dx eiS[x]�(t� tb[x])

Z x(T )=xf

x(t)=b
Dx eiS[x]

x(t) = b

hits b only once, at t • Regular propagator from b to xf
• Paths can go back past b



PR(T ) =

Z
dxfdt1dt2D̄(a, b, t1)D̄

⇤(a, b, t2)D(b, xf , T � t1)D(b, xf , T � t2)

Step 2: Apply T << TNL

Oct 11, 2017 Matthew Schwartz

• Hits b only once, at t
• Regular propagator from b to xf
• Paths can go back past b

D(a, xf , T ) =

Z
dt D̄(a, b, t)D(b, xf , T � t)

PR(T ) =

Z

R
dxf |D(a, xf , T )|2

hb, t2|xf , T ihxf , T |b, t1i
Z

R
dxf |xf i hxf | = 1Propagation from b out of R is negligible:

T << TNL (no return flux)

PR(T ) =

Z
dt1dt2D̄(a, b, t1)D̄

⇤(a, b, t2) hb, t2|b, t1i

PR(T ) =

Z T

0
dtD(a, b, t)D̄⇤(a, b, t) + c.c.



�R = lim
T!1

D(a, b, T )D̄⇤(a, b, T )
R
FV dx |D(a, x, T )|2

+ c.c.

Step 3: Simplify
Oct 11, 2017 Matthew Schwartz

�R ⌘ lim
T/TNL!0

T/Tslosh!1

1

PFV

dPR

dT

PR(T ) =

Z T

0
dtD(a, b, t)D̄⇤(a, b, t) + c.c.

V(x)

a
R x

b

�R = 2Im lim
T!1

0

@
R x(T )=a
x(�T )=a Dx e�SE[x]�(⌧b[x])

R x(T )=a
x(�T )=a Dx e�SE[x]

1

A

T !iT

Go to Euclidean time and take

• Non-perturbative definition of the decay rate
• Does not require analytic continuing potential
• Does not require saddle-point approximation

T >> Tslosh
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Figure 12: The function Sh,g(x) = h
x

12
� g

x
2

2
+ x

4

4
can be deformed di↵erent ways from the

physical case (h, g) = (1, 1) (top). For (h, g) = (�5, 1), the FV is stabilized, and the real axis
lines up with the FV contour (green). The correct factor of 1

2
results. For (h, g) = (1,�1), the

bounce is stabilized (red). The imaginary part computed this way is the naive one,missing
the factor of 2. For (h, g) = (5, 1), the shot is stabilized (blue).
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Before showing how Eq. (4.16) can be evaluated, let us contrast it with the potential-
deformation method discussed in Section 3. To make precise connection to Eq. (3.4), let us
first change from T to T /2 (since the time is going to infinity, the factor of 2 has no e↵ect). To
match the other formula, we need to re-introduce the time-translation degeneracy. Because
the action is time-translation-invariant in the T ! 1 limit, let us define a time-translated
version:

�⌧ = lim
T!1

�����2Im
✓R

Dx e
�SE [x]

�(⌧b[x]� ⌧)R
Dx e�SE [x]

◆

T >0

T =iT

����� (4.17)

We expect this to be independent of ⌧ , so �⌧ = �. Then let us average over ⌧ :

� =
1

T

Z
T /2

�T /2

d⌧�⌧ (4.18)

From which we arrive at:

T � = lim
T!1

������
2Im

 R
paths hit b

Dx e
�SE [x]

R
Dx e�SE [x]

!

T >0

T =iT

������
(4.19)

The �-function in the numerator has been removed by the
R
d⌧ , except that it leaves the

requirement that the path must hit b at some time, so that ⌧b is defined. Thus, the path
integral in the numerator will exclude the constant false-vacuum solution which dominates
the denominator. In this way, the need to analytically continue the potential is sidestepped
completely.

4.1 Saddle point approximations

As discussed in Section 4,
R
Dx e

�SE , computed to all orders, is real. And as we saw in
Section 3.2, when we approximate the path integral with a sum over saddle points, some
of the saddle points might be imaginary. The imaginary parts will cancel if all the saddle
points are kept associated with the integration contour, but if some can be dropped, the
result may be complex. In the traditional method, analytic continuation of the potential
is used to justify dropping some saddle points giving a well defined imaginary part. In the
direct method, the imaginary part comes out with less gymnastics. The path integral is real
for real T but simply becomes imaginary for imaginary T .

In this section we will show that when performing the saddle point approximation for
real T , the true vacuum solution (the shot) dominates, but when evaluated for imaginary T ,
the instanton solution dominates. Thus we are justified in using only the instanton because
we are looking at imaginary T . In particular, there is no tension with the instanton’s saddle
point expansion (which matters for imaginary T ) being imaginary when the original path
integral is real (for real T ).

As in the potential deformation method, the path integrals in Eq. (4.16) are approximated
by a sum of saddle points:

exp(�Sshot’) + exp(�Sbounce)

exp(�Sshot) + exp(�Sbounce) + exp(�SFV)
(4.20)

36

⇡
Consider first the denominator. It contains contributions from exactly the same paths as in
the potential-deformation method, shown in Fig. 6: the static FV solution, the bounce, and
the shot. Because of the forms of these solutions, it is clear that the T dependence, for large
T , must have a linear dependence for the long stationary times, and a constant piece for the
brief times when the particle is rolling fast:

Sshot = ETVT + S
0

S
(4.21)

SFV = EFVT (4.22)

Sbounce = EFVT + S
0

B
(4.23)

Also we note that S
0

S
> S

0

B
since the shot must go faster than the bounce and hence has

more energy.
Recall that in the potential-deformation method, the shot dominated for the actual path

integral with the physical potential, but when we deformed to g < 0, then the false vacuum
dominated. With the direct method, rather than deforming the potential, we performing the
standard T ! iT Wick rotation. For real T , the shot dominates. But we are not interested
in which dominates for real T , rather which dominates for T ! iT . Then,

Sshot = iETVT + S
0

S
(4.24)

SFV = iEFVT (4.25)

Sbounce = iEFVT + S
0

B
(4.26)

Since S
0

B
< S

0

S
, due to the e

�S factors in the saddle point approximation, the bounce
exponentially dominates over the shot. However, both of these are dominated by the FV
solution which has no exponential suppression at all. Thus for the denominator, if we drop
exponentially suppressed pieces, only the FV contribution remains.

The numerator of Eq. (4.20) is similar to the denominator, but has been modified by
the �(⌧b). In particular, the FV solution, which never hits the point b, is removed entirely
by the �-function. The shot is also removed, since it hits b before ⌧ = 0 (it hits the TV
region at ⌧ = 0), but there is a solution qualitatively similar to the shot that we call the
modified shot.5 In any case, the argument for the numerator is then exactly the same as for
the denominator; for real T the modified shot dominates, but when we rotate T ! iT , the
constant part of the action now controls the size of e�S and so the bounce dominates. Since
the false vacuum is not present in the numerator at all, the result is given by the bounce
alone.

In summary, performing the saddle point approximation to Eq. (4.16) for imaginary T

carefully, we find the bounce dominates the numerator and the FV dominates the denom-
inator. For real T , this would not be the correct set of saddle points to use (the correct

5
There will nevertheless still be a lower-action solution hitting b at ⌧ = 0 (we know this because the

bounce still has a negative eigenvalue [1, 37]). The minimum action solution probably looks like the bounce

up to ⌧ = 0 spliced to a rescaled shot for ⌧ > 0. The shot part has to be rescaled to return to the FV

at ⌧ = T . The extra kick needed to splice these solutions at ⌧ = 0 is allowed because the �-function can

introduce discontinuities. We call the actual minimum action solution the modified shot.
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shot must go faster than bounce,
à it has more kinetic energy

=2.5 =1.2

e�SFV � e�Sbounce � e�Sshot

Bounce dominates numerator

FV dominates denominator

S0
S > S0

B > 0
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Figure 12: The function Sh,g(x) = h
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can be deformed di↵erent ways from the

physical case (h, g) = (1, 1) (top). For (h, g) = (�5, 1), the FV is stabilized, and the real axis
lines up with the FV contour (green). The correct factor of 1

2
results. For (h, g) = (1,�1), the

bounce is stabilized (red). The imaginary part computed this way is the naive one,missing
the factor of 2. For (h, g) = (5, 1), the shot is stabilized (blue).
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shot 

bounce static false
vacuum

G= Im (FV contour) = ½ Im (bounce contour)

�R = 2Im lim
T!1

0

@
R x(T )=a
x(�T )=a Dx e�SE[x]�(⌧b[x])

R x(T )=a
x(�T )=a Dx e�SE[x]

1

A

T !iT

forces all paths to hit b at time t=0

Expand around bounce: x(⌧) = x̄(⌧) +
X

⇠nyn(⌧)

• Half the fluctuations don’t hit b, half do
• Gaussian integral is symmetric. 
• Can remove q-function restriction and multiply by ½

Hits b at its maximum

1. If the path x
0,⇣1,... hits b at some time, then �(⌧b[x]) simply removes the ⌧0 integral and

fixes ⌧0 to some value ⌧⇤(⇣i)

2. If the path x
0,⇣1,... never hits b, then the �-function is always 0, and this point in ⇣-space

does not contribute at all.

So we get:

�NLO =
e
�SE [x̄]

e�SE [xFV ]
lim
T !1

�����
2Im

R
d
n
⇣ J [⌧⇤(⇣), ⇣]e�

1

2

P
�i⇣

2

i

R
D�x e

�
1

2
S
00
E [xFV ]�x2

����� (4.32)

where the d
n
⇣ indicates infinitely many integrals and there is an implicit constraint that

x
0,⇣1,...(t) must hit b at some point.
Now we come to a very appealing feature of this method: the factor of 1

2
. Since the

path x̄ just barely hits b at its maximum, the constraint that x = x̄ + �x must hit b forces
�x(0) � 0. Since �x =

P
i
⇣ixi, we can enforce this positivity constraint with a step function

⇥[⇣ixi(0)]. Now, since we are working at Gaussian order only and this is a constraint on a
simple linear combination of the ⇣, we can use symmetry under ⇣ ! �⇣ to drop the step
function and divide by 2. This factor of 2, which arises in the Euclidean approach from
a subtle analytic continuation argument (cf. Section 3.2.2), arises naturally in the direct
method from the requirement that the �-function fire. More physically, it is the requirement
that the path enter the destination region DV, which excludes exactly half the variations
around x̄.

Finally we must discuss the Jacobian J(⌧0, ⇣) arising when one goes from the orthonormal
basis of fluctuations in Eq. (4.29) to the collective coordinate parametrization in Eq. (4.30).
J is non-singular after fixing ⌧0, and it has some expansion in ⇣. At NLO, we only need to
keep the constant, ⇣-independent piece. So we can replace

J(⌧⇤(⇣), ⇣) ! J(⌧⇤(0), 0) = J(0, 0) (4.33)

This Jacobian at leading order is well-known [1,3,6,43] and discussed further in Appendix B6

:
J(0, 0) =

p
SE(x̄)/m (4.34)

Putting together the Jacobian factor and the factor of 1

2
, we get

�NLO =
e
�SE [x̄]

e�SE [xFV ]

p
SE[x̄]/m

�����
1
p
⇡
Im

✓
det0 1

2
S
00

E
[x̄]

det 1

2
S 00

E
[xFV ]

◆�1/2
����� (4.35)

where det0 indicates the determinant omitting the 0-eigenvalue and the boundary conditions
of the determinants’ domains are x(±1) = 0. The ⇡ comes because the denominator path
integral has one more Gaussian integral than the numerator.

6
In the existing literature (e.g. [3]), authors often calculate J(⌧0 = 0), which is all that we need for our

derivation. However, for their derivations using the potential-deformation method, they need the stronger

derivation of J(⌧0) for general ⌧0. For this reason in appendix B, we prove that J is a constant function of

⌧0, even though in our case we could simply ignore the ⌧ dependence.
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where det0 indicates the determinant omitting the 0-eigenvalue and the boundary conditions
of the determinants’ domains are x(±1) = 0. The ⇡ comes because the denominator path
integral has one more Gaussian integral than the numerator.
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In the existing literature (e.g. [3]), authors often calculate J(⌧0 = 0), which is all that we need for our

derivation. However, for their derivations using the potential-deformation method, they need the stronger
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Must hit b

linear in xn

While the dimensions of Eq.(4.35) are the correct dimensions of rate, they have become
obscured by the combination of the

p
SE/m and the determinants. To make the units

clearer, let us pull out m/2 from the determinant, using det
0
A

detA
⇠

1

A
:

�NLO =
e
�SE [x̄]

e�SE [xFV ]

p
SE[x̄]/2⇡

����
det0 S 00

E
[x̄]/m

detS 00

E
[xFV ]/m

����
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(4.36)

Expanding S
00 then gives

�NLO =
e
�SE [x̄]

e�SE [xFV ]

r
SE[x̄]
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����
det0(�@

2

t
+ V

00(x̄(t)))

det(�@2
t + V 00(a))

����
�1/2

(4.37)

This agrees exactly with the formula surmised from the potential-deformation method [3,6].

4.3 Direct tunneling in d > 1

In more than 1 dimension, the main change is that we must extend the turning point b to a
surface ⌃ of possible turning points, since paths can enter the destination region from any
direction. The critical Eq. (4.4) becomes in multiple dimensions:

DF (a, 0; xf , t) =

Z

⌃

db

Z
t

0

dt0DF (a, 0; b, t0)DF (b, 0; xf , t� t0) (4.38)

for ⌃ any codimension-1 surface which all paths go through. The only subtlety is that, to
avoid overcounting of paths that enter and leave, the functional tb[x] in DF only returns
the first time x(t) hits b if that is the first time the path crosses ⌃ at all (and returns 1

otherwise).
From there the steps go through the same as the one-dimensional case. Eqs. (4.6) through

(4.8) will contain two integrals
R
⌃
db

R
⌃
db

0. Eq.(4.10) will thus include an integral
R
⌃
db,

which stays through the end. Thus we see:

�R =

�����
NN

?

PFV (⌧)
2Im

Z

⌃

db

Z
x(1)=a

x(�1)=a

Dx e
�SE [x]

�(⌧b[x])

����� (4.39)

where
R
⌃
db�(tb[x]) = �(t⌃[x]), where t⌃ is the operator which returns the first time ~x(t)

crosses ⌃. Thus:

�R =

����
2Im

R
Dx e

�SE [x]
�(⌧⌃[x])R

Dx e�SE [x]

���� (4.40)

where now ⌃ is the entire surface which bounds R, just like b was the turning point at the
boundary of R. Both path integrals go from x(�1) = a to x(1) = a.
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⇥[⇠nyn(0)]

• Agrees with Coleman-Callan formula at NLO, but valid to all orders
• Does not rely on saddle-point approximation
• Actually connects formula to decay rate
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Classical potential:

- Renormalizable
- Three parameters (L, m and l), measured from data

How can the quantum-corrected potential be computed?

How do we compute Veff?

0 1 2 3 4
-2

0

2

4

6

V (h) = ⇤+m2h2 + �h4
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Z
DHe

i� ⌘
Z

DH D · · · DAe
iS

Effective Action

� =

Z
d
4
x

n
� Z[H]H⇤H � Ve↵(H) + · · ·

o

Classical action

Integrate out everything but H
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FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µ
max

X = 2.46⇥ 1010 GeV (6)

µ
min

X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use m
pole

h =
(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:
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Another contribution V
(2,NLO)(h) comes from the �0 and

ln� terms in 2-loop potential. In Landau gauge, these

terms are h
4
/4 times what is written as �

(2)

e↵
in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V
NLO

min
= V

(LO)(µX) + V
(2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
by V (⇤I) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy

m
pole

h

GeV
> (129.40± 0.58) + 2.26 (

m
pole

t � 173.34 GeV

1.12 GeV
)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >

129.67 GeV). The ±0.58 is pertubative and ↵s uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

m
pole

t

GeV
< (171.22± 0.28) + 0.12 (

m
pole

h � 125.14 GeV

0.24 GeV
)

(11)
Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is m

pole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e
4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional
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FIG. 1. Gauge dependence of the absolute stability bound
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t = 173.34 GeV.
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at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is m
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h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e
4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-
out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as

H =
1
p
2

✓
0

vEW + h

◆
. The traditional perturbation ap-

proach leads to a renormalization-group-improved e↵ec-
tive potential of the form [2]
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(µ)h4 the j-loop
fixed-order e↵ective potential.

Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m

2
h
2 in

the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
m

pole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
m

pole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to m

pole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h

4 can only turn over

due to 1-loop corrections of the form V1 ⇠
g4~
16⇡2h

4 for

some g if � ⇠
g4~
16⇡2 . Since � ⇠ ~, each factor of � in a

diagram changes its e↵ective loop order. Thus perturba-
tion theory in ~ may still be appropriate, but since � ⇠ ~
it is not the usual loop expansion.
An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �

counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g

4j+2
�
1�j .

The consistent method for an order-by-order gauge-
independent calculation of Vmin presented in [13] trans-
lates to the SM as follows. First, we truncate the e↵ective
potential to order ~ with � ⇠ ~ power counting. This
gives the leading-order (LO) potential:
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Note that this potential includes tree-level and 1-loop
contributions, and is gauge-invariant. From this, we can
solve for the scale h = µX where dV
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/dh = 0. Ex-
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which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-
out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
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e↵ective potential calculations can be reorganized so that
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FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are
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max

X = 2.46⇥ 1010 GeV (6)
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min

X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use m
pole

h =
(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:

V
(1,NLO)(h) =

�1

256⇡2


⇠Bg

2

1

✓
ln

�h
4(⇠Bg21 + ⇠W g

2
2
)

4µ4
� 3

◆

+⇠W g
2

2

✓
ln

�
3
h
12
⇠
2

W g
4
2
(⇠Bg21 + ⇠W g

2
2
)

64µ12
� 9

◆�
�h

4 (8)

Another contribution V
(2,NLO)(h) comes from the �0 and

ln� terms in 2-loop potential. In Landau gauge, these

terms are h
4
/4 times what is written as �

(2)

e↵
in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V
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= V

(LO)(µX) + V
(2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
by V (⇤I) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy

m
pole

h

GeV
> (129.40± 0.58) + 2.26 (

m
pole

t � 173.34 GeV

1.12 GeV
)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >

129.67 GeV). The ±0.58 is pertubative and ↵s uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

m
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t
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< (171.22± 0.28) + 0.12 (

m
pole

h � 125.14 GeV

0.24 GeV
)

(11)
Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is m

pole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e
4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional

3

FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.
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h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
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condition.
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Fig. 3 shows the value of Vmax computed by various
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-
out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as

H =
1
p
2
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vEW + h
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. The traditional perturbation ap-

proach leads to a renormalization-group-improved e↵ec-
tive potential of the form [2]
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(µ)h4 the j-loop
fixed-order e↵ective potential.

Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m

2
h
2 in

the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
m

pole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
m

pole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to m

pole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h

4 can only turn over

due to 1-loop corrections of the form V1 ⇠
g4~
16⇡2h

4 for

some g if � ⇠
g4~
16⇡2 . Since � ⇠ ~, each factor of � in a

diagram changes its e↵ective loop order. Thus perturba-
tion theory in ~ may still be appropriate, but since � ⇠ ~
it is not the usual loop expansion.
An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �

counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g

4j+2
�
1�j .

The consistent method for an order-by-order gauge-
independent calculation of Vmin presented in [13] trans-
lates to the SM as follows. First, we truncate the e↵ective
potential to order ~ with � ⇠ ~ power counting. This
gives the leading-order (LO) potential:
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Note that this potential includes tree-level and 1-loop
contributions, and is gauge-invariant. From this, we can
solve for the scale h = µX where dV

(LO)
/dh = 0. Ex-

plicitly µX is the MS scale where the condition
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-
out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
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±0.76 GeV of the uncertainty from [24], and an addi-
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mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
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Potential at minimum indep. of rescaling
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Figure 1: Under the rescaling of the dependent variable, a function changes but its values at
extrema do not [19]. This elementary mathematical fact explains why the e↵ective potential
can depend on the field normalization, but Vmin does not.

field redefinitions, and the e↵ective action in the true vacuum is defined as a path integral in
Eq. (2.6). Indeed, gauge invariance of the action at extrema is a special case of general field
redefinition invariance, since one can view gauge-transformations as field redefinitions. In
doing so, however, one must allow for the possibility that if with one definition an extremum
is at Aµ = 0, with another definition it may be with a nonzero and x-dependent expectation
value for Aµ.

A corollary of the above argument is that the potential away from its extrema does

depend on how the field is normalized and defined. This is also obvious from Fig. 1. Away
from an extremum, the action describes the system in the presence of a current J . When
one rescales the field �, the J� term with J fixed breaks the invariance of the path integral
under rescaling. Equivalently, from Eq. (2.5), we see that J� = 1

J� so that when a field is
rescaled, �[�] gives the least action in the presence of a rescaled current.

A number of authors have proposed that the gauge-dependence of the e↵ective potential
can be removed through a field redefinition [8–11,14]. For example, Tye and Vtorov-Karevsky
argue that one should replace �1 + i�2 ! � exp(i⇡) [10]. Then � is a U(1) singlet and
so its source J is neutral and the interaction J� in the Lagrangian does not cause the
Ward identity to be violated. Although there is nothing wrong with this argument, physical
quantities, such as the value of the potential at its minimum, should be independent of
field redefinitions. A field redefinition is in a sense similar to a gauge-choice. It does not
make the potential away from the minimum any more physical. Moreover, with this non-
linear field redefinition, a renormalizable theory becomes nonrenormalizable and nominally
straightforward calculations can become drastically more complicated (try computing �� at
1-loop in this theory). The point is that physics should be independent of field redefinitions,
so one should choose a basis which makes calculations easiest, not one that makes unphysical
quantities more comforting.
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• Rescaling field leaves Vmin unchanged



But is it?
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No.

(�Vmin)
1/4 appears linearly-dependent on gauge parameter x



What about field values?
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also strongly gauge-dependent

Instability scale LI =  value of h where V(h) = 0

• hmin also gauge dependent
• hmax also gauge dependent
• …
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Veff(h)
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v = 247 GeV hmin = 1033 GeV
LI = 1011 GeV

hmax = 1010 GeV
Landau gauge (x=0)
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2. Large Logarithms
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Can be resummed with RGE:

Explicit µ dependence

compensated for by rescaling couplings and fields
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• Same RGE as 1PI Green’s functions or off-shell matrix elements
• Observables/S-matrix elements satisfy simpler RGE:

Effective potential depends on the normalization of fields??!!

• Field-rescaling term canceled by LSZ wavefunction Z-factors



Resum logarithms
Oct 11, 2017 Matthew Schwartz

1. Compute Veff to fixed order (say 2-loops) at scale (say) µ0 ~ 100 GeV

2. Solve RGE

3. Set µ ~ h

✓
µ

@

@µ
+ �i

@

@gi
� �h

@

@h

◆
Ve↵ = 0

Ve↵(h, gi, µ) ! Ve↵(e
�(µ0,µ)h, gi(µ), µ)

�(µ0, µ) ⌘
Z µ

µ0

�(µ0)d lnµ0

Potential depends on scale µ0 where it is calculated??!!
✓

@

@µ0
� �h

@

@h

◆
V (h, µ0) = 0

Ve↵(h, µ0) = Ve↵(e
�(µ0,h)h, gi(h), h)



Potential at minimum
Oct 11, 2017 Matthew Schwartz

5 10 15

-10

-5

5

Figure 1: Under the rescaling of the dependent variable, a function changes but its values at
extrema do not [19]. This elementary mathematical fact explains why the e↵ective potential
can depend on the field normalization, but Vmin does not.

field redefinitions, and the e↵ective action in the true vacuum is defined as a path integral in
Eq. (2.6). Indeed, gauge invariance of the action at extrema is a special case of general field
redefinition invariance, since one can view gauge-transformations as field redefinitions. In
doing so, however, one must allow for the possibility that if with one definition an extremum
is at Aµ = 0, with another definition it may be with a nonzero and x-dependent expectation
value for Aµ.

A corollary of the above argument is that the potential away from its extrema does

depend on how the field is normalized and defined. This is also obvious from Fig. 1. Away
from an extremum, the action describes the system in the presence of a current J . When
one rescales the field �, the J� term with J fixed breaks the invariance of the path integral
under rescaling. Equivalently, from Eq. (2.5), we see that J� = 1

J� so that when a field is
rescaled, �[�] gives the least action in the presence of a rescaled current.

A number of authors have proposed that the gauge-dependence of the e↵ective potential
can be removed through a field redefinition [8–11,14]. For example, Tye and Vtorov-Karevsky
argue that one should replace �1 + i�2 ! � exp(i⇡) [10]. Then � is a U(1) singlet and
so its source J is neutral and the interaction J� in the Lagrangian does not cause the
Ward identity to be violated. Although there is nothing wrong with this argument, physical
quantities, such as the value of the potential at its minimum, should be independent of
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Even gauge-invariant G is unphysical
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V (h, µ0) = 0

• This is OK. 
• Off-shell quantities can be unphysical

• Observables should be physical
• S-matrix elements
• Vacuum energy (Vmin)
• Tunnelling rates
• Critical temperature

But are they? 

What about field values?
Instability scale?
Inflation scale?
Planck/new physics sensitivity?

Are these questions about observables?



SCALAR QED

Oct 11, 2017 Matthew Schwartz



• Not gauge-invariant

• For most values of e and l, there is no minimum

• When
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L = �1

4
F 2
µ⌫ +

1

2
|Dµ�|2 � V (�)

• mass term gives small corrections, so we drop it

4 Coleman-Weinberg Model

Now let us turn to the main subject of this paper, scalar QED with a massless scalar, also
known as the Coleman-Weinberg model. The Lagrangian is as in Eq. (3.1), with

V0 =
�

24
�4 (4.1)

and the gauge-fixing term is

LGF = �
1

2⇠
(@µA

µ)2 (4.2)

These can be thought of as R⇠ gauges (since vcl = 0 in this theory) or Fermi gauges. They
correspond to ⌥1 = ⌥2 = 0 in the 3-parameter gauge family discussed above, and so the
ghosts decouple and can be ignored. There is unavoidable kinetic mixing between � and
@µAµ in this theory, but as in the Abelian Higgs model, this is an inconvenient but not
insurmountable complication.

The renormalized 1-loop e↵ective potential in MS in this theory is the m ! 0 limit of
Eq. (3.9):
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The relation

K4

+
+K4
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�

1

3
e2�⇠ (4.5)

has been used to simplify the 1-loop potential.
The tree-level potential in this model has only a single minimum, at � = 0, where the

O(2) symmetry is unbroken. For there to be a minimum at 1-loop, the corrections must be
large enough to turn over the potential. For � small, so that the theory is perturbative, this
is only possible if the ~

16⇡2 e4 term is as large as the tree-level �
24

piece. So let us assume
� ⇠

~
16⇡2 e4 and that there is a minimum at some scale v. Then the condition for the

minimum, V 0(v) = 0 provides a precise relationship between � and e:

� =
~

16⇡2
e4

✓
6� 36 ln

ev

µ

◆
+O(e6) (4.6)

As discussed in [4], to understand this equation one must appreciate dimensional trans-
mutation. In scalar QED, the only scale is the scale µ at which the couplings are defined. µ
is arbitrary, so we may as well take µ = v. Then Eq. (4.6) reduces to

� =
~

16⇡2
e4 (6� 36 ln e) +O(e6) (4.7)
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This equation should be thought of as a condition on � = �(µ) and e = e(µ): the minimum
occurs at the scale v = µ where Eq. (4.7) holds. Of course, v will get corrections and, as we
will see, is gauge-dependent (unlike µ). But at least at 1-loop, this is an acceptable way to
think about the minimum in the e↵ective potential in scalar QED.

Since � and e can be anything, it is natural to wonder whether Eq. (4.7) requires some
kind of finite tuning. As explained in [4] it does not. The evolution of e and � are determined
by the � functions:

µ
d

dµ
e = �e, µ

d

dµ
� = ��, (4.8)

where, at 1-loop,

�e =
~

16⇡2
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The key feature of these equations is that e is multiplicatively renormalized (e = 0 is a fixed
point of the RG flow) while � can get an additive correction even at � = 0. What this means
is that if � and e start o↵ small, e runs logarithmically, but � will grow at ever increasing
rate until it hits a Landau pole. Indeed, the exact solutions to the 1-loop RGEs are [4]

e2(µ) =
e2(µ0)

1� e2(µ0)

24⇡2 ln µ
µ0

(4.11)

which expresses e(µ) in terms of e at some reference scale µ0 and

�(µ) =
e2(µ)
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with C an integration constant which can be traded for �(µ0). The tangent in �(µ) implies
that as e2 changes by a factor of ⇡ 1.2, � will go from �1 to 1. In particular, if � and e
are small, there will always be a point where Eq. (4.7) is satisfied.

At the minimum, we find

Vmin = v4
~

16⇡2
e4
✓
�
3

8

◆
+O(e6) (4.13)

This is gauge-invariant, simply because the e4 terms in V1(�) are gauge-invariant.
The first non-trivial check on the gauge invariance of V (v) requires the terms in the

e↵ective potential of order ~2e6, with � counting as order ~e4, and ln e and ln� counting as
order e0. In scalar QED, each loop comes with a factor of ~e2 or ~� from the vertices, so ~e2�
terms come from 1-loop graphs and ~2e6 terms from 2-loop graphs. Thus we need at least
the 2-loop Coleman-Weinberg potential. In addition, e↵ective potential calculations involve
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4 Coleman-Weinberg Model

Now let us turn to the main subject of this paper, scalar QED with a massless scalar, also
known as the Coleman-Weinberg model. The Lagrangian is as in Eq. (3.1), with

V0 =
�

24
�4 (4.1)

and the gauge-fixing term is

LGF = �
1

2⇠
(@µA

µ)2 (4.2)

These can be thought of as R⇠ gauges (since vcl = 0 in this theory) or Fermi gauges. They
correspond to ⌥1 = ⌥2 = 0 in the 3-parameter gauge family discussed above, and so the
ghosts decouple and can be ignored. There is unavoidable kinetic mixing between � and
@µAµ in this theory, but as in the Abelian Higgs model, this is an inconvenient but not
insurmountable complication.

The renormalized 1-loop e↵ective potential in MS in this theory is the m ! 0 limit of
Eq. (3.9):
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The relation
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has been used to simplify the 1-loop potential.
The tree-level potential in this model has only a single minimum, at � = 0, where the

O(2) symmetry is unbroken. For there to be a minimum at 1-loop, the corrections must be
large enough to turn over the potential. For � small, so that the theory is perturbative, this
is only possible if the ~

16⇡2 e4 term is as large as the tree-level �
24

piece. So let us assume
� ⇠

~
16⇡2 e4 and that there is a minimum at some scale v. Then the condition for the

minimum, V 0(v) = 0 provides a precise relationship between � and e:

� =
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ev
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+O(e6) (4.6)

As discussed in [4], to understand this equation one must appreciate dimensional trans-
mutation. In scalar QED, the only scale is the scale µ at which the couplings are defined. µ
is arbitrary, so we may as well take µ = v. Then Eq. (4.6) reduces to

� =
~

16⇡2
e4 (6� 36 ln e) +O(e6) (4.7)
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These terms are important, but since � ⇠ e4, they have e↵ects comparable to terms in the 3-
loop Coleman-Weinberg potential. Thus, an advantage of Landau gauge is that it postpones
the relevance of daisy resummation by one loop. Landau gauge does not however let us
ignore the daisy graphs completely.

Two recent papers also observed that resummation of certain graphs to all orders is
necessary starting at 3 loops in Landau gauge [40,41]. These two papers are concerned with
resolving an infrared divergence problem associated with massless Goldstone bosons starting
at 3 loops. While these two papers discuss diagrams similar to the ones here, the problem
they solve is di↵erent (infrared divergences, not gauge-dependence) and their results are not
directly transferable. However, these two papers, along with the earlier work in [35, 43], do
explain in a more systematic way how daisy and other relevant diagrams can be resummed
through a modification of the e↵ective propagators.

In summary, the full Coleman-Weinberg potential up to order e6 with � ⇠ e4 is the sum
of Eqs. (4.1), (4.3), (5.20) and (6.10). It is helpful to write the result as

V = V LO + V NLO + · · · (6.15)

where the leading-order (LO) potential
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scales as O(~) when � ⇠ ~e4 and the next-to-leading order (NLO) potential, scaling like
O(~2), is
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with b�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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These terms are important, but since � ⇠ e4, they have e↵ects comparable to terms in the 3-
loop Coleman-Weinberg potential. Thus, an advantage of Landau gauge is that it postpones
the relevance of daisy resummation by one loop. Landau gauge does not however let us
ignore the daisy graphs completely.

Two recent papers also observed that resummation of certain graphs to all orders is
necessary starting at 3 loops in Landau gauge [40,41]. These two papers are concerned with
resolving an infrared divergence problem associated with massless Goldstone bosons starting
at 3 loops. While these two papers discuss diagrams similar to the ones here, the problem
they solve is di↵erent (infrared divergences, not gauge-dependence) and their results are not
directly transferable. However, these two papers, along with the earlier work in [35, 43], do
explain in a more systematic way how daisy and other relevant diagrams can be resummed
through a modification of the e↵ective propagators.
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with b�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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• Known in Landau gauge
• Some terms computed by Kang (1974), not in MS
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.
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where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.
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where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.

Adding the contribution of these graphs to the counterterm contribution in Eq. (5.4)
gives the ~2 contributions to the e↵ective potential:
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where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.
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where again the · · · vanish as � ! 0.
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with the · · · vanishing as � ! 0. Kang computed some of the logarithmic terms in these
amplitudes in [29], and we agree with his results.
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where again the · · · vanish as � ! 0.
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terms of order 

Then the relevant part of the 2-loop potential is

~3
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These terms are important, but since � ⇠ e4, they have e↵ects comparable to terms in the 3-
loop Coleman-Weinberg potential. Thus, an advantage of Landau gauge is that it postpones
the relevance of daisy resummation by one loop. Landau gauge does not however let us
ignore the daisy graphs completely.

Two recent papers also observed that resummation of certain graphs to all orders is
necessary starting at 3 loops in Landau gauge [40,41]. These two papers are concerned with
resolving an infrared divergence problem associated with massless Goldstone bosons starting
at 3 loops. While these two papers discuss diagrams similar to the ones here, the problem
they solve is di↵erent (infrared divergences, not gauge-dependence) and their results are not
directly transferable. However, these two papers, along with the earlier work in [35, 43], do
explain in a more systematic way how daisy and other relevant diagrams can be resummed
through a modification of the e↵ective propagators.

In summary, the full Coleman-Weinberg potential up to order e6 with � ⇠ e4 is the sum
of Eqs. (4.1), (4.3), (5.20) and (6.10). It is helpful to write the result as

V = V LO + V NLO + · · · (6.15)

where the leading-order (LO) potential
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scales as O(~) when � ⇠ ~e4 and the next-to-leading order (NLO) potential, scaling like
O(~2), is
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with b�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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with b�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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The final term is the contribution from the daisies. Without this term, our result agrees with
Kang [17] (up to normalization and subtraction-scheme conventions). As before, one should
interpret v as the scale µ where this equation it satisfied. Therefore v is gauge-dependent.

This solution for � contributes to the scalar mass through V 00(v) (see Eq.(7.5) below).
Plugging Eq. (7.2) back into the potential, we find that in fact V (�) is completely insensitive
to the daisy contribution: the correction to � exactly cancels the V e6daisies daisy contribution.
Thus there is no e↵ect of the daisies on the scalar mass. The vector propagator at the order
required (1-loop) is also independent of daisies; it can even be computed in the � = 0 limit.
Thus the daisies do not a↵ect the scalar to vector mass ratio at order e6, which explains why
Kang’s result is correct.

Now let us consider the value of the e↵ective potential at the radiatively generated min-
imum, Vmin. Plugging Eq. (7.2) back into the e↵ective potential and setting � = v gives
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This is gauge-dependent. One might have suspected that the daisies would help, but in
fact they do not contribute at all to this expression (since, as mentioned above, they do
not contribute to V (�) when expressed in terms of v, even away from the minimum). This
gauge-dependence is essentially what was observed but not resolved in [35].

What is going on? Shouldn’t the Nielsen identity in Eq. (2.7)

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guarantee that Vmin is gauge-invariant? Since @V
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= 0, which indeed does hold, this

equation should automatically imply that @V
@⇠ = 0, which does not hold. The catch is that

C(v, ⇠) happens to be infinite. Indeed, since we know V we can sidestep the direct calculation
of C(�, ⇠) and simply solve for it using Eq. (7.4). Doing so, we find a function C(�, ⇠) which
has a logarithmic divergence as � ! v. Thus while the Nielsen identity may provide a
constraint on the exact e↵ective potential, it gives no indication of how we are to proceed
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The final term is the contribution from the daisies. Without this term, our result agrees with
Kang [17] (up to normalization and subtraction-scheme conventions). As before, one should
interpret v as the scale µ where this equation it satisfied. Therefore v is gauge-dependent.

This solution for � contributes to the scalar mass through V 00(v) (see Eq.(7.5) below).
Plugging Eq. (7.2) back into the potential, we find that in fact V (�) is completely insensitive
to the daisy contribution: the correction to � exactly cancels the V e6daisies daisy contribution.
Thus there is no e↵ect of the daisies on the scalar mass. The vector propagator at the order
required (1-loop) is also independent of daisies; it can even be computed in the � = 0 limit.
Thus the daisies do not a↵ect the scalar to vector mass ratio at order e6, which explains why
Kang’s result is correct.
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This is gauge-dependent. One might have suspected that the daisies would help, but in
fact they do not contribute at all to this expression (since, as mentioned above, they do
not contribute to V (�) when expressed in terms of v, even away from the minimum). This
gauge-dependence is essentially what was observed but not resolved in [35].
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@⇠ = 0, which does not hold. The catch is that

C(v, ⇠) happens to be infinite. Indeed, since we know V we can sidestep the direct calculation
of C(�, ⇠) and simply solve for it using Eq. (7.4). Doing so, we find a function C(�, ⇠) which
has a logarithmic divergence as � ! v. Thus while the Nielsen identity may provide a
constraint on the exact e↵ective potential, it gives no indication of how we are to proceed
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in perturbation theory. Similar divegences in C(�, ⇠) were observed by Nielsen [15] in the
Abelian Higgs model and attributed to the infrared divergence problem in Fermi gauges
discussed in Section 3 (see also [24]).

The problem with Vmin written as in Eq. (7.3) is that it explicitly depends on v, which
in turn implicitly depends on ⇠. One way to remove the v dependence is to compute a
dimensionless quantity, such as Vmin/m4

S. To compute this, we need more terms in the scalar
self-energy graph than computed by Kang. Evaluating the relevant graphs, we find the
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which is manifestly ⇠ independent. Daisies do not contribute to this ratio, as they contribute
to neither Vmin nor to mS.

That the potential at the minimum to the scalar mass is gauge-invariant is encouraging,
but shouldn’t these quantities separately be gauge invariant? Aitchison and Fraser observed
that the scalar mass that Kang calculated does not in fact satisfy its Nielsen identity [24].
They suspected, echoing Nielsen, that the discrepancy would be resolved by including the
daisies. We have shown that the daisies do not help. The real problem is that one simply
cannot express these quantities in terms of the expectation value v = h�i. This vev is
unphysical and gauge-dependent and infects all dimensionful quantities expressed in terms
of it.

An alternative to expressing Vmin in terms of v is to express it in terms of the renormal-
ization group scale µ. This scale is as physical as the MS couplings: the two are intrinsically
connected. So that we can continue to use perturbation theory, let us define the scale µX as
the scale where Eq. (4.7) is satisfied exactly. That is, µX is defined by the exact relation
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Since this relation is exact, we can no longer solve for e6 terms in the relation between � and
e. Instead, we can solve V 0(v) = 0 for v as a function of µX . Up to 2-loops we find
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where the last two terms are the daisy contribution. Note that v = h�i is not gauge invariant.
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where, again, the last two terms are the daisy contribution. In this case, we see that for
Vmin the daisies precisely cancel the gauge dependence from the other terms as indicated
and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µX , and then for the vector mass
using Eq. (7.1).

To reinforce some of the main points of this paper, we can explicitly work out various
unphysical quantities to see that they are indeed gauge dependent. The first gauge-dependent
quantity is the vev: v = h�i shown in Eq. (7.9). We can also look at value of the field where
the potential is zero ⇤I , which in the standard model is sometimes given an interpretation
as an instability scale. Setting V (⇤I) = 0 gives a di↵erent relation between � and e than
V 0(v) = 0. Let us define the scale µI as the value of µ for which
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which, like v is gauge-dependent. In both cases, we see that the scale is linearly dependent
on ⇠. Comparing to Eq. (7.9), it is intriguing to observe that v and ⇤I have the same
⇠-dependent terms, so that v/⇤I is gauge-invariant at this order.

8 Renormalization group improvement

At this point we have shown that if the e↵ective potential in scalar QED is expressed in
terms of the MS couplings e and � and the scale µX where they satisfy Eq. (7.8), then the
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Vmin the daisies precisely cancel the gauge dependence from the other terms as indicated
and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µX , and then for the vector mass
using Eq. (7.1).

To reinforce some of the main points of this paper, we can explicitly work out various
unphysical quantities to see that they are indeed gauge dependent. The first gauge-dependent
quantity is the vev: v = h�i shown in Eq. (7.9). We can also look at value of the field where
the potential is zero ⇤I , which in the standard model is sometimes given an interpretation
as an instability scale. Setting V (⇤I) = 0 gives a di↵erent relation between � and e than
V 0(v) = 0. Let us define the scale µI as the value of µ for which
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which, like v is gauge-dependent. In both cases, we see that the scale is linearly dependent
on ⇠. Comparing to Eq. (7.9), it is intriguing to observe that v and ⇤I have the same
⇠-dependent terms, so that v/⇤I is gauge-invariant at this order.

8 Renormalization group improvement

At this point we have shown that if the e↵ective potential in scalar QED is expressed in
terms of the MS couplings e and � and the scale µX where they satisfy Eq. (7.8), then the
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Daisy resummation
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Higher order graphs can scale like inverse powers of l:

critical temperature because, in the limit m ⌧ T , new infrared divergences arrive. Daisy
resummation as a solution to infrared problems associated with massless Goldstone bosons
has recently been proposed in [39,40]. The relevance of daisy resummation to solving gauge-
dependence problems at finite temperature has also been discussed [19,41,42]. It is therefore
not suprising that daisy resummation is relevant to the gauge-dependence problem in the
Coleman-Weinberg model. Nevertheless, the relevant calculation has not yet been done, to
our knowledge, which is why we resum the relevant daisy graphs here.

Normally, one does not get inverse powers of coupling constants from Feynman dia-
grams. Indeed, at any fixed order in perturbation theory, there are always positive powers
of couplings, even in e↵ective potential calculations. However, the e↵ective potential always
involves summing an infinite number of graphs, namely those with an arbitrary number
of background field insertions. It is this infinite sum which gives the ln� dependence in
the e↵ective potential and which can generate infinite powers of couplings. As discussed in
Section 5, we simplify the infinite sums by using dressed propagators. For exmaple, from
Eq. (5.5) that the �1 propagator is D11 =

i
k2��

2 �
2 which has an e↵ective mass m2 = �

2�
2. In

the daisy graphs, each photon loop (the petals) gives a factors proportional to e2�2 with an
extra factor of e2 for the vertex, and the loop integral over the scalar propagators can give
inverse powers of the e↵ective mass. For example, a 4-loop 3-petal daisy will give
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Here, we have simply done the integral by dimensional analysis, since it is UV and IR finite.
This graph therefore contributes at order e8 in the � ⇠ e4 power-counting. It is therefore
beyond the order we need for the first non-trivial gauge-invariance check of Vmin (not to
mention that this particular loop is itself ⇠-independent).

It is not hard to see, using dimensional analysis, that the only graphs which could con-
tribute at order e6 (with the � ⇠ e4 power-counting) must involve �2 propagators and have
external photon loops. The photon loops factorize o↵ from the daisies, and from each other.
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We can sum the series:
Figure 3: Example daisy graphs which contribute inverse powers of �.

quantities at order e6 in this power counting. Nielsen argued that the reason the scalar mass
Kang calculated does not satisfy his identity was due to the absence of these terms [15].
Some time later, Johnston [35] showed how these terms can be summed into a dressed
propagator for the scalar fields, suggesting that these terms could be computed and the
Nielsen identity restored, although no explicit contributions to the potential were provided.
Shortly afterwards Bazeia [36] showed that even at 1-loop, where daisies are irrelevant, the
vacuum energy in the Coleman-Weinberg model has gauge-dependence. In this section, we
compute all of the daisy graphs relevant at e6 (and some of the subleading daisy graphs as
well to demonstrate their relevance in Landau gauge). In the next section we demonstrate
that, after carefully keeping track of the independent variables, the e↵ective potential at its
minimum is indeed gauge-invariant.

Before beginning, it is worth remarking that the daisy resummation we perform here is
related to, but not identical to, daisy resummation in finite-temperature field theory [37–
39]. At finite temperature, the resummation of daisy diagrams is necessary to calculate a
critical temperature because, in the limit m ⌧ T , new infrared divergences arise. Daisy
resummation as a solution to infrared problems associated with massless Goldstone bosons
has recently been proposed in [40,41]. The relevance of daisy resummation to solving gauge-
dependence problems at finite temperature has also been discussed [19, 42]. It is therefore
not surprising that daisy resummation is relevant to the gauge-dependence problem in the
Coleman-Weinberg model. Nevertheless, the relevant calculations have never been done, to
our knowledge, which is why we resum the relevant daisy graphs here.
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grams. Indeed, at any fixed order in perturbation theory, there are always positive powers
of couplings, even in e↵ective potential calculations. However, the e↵ective potential always
involves summing an infinite number of graphs, namely those with an arbitrary number of
background field insertions. It is this infinite sum which gives the ln� dependence in the
e↵ective potential and which can generate inverse powers of couplings. As discussed in Sec-
tion 5, we simplify the infinite sums by using dressed propagators. For example, we see from
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Each term in this series contributes at order e6 when � ⇠ e4. Thus they are all equally
important for checking gauge invariance and we must sum the series. Summing the series is
easy enough to do using
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We have defined b�(�) so that according to Eq. (4.6) b�(v) = � at the scale v where the 1-loop
potential has its minimum. Remarkably, while each daisy graph with n > 1 is individually
power-divergent as � ! 0 with e fixed, the sum of all daisies scales only like ln�.

Before moving on, it is worth pointing out that daisy resummation is important even in
Landau gauge, ⇠ = 0. In Landau gauge, there is no kinetic mixing and the scalar propagators
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where the last two terms are the daisy contribution. Note that v = h�i is not gauge invariant.
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where, again, the last two terms are the daisy contribution. In this case, we see that for
Vmin the daisies precisely cancel the gauge dependence from the other terms as indicated
and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µX , and then for the vector mass
using Eq. (7.1).

To reinforce some of the main points of this paper, we can explicitly work out various
unphysical quantities to see that they are indeed gauge dependent. The first gauge-dependent
quantity is the vev: v = h�i shown in Eq. (7.9). We can also look at value of the field where
the potential is zero ⇤I , which in the standard model is sometimes given an interpretation
as an instability scale. Setting V (⇤I) = 0 gives a di↵erent relation between � and e than
V 0(v) = 0. Let us define the scale µI as the value of µ for which
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which, like v is gauge-dependent. In both cases, we see that the scale is linearly dependent
on ⇠. Comparing to Eq. (7.9), it is intriguing to observe that v and ⇤I have the same
⇠-dependent terms, so that v/⇤I is gauge-invariant at this order.

8 Renormalization group improvement

At this point we have shown that if the e↵ective potential in scalar QED is expressed in
terms of the MS couplings e and � and the scale µX where they satisfy Eq. (7.8), then the
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on ⇠. Comparing to Eq. (7.9), it is intriguing to observe that v and ⇤I have the same
⇠-dependent terms, so that v/⇤I is gauge-invariant at this order.
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where, again, the last two terms are the daisy contribution. In this case, we see that for
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and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
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using Eq. (7.1).
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Full potential at NLO:
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These terms are important, but since � ⇠ e4, they have e↵ects comparable to terms in the 3-
loop Coleman-Weinberg potential. Thus, an advantage of Landau gauge is that it postpones
the relevance of daisy resummation by one loop. Landau gauge does not however let us
ignore the daisy graphs completely.

Two recent papers also observed that resummation of certain graphs to all orders is
necessary starting at 3 loops in Landau gauge [40,41]. These two papers are concerned with
resolving an infrared divergence problem associated with massless Goldstone bosons starting
at 3 loops. While these two papers discuss diagrams similar to the ones here, the problem
they solve is di↵erent (infrared divergences, not gauge-dependence) and their results are not
directly transferable. However, these two papers, along with the earlier work in [35, 43], do
explain in a more systematic way how daisy and other relevant diagrams can be resummed
through a modification of the e↵ective propagators.
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with b�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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which is manifestly gauge-invariant! The daisies have exactly canceled the ⇠ dependence of
the NLO 1-loop and 2-loop contributions.

Next, let us look at a field value expressed in terms of the MS scale µ, to double check
that somehow all of its gauge-dependence is not miraculously absent. Consider the value of
the field where the potential is zero ⇤I , which in the Standard Model is sometimes given
an interpretation as an instability scale [44]. Setting V (⇤I) = 0 gives a di↵erent relation
between � and e than V 0(v) = 0 did. The condition on the running couplings so that V LO = 0
at � = µ = µI is

�(µI) =
~

16⇡2
e(µI)

4

n
15� 36 ln[e(µI)]

o
(7.7)

At NLO, we then find
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This instability scale is linearly dependent on the gauge-parameter ⇠, and therefore should
not be used to draw physical conclusions. The ⇠ dependence of other field values can be
computed in a similar way, confirming that they are indeed unphysical.
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where, again, the last two terms are the daisy contribution. In this case, we see that for
Vmin the daisies precisely cancel the gauge dependence from the other terms as indicated
and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µX , and then for the vector mass
using Eq. (7.1).

To reinforce some of the main points of this paper, we can explicitly work out various
unphysical quantities to see that they are indeed gauge dependent. The first gauge-dependent
quantity is the vev: v = h�i shown in Eq. (7.9). We can also look at value of the field where
the potential is zero ⇤I , which in the standard model is sometimes given an interpretation
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which, like v is gauge-dependent. In both cases, we see that the scale is linearly dependent
on ⇠. Comparing to Eq. (7.9), it is intriguing to observe that v and ⇤I have the same
⇠-dependent terms, so that v/⇤I is gauge-invariant at this order.

8 Renormalization group improvement

At this point we have shown that if the e↵ective potential in scalar QED is expressed in
terms of the MS couplings e and � and the scale µX where they satisfy Eq. (7.8), then the

27

v = µX + µX
~e2
16⇡2

⇢
�
40

9
+

94

9
ln e �

20

3
ln2 e �

⇠

2
+

3

2
⇠ ln e +

⇠

4
ln
h ⇠~
16⇡2

(1� 6 ln e)
i

�
1

6
⇠ + ⇠ ln e +

1

6
⇠ � ⇠ ln e

�
+ · · · (7.9)

where the last two terms are the daisy contribution. Note that v = h�i is not gauge invariant.
However, we find

Vmin =
e4~
16⇡2

µ4
X

✓
�
3

8

◆
+

e6~
(16⇡2)2

µ4
X

✓
71

6
�

62

3
+ 10 ln2 e

◆

+
e6~

(16⇡2)2
µ4
X

✓
⇠

4
�

3

2
⇠ ln e �

⇠

4
+

3

2
⇠ ln e

◆

| {z }
=0

(7.10)

where, again, the last two terms are the daisy contribution. In this case, we see that for
Vmin the daisies precisely cancel the gauge dependence from the other terms as indicated
and the resulting expression is entirely independent of ⇠! Using Eq. (7.7) we can also find a
gauge-invariant expression for the scalar mass in terms of µX , and then for the vector mass
using Eq. (7.1).

To reinforce some of the main points of this paper, we can explicitly work out various
unphysical quantities to see that they are indeed gauge dependent. The first gauge-dependent
quantity is the vev: v = h�i shown in Eq. (7.9). We can also look at value of the field where
the potential is zero ⇤I , which in the standard model is sometimes given an interpretation
as an instability scale. Setting V (⇤I) = 0 gives a di↵erent relation between � and e than
V 0(v) = 0. Let us define the scale µI as the value of µ for which

� =
e4~
16⇡2

(15� 36 ln e) (7.11)

Then we find

⇤I = µI + µI
~e2
16⇡2

⇢
�
77

9
+

124

9
ln e �

20

3
ln2 e �

⇠

2
+

3

2
⇠ ln e +

⇠

4
ln
h ⇠~
16⇡2

(1� 6 ln e)
i

�
5

12
⇠ + ⇠ ln e +

5

12
⇠ � ⇠ ln e

�
+ · · · (7.12)
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vacuum energy is gauge-invariant!
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2

action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-
out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as

H =
1
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. The traditional perturbation ap-

proach leads to a renormalization-group-improved e↵ec-
tive potential of the form [2]
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(µ)h4 the j-loop
fixed-order e↵ective potential.

Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m

2
h
2 in

the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
m

pole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
m

pole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to m

pole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h

4 can only turn over

due to 1-loop corrections of the form V1 ⇠
g4~
16⇡2h
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some g if � ⇠
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16⇡2 . Since � ⇠ ~, each factor of � in a

diagram changes its e↵ective loop order. Thus perturba-
tion theory in ~ may still be appropriate, but since � ⇠ ~
it is not the usual loop expansion.
An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �

counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g

4j+2
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1�j .

The consistent method for an order-by-order gauge-
independent calculation of Vmin presented in [13] trans-
lates to the SM as follows. First, we truncate the e↵ective
potential to order ~ with � ⇠ ~ power counting. This
gives the leading-order (LO) potential:
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Note that this potential includes tree-level and 1-loop
contributions, and is gauge-invariant. From this, we can
solve for the scale h = µX where dV
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/dh = 0. Ex-
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stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as
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the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
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pole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
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pole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to m

pole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
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petitively with the 2-loop terms. Including all relevant
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-
out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.
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and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
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discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
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h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
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t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
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is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
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ample, a term ⇠ ~3g10��1 appears at 3-loops; since �

counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-
out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as
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Since stability is determined by large field values and
the potential grows as h4, the quadratic term �m
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the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
m

pole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
m

pole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to m

pole

h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
put, the classical potential V0 ⇠ �h

4 can only turn over
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tion theory in ~ may still be appropriate, but since � ⇠ ~
it is not the usual loop expansion.
An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �

counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g
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The consistent method for an order-by-order gauge-
independent calculation of Vmin presented in [13] trans-
lates to the SM as follows. First, we truncate the e↵ective
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action at tree-level produce 1PI correlation functions,
which can be gauge and scale dependent and satisfy an
RGE like Eq. (2). Gauge-invariant S-matrix elements are
related to correlation functions by amputation and (in
MS) gauge-dependent wave-function renormalization Z-
factors. These factors also compensate the scale depen-
dence, letting the S-matrix satisfy an RGE like Eq. (2)
without the � term.

Fortuitously, the value of the potential at a minimum,
Vmin, (or at any extremum) is both gauge-invariant and
independent of the scale where it is calculated, with-
out extra Z-factors. The former invariance follows from
Eq. (1) and the latter invariance holds simply because
the value of any function at any extremum is invariant
under any rescaling of its argument. Since the absolute
stability bound in the SM is determined by the condi-
tion Vmin < VEW ⇡ 0, with VEW the energy of our vac-
uum (usually renormalized to zero), the bound should be
gauge-independent. Unfortunately, gauge-invariance has
only been proven non-perturbatively. Indeed, we find
that the stability bound is gauge-dependent at each or-
der in perturbation theory if computed by the traditional
approach (see Fig. 1 or [18]). In [13], it was shown how
e↵ective potential calculations can be reorganized so that
Vmin is gauge-invariant order-by-order. In this paper, we
review this “consistent approach” and apply it to the SM.

We write the SM e↵ective potential as V (h), where
in unitary gauge the Higgs doublet is normalized as
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the potential grows as h4, the quadratic term �m
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the classical potential can be neglected to excellent accu-
racy. Then the electroweak minimum is at VEW = 0
and the stability bound is determined as the critical
Higgs pole mass for which the potential has another min-
imum with Vmin = 0. The physical Higgs mass enters
through threshold corrections at the weak scale which
convert observables into MS couplings. Currently, the
�-functions and � are known to 3-loop order in general
R⇠ gauges, the fixed-order potential is known to 2-loop
order in Landau gauge (⇠ = 0), and the threshold cor-
rections are known to 2 loops (an alternate scheme is
discussed in [23]). Using Eq. (3) and the best avail-
able data, Ref. [2] found an absolute stability bound of
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pole

h > (129.1 ± 1.5) GeV. Using equations from [2],
with some minor corrections confirmed by its authors,
and including tau and bottom contributions, we have re-

produced this result. We now update the top mass to
m

pole

t = (173.34± 1.12) GeV, with the central value and
±0.76 GeV of the uncertainty from [24], and an addi-
tional 0.82GeV theory uncertainty added in quadrature
due to the ambiguity in converting from a Monte Carlo
mass scheme to a pole mass scheme [25, 26]. Also in-
cluding the 3-loop QCD threshold corrections to � listed
but not used in [2], we update this traditional-approach
bound to m
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h > (129.67± 1.5) GeV.
The gauge-dependence of the stability bound at 1-loop

is shown in Fig. 1, to be discussed more below. The rea-
son the stability bound appears gauge dependent is due
to an improper use of perturbation theory. The key in-
sight, made long ago by Coleman and Weinberg [22] is
that the usual loop expansion is inappropriate for e↵ec-
tive potentials near quantum-generated minima. Simply
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An additional complication is that the e↵ective poten-

tial has terms scaling like inverse powers of ~. For ex-
ample, a term ⇠ ~3g10��1 appears at 3-loops; since �

counts as ~, this term scales like ~2 and contributes com-
petitively with the 2-loop terms. Including all relevant
terms according to this modified power counting, it was
shown in [13] that Vmin is indeed gauge-invariant in scalar
QED. The required terms include the 2-loop e↵ective po-
tential in R⇠ gauge as well as an infinite series of “daisy”
loops producing terms in V proportional to g
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The consistent method for an order-by-order gauge-
independent calculation of Vmin presented in [13] trans-
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contributions, and is gauge-invariant. From this, we can
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V (LO)(h) = 0

3

FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µ
max

X = 2.46⇥ 1010 GeV (6)

µ
min

X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use m
pole

h =
(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:
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Another contribution V
(2,NLO)(h) comes from the �0 and

ln� terms in 2-loop potential. In Landau gauge, these

terms are h
4
/4 times what is written as �

(2)

e↵
in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply
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Each term in this series contributes at order e6 when � ⇠ e4. Thus they are all equally
important for checking gauge invariance and we must sum the series. Summing the series is
easy enough to do using
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We have defined b�(�) so that according to Eq. (4.6) b�(v) = � at the scale v where the 1-loop
potential has its minimum. Remarkably, while each daisy graph with n > 1 is individually
power-divergent as � ! 0 with e fixed, the sum of all daisies scales only like ln�.
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Here we have given �(2)
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in the approximation � = 0, which is well justified around the instability

region. The full expression of �(2)
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Here we have given �(2)

e↵
in the approximation � = 0, which is well justified around the instability

region. The full expression of �(2)

e↵
can be found in ref. [4]. Moreover, we have defined
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where Li2 is the dilogarithm function, and

rW = ln
g2
2

4
+ 2� , rZ = ln

g2
2
+ g2

Y

4
+ 2� , rt = ln

y2t
2

+ 2� , (109)

rtW = (rt � rW )
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• We don’t know the Daisy contribution. But we do know if 
vanishes in Landau gauge at NLO

• Assuming everything works like in scalar QED, we have everything we 
need for NLO
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Absolute stability: for what values of the Higgs and top masses is is Vmin = 0?
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Absolute stability: for what values of the Higgs mass is Vmin = 0 at fixed top mass?
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FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µ
max

X = 2.46⇥ 1010 GeV (6)

µ
min

X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use m
pole

h =
(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:

V
(1,NLO)(h) =
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Another contribution V
(2,NLO)(h) comes from the �0 and

ln� terms in 2-loop potential. In Landau gauge, these

terms are h
4
/4 times what is written as �

(2)

e↵
in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V
NLO

min
= V

(LO)(µX) + V
(2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
by V (⇤I) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy

m
pole

h

GeV
> (129.40± 0.58) + 2.26 (

m
pole

t � 173.34 GeV

1.12 GeV
)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >

129.67 GeV). The ±0.58 is pertubative and ↵s uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

m
pole

t

GeV
< (171.22± 0.28) + 0.12 (

m
pole

h � 125.14 GeV

0.24 GeV
)

(11)
Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is m

pole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e
4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional

Holding top mass fixed

• Absolute stability bound lowered by 300 MeV
• Larger shift that including the 2-loop Veff
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Rapid instability
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• Our universe will probably decay, eventually.
• We don’t know how long it will last

• Tunneling rates
• Two time scales relevant for tunneling: Tslosh << T << TNL
• Asymptotic expansions and analytic continuation critical

• Can be avoided with a direct approach 

Do we know if the universe is stable?

• Requires consistent use of perturbation theory
• l ~ h power counting

• UV physics does not decouple
• Stability is necessarily Planck-sensitive
• Can make lifetime shorter, not longer

Tunneling involves many exotic elements of quantum field theory
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in Eq. (3.23).

For g = 1, integrating along the real axis is divergent (as indicated by the lack of arcs at
x = ±1). For g = �1, the FV contour (green line) falls along the real axis. Rotating g

back from �1 to 1, the FV contour remains convergent, but depends on whether one rotates
g clockwise or counterclockwise in the complex plane.

for g = 1 and ~ ! 0.

For any g 6= 0, Sg(x) has has three saddle points: sj =
n
�

1
p
g
, 0, 1

p
g

o
. The x = 0 saddle

point plays the role of the static false vacuum solution. The saddle points at x = ±

q
1

g

together play the role of the bounce. For g = 1 the steepest descent contour passing through
the bounce saddle points can proceed to either +i1 or �i1. This degeneracy is broken
by giving g a small imaginary part. (AJA: Fix the previous sentence.) The contours for
g = 1± i✏ and g = �1± i✏ are shown in Fig. 9. The NLO saddle-point contributions to Zg
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• Return to g=1, keeping integration along green contour
• Z now has imaginary part at g=1
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axis is equivalent change. Through analytic continuation, we move the integration contour
at g = 1 from the real axis to the contour passing through the FV saddle.

integration contour along the x axis coicides with the bounce saddle point contour. When we
rotate back to g = 1, this contour lines up with the imaginary axis. Thus, integrating along
the contour will give the complete imaginary part of the bounce saddle-point integration,
without the factor of 1

2
. Of course, this had to happen: by stablizing the bounce, we matched

the integration contour with the bounce contour. When we rotate back, it remains lined up
and therefore the full integral is kept.

Next, consider keeping g = 1 but rotating h from 1 to something negative and large
enough to remove the other minimum, such as h = �5. For example, we can rotate as
h = �2 + 3ei✓ with 0  ✓  ⇡. For h = �5, the saddle point on the real axis is the FV
saddle, and the other two have moved into the complex plane. When we rotate back to
h = 1, this FV saddle moves along the real axis and then up half of the bounce saddle. Thus
for the h deformation, we do get the extra factor of 1

2
, as expected.

Finally, consider rotating h from 1 to 5. This stablizes the shot. Rotating back to h = 1,
we see that the shot contour lines up with the bounce contour, but in the opposite direction
of the case when we continued to stabalize the FV. Thus we do get a factor of 1

2
in this

case, but the imaginary part has the opposite sign from the FV-stabalized case. The sign
flip makes perfect sense: flux enters the TV as a function of time, so the probability grows
with time. This corresponds to incoming Gamow boundary conditions (as in Section 2.2 or
Appendix A) and one expects � < 0.

3.3 Summary of potential deformation method

In this section, we discussed how to compute a decay rate from the Euclidean path integral,
filling in many details and examining some peculiarities and limits not mentioned in [1, 11]
or elsewhere in the literature to our knowledge. In this method, one starts with a Euclidean
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lines up with the FV contour (green). The correct factor of 1
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results. For (h, g) = (1,�1), the

bounce is stabilized (red). The imaginary part computed this way is the naive one,missing
the factor of 2. For (h, g) = (5, 1), the shot is stabilized (blue).
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contour for any g. However, as we change g, the steepest descent contours to which the real
axis is equivalent change. Through analytic continuation, we move the integration contour
at g = 1 from the real axis to the contour passing through the FV saddle.

integration contour along the x axis coincides with the bounce saddle point contour. When we
rotate back to g = 1, this contour lines up with the imaginary axis. Thus, integrating along
the contour will give the complete imaginary part of the bounce saddle-point integration,
without the factor of 1

2
. Of course, this had to happen: by stablizing the bounce, we matched

the integration contour with the bounce contour. When we rotate back, it remains lined up
and therefore the full integral is kept.

Next, consider keeping g = 1 but rotating h from 1 to something negative and large
enough to remove the other minimum, such as h = �5. For example, we can rotate as
h = �2 + 3ei✓ with 0  ✓  ⇡. For h = �5, the saddle point on the real axis is the FV
saddle, and the other two have moved into the complex plane. When we rotate back to
h = 1, this FV saddle moves along the real axis and then up half of the bounce saddle. Thus
for the h deformation, we do get the extra factor of 1

2
, as expected.

Finally, consider rotating h from 1 to 5. This stabilizes the shot. Rotating back to h = 1,
we see that the shot contour lines up with the bounce contour, but in the opposite direction
of the case when we continued to stabilize the FV. Thus we do get a factor of 1

2
in this

case, but the imaginary part has the opposite sign from the FV-stabilized case. The sign
flip makes perfect sense: flux enters the TV as a function of time, so the probability grows
with time. This corresponds to incoming Gamow boundary conditions (as in Section 2.2 or
Appendix A) and one expects � < 0.

3.3 Summary of potential deformation method

In this section, we discussed how to compute a decay rate from the Euclidean path integral,
filling in many details and examining some peculiarities and limits not mentioned in [1, 11]
or elsewhere in the literature to our knowledge. In this method, one starts with a Euclidean
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Summary of tunneling rates
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� = � lim
T

Tslosh
!1

lim
T

TNL
!0

1

PFV

d

dT
PFVPrecise definition of decay rate involves two limits

T << TNL (no return flux)

T >> Tslosh (remove transients

Three methods to compute G
FV R

x

V(x)

a b

PFV

P0e
��T

T

Tslosh

TNL

P

1

0.9

Figure 1: On the left, an example of a physical potential with an unstable region FV,
a destination region R, and a barrier. We label the local minimum inside the FV region
by a and the turning point by b (defined by V (b) = V (a)). On the right, the probability
PFV(T ) (see Eq. (2.3)) for this system (beginning in a Gaussian wavepacket centered at a)
computed by numerically solving Schrödinger’s equation. We see that the probability to
find the particle in the false vacuum decays exponentially for intermediate times between
the short timescale of sloshing inside the false vacuum and the long timescale on which the
wavefunction begins to flow back into the false vacuum.

given approximately by the WKB formula:

T (E) ⌘
 E(b)

 E(a)
⌘ e

�W
⇡ exp


�

Z
b

a

dx

p
2m(V (x)� E)

�
(2.1)

Here, a and b are the turning points where V (a) = V (b) = E. It is of course quite logical
that the decay rate should be proportional to how much of the wavefunction gets through
the barrier, � ⇠ |T (E)|2. However, if the particle is in an energy eigenstate, there is no
time-dependence, so it cannot decay. To go from T (E) to �, a step often skipped, requires
considerably more thought.

A simple picture often used to convert T (E) to a decay rate depicts a particle with
momentum p =

p
2mE, and velocity v = p

m
in the well hitting the barrier with a rate

v

2a
, and each time tunneling through with probability given by the transmission coe�cient,

|T (E)|2 (see e.g. [24]). With this logic, the decay rate is

� ⇠
p

2am

����
 E(b)

 E(a)

����
2

⇡
p

2am
e
�2W (2.2)

Indeed, if one solves the Schrödinger equation numerically, one can see the wavefunction
oscillate back and forth in the well; the largest flux leaks out during the times when the
wavefunction is closest to the barrier. Fig. 1 shows this exponential decay with time and the
small oscillations. Snapshots of the wavefunction oscillating in the well are shown in Fig. 2.
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• Solve Schrodingers equation
• Impractical for QFT

• Deform potential to stabilize false vacuum
• Take T à ∞ limit
• Deform back and compute imaginary part

(h, g) = (1, 1 + i✏)

(h, g) = (5, 1)(h, g) = (1,�1)(h, g) = (�5, 1)

Sg(x) = h
x

12
� g

x
2

2
+

x
4

4

Figure 12: The function Sh,g(x) = h
x

12
� g

x
2

2
+ x

4

4
can be deformed di↵erent ways from the

physical case (h, g) = (1, 1) (top). For (h, g) = (�5, 1), the FV is stabilized, and the real axis
lines up with the FV contour (green). The correct factor of 1

2
results. For (h, g) = (1,�1), the

bounce is stabilized (red). The imaginary part computed this way is the naive one,missing
the factor of 2. For (h, g) = (5, 1), the shot is stabilized (blue).

30

shot 

bounce static false
vacuum

• Direct approach using Minkowski space causal propagators
• Does not rely on saddle-point approximation
• Does not rely on deforming potential
• QFT derivation is simple – no bold leap of faith
• Non-perturbative formula �R = 2Im lim

T!1

0

@
R x(T )=a
x(�T )=a Dx e�SE[x]�(⌧b[x])

R x(T )=a
x(�T )=a Dx e�SE[x]

1

A

T !iT

Is the result the decay rate?

R



Summary of potential deformation method 
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1. Deform the potential so FV is true ground state
2. Take T à ∞ 

• Picks out EFV(g)
• Fixes integration contour to be the steepest descent contour passing through

the static FV saddle point
3. Deform back 

T << TNL (no return flux)

T >> Tslosh (only metastable FV decay)

OR
• Compute Z by integrating along the steepest descent contour passing through

the static FV saddle point
OR

• Compute G by integrating along the steepest descent contour passing through
the bounce, taking the imaginary part, and multiply by 1/2

• Mathematically consistent procedure to get imaginary part out of an analytic real function Z
• Has the right ingredients associated with the necessary limits

Does this procedure give 
the decay rate?
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Veff(h)

hLI

From Buttazzo et al (arXiv:1307.3536)
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-

19

Old way:
when is LI = LNP?

• gauge dependent, since LI is gauge-dependent 

New gauge-invariant way

• Add                             to the SM Lagrangian

• See how big LNP must be so that Vmin =0
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Planck-sensitivity
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• Guidice, Strumia et al (arXiv:1307.3536): 
• Instability scale below Mpl, so no.

• Sher, Brandina et al (arXiv:1408.5302):
field at center of bubble 

is greater than Mpl, so yes

bl =0 at µ = 1017 GeV < MPl

�B(r = 0) = 1019GeV ⇠ MPl

Does the tunneling rate depend
on quantum gravity?

Veff(h)

hLI



MPl corrections:
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0
h

VSM

Standard Model potential
Liftetime = 10600 years

Add

• Lifetime = 0 sec
• Arbitrarily small bubbles form and grow

0
h

Add �V = �↵
1
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• Lifetime can be anything!

• Planck sensitivity not due to coincidence that bl =0 at µ ~ MPl
• Tunneling is non-perturbative and always UV sensitive.      
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