

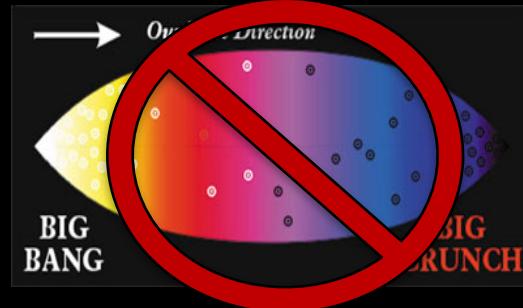
# *What is the Fate of the Universe?*

Matthew Schwartz  
Harvard University

McGill University  
October 11, 2017

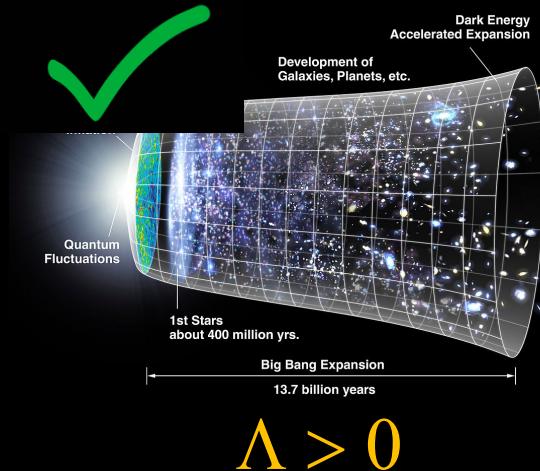


Based on PRD [in review] (arXiv:1707.08124)  
PRD (95) 085011 (arXiv:1604.06090)  
PRL 117.231601 (arXiv:1602.01102)  
PRD (91) 016009 (arXiv:1408.0287)  
PRL 113.241801 (arXiv:1408.0292)  
with Anders Andreassen, David Farhi and William Frost

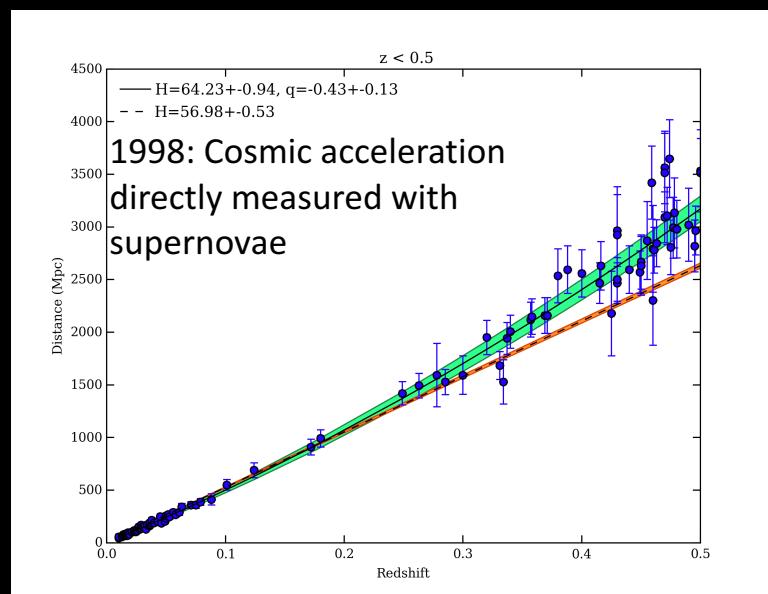
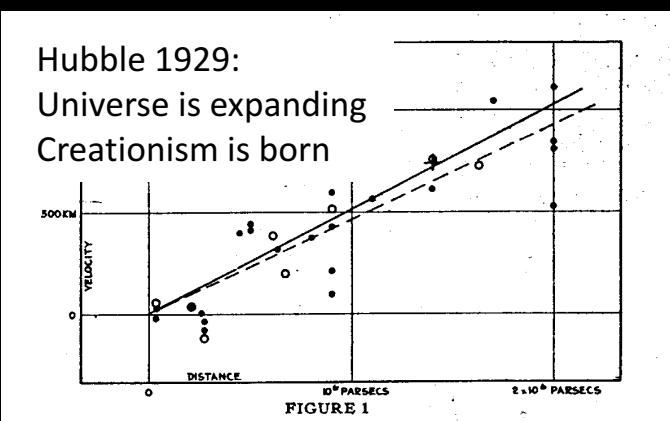

# What is the fate of the universe?

## 1. Static universe

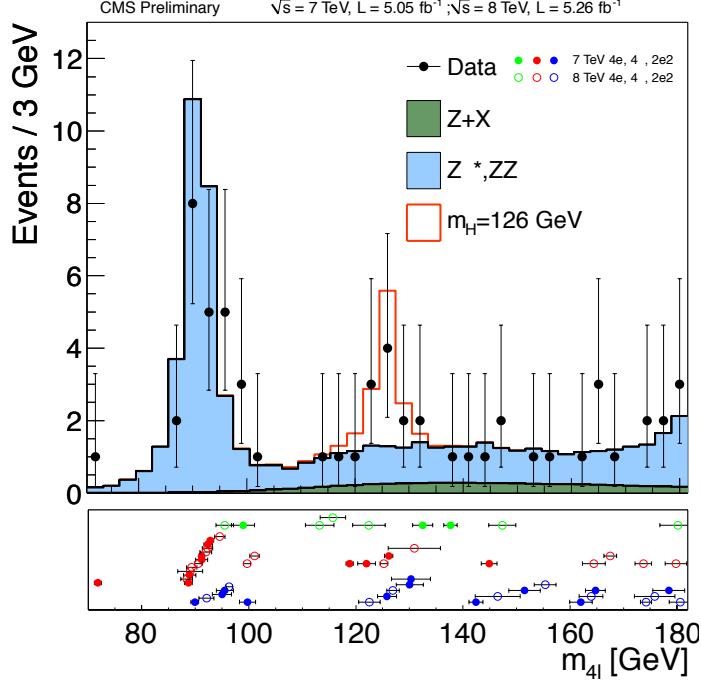



Einstein 1917:  
Dark energy tuned against matter

## 2. Big Crunch


$$\Lambda \leq 0$$


## 3. Cold and Empty Future



$$\Lambda > 0$$



# July 4, 2012: Higgs boson discovered!




## What did we learn?

# What is the Higgs field?

- The Higgs field  $h(x)$  has a constant nonzero value everywhere

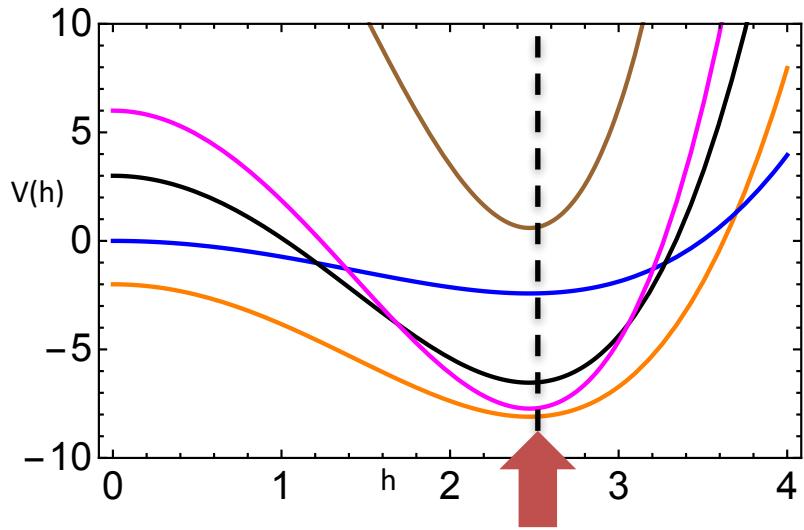
$$\langle h \rangle = v = 246 \text{ GeV}$$

- Excitations of the Higgs field are Higgs bosons
- How hard it is to excite the Higgs field depends on its potential



What do we know about this Higgs potential?

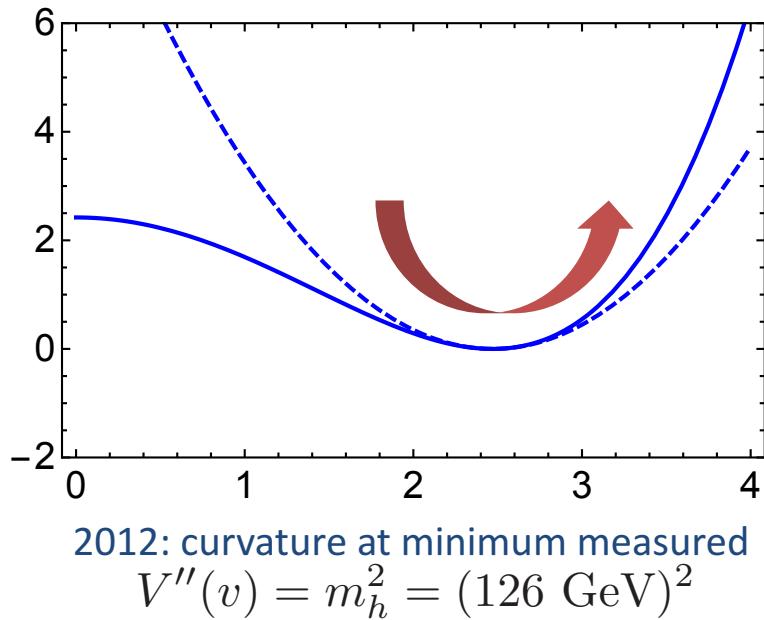
## Renormalizability of the Standard Model



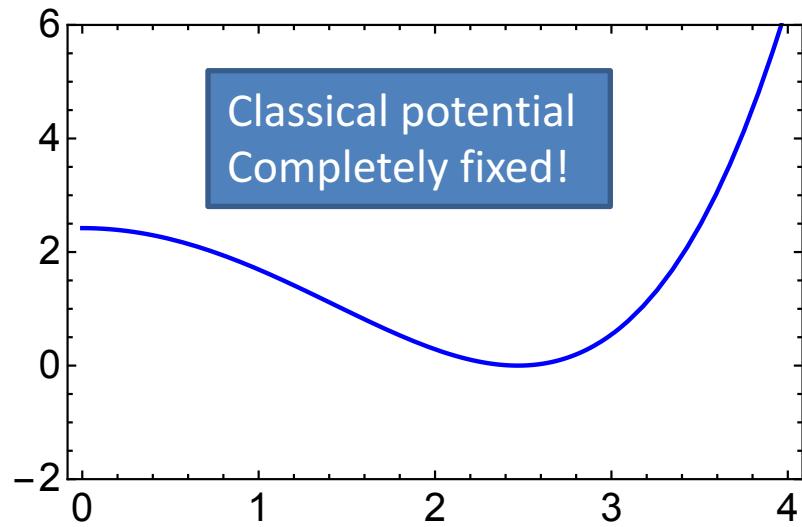

Classical potential is quartic (4th order)

$$V(h) = \Lambda + m^2 h^2 + \lambda h^4$$

- 3 free parameters ( $\Lambda$ ,  $m$ ,  $\lambda$ )
  - Must be measured from data


# Higgs potential




1933: Fermi theory of radioactive decay  
 $\langle h \rangle = v = G_F^{-1/2} = 246 \text{ GeV}$



1998: zero-point energy (dark energy) measured  
 $V(v) = (10^{-3} \text{ eV})^4$



2012: curvature at minimum measured  
 $V''(v) = m_h^2 = (126 \text{ GeV})^2$



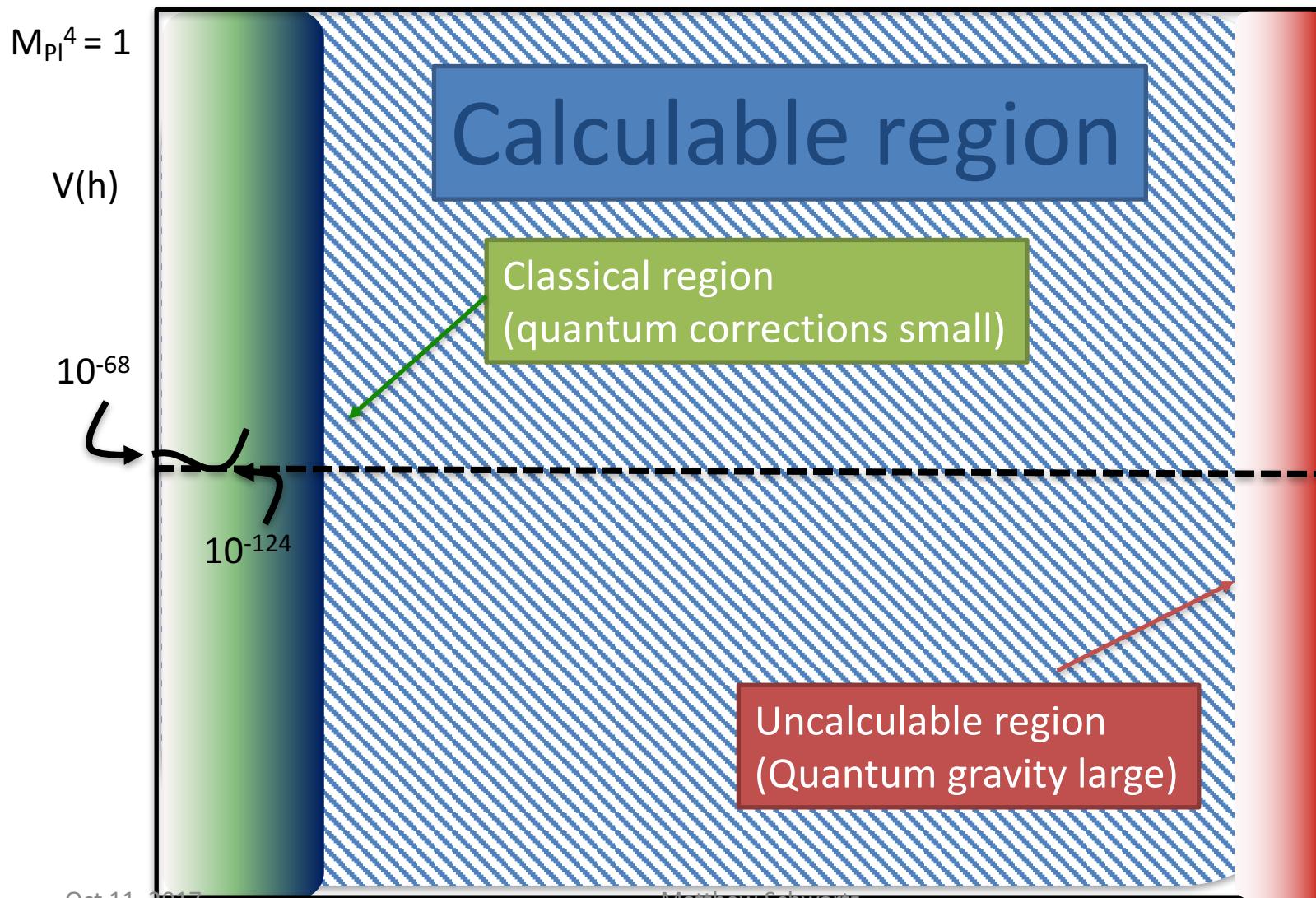
# Renormalizability of the Standard Model



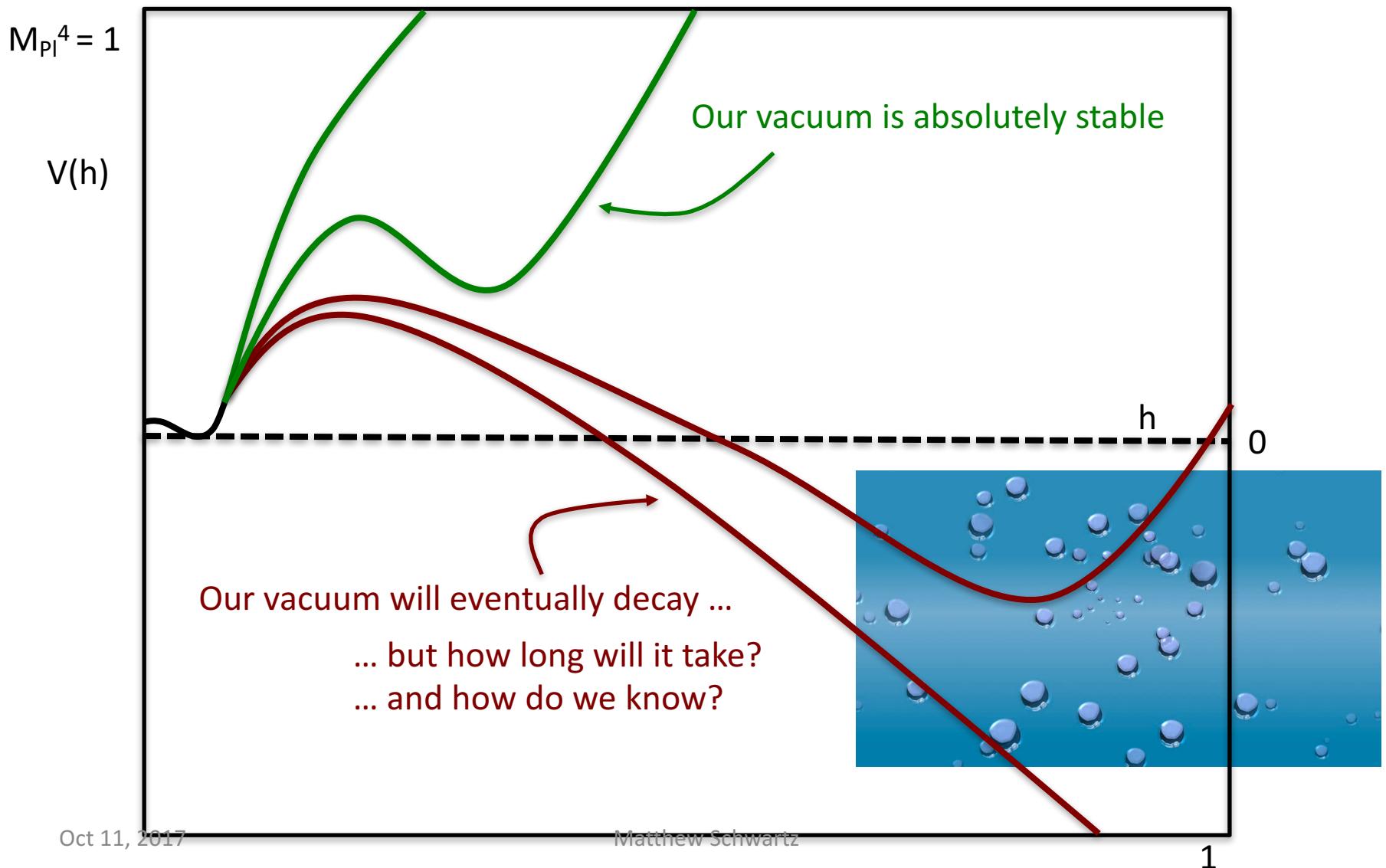
Classical potential is quartic (4th order)

$$V(h) = \Lambda + \frac{1}{2}m^2(h - v)^2$$

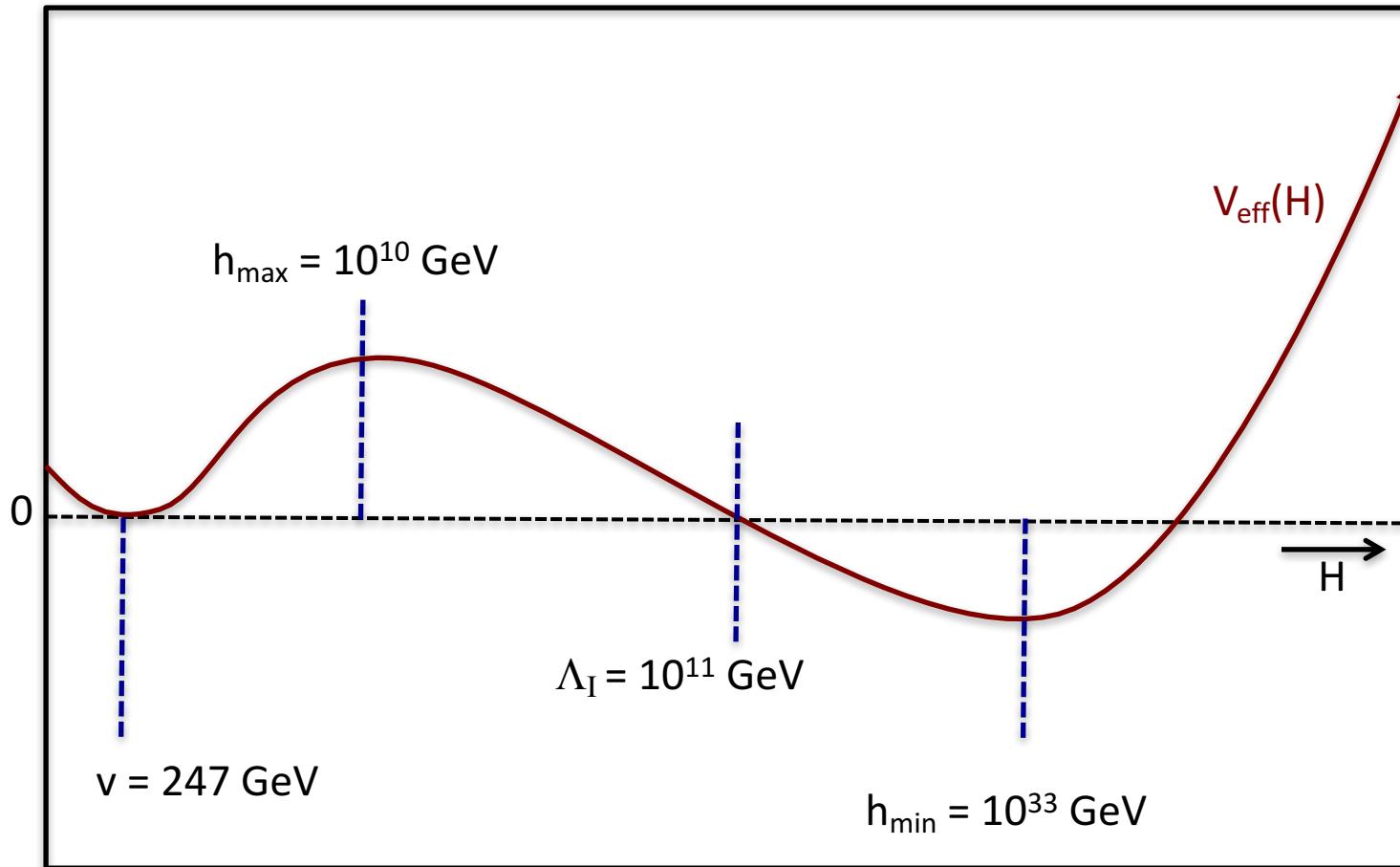
- 3 free parameters ( $\Lambda, m, \lambda$ )
  - Must be measured from data ✓


quantum-corrected or  
Effective Potential

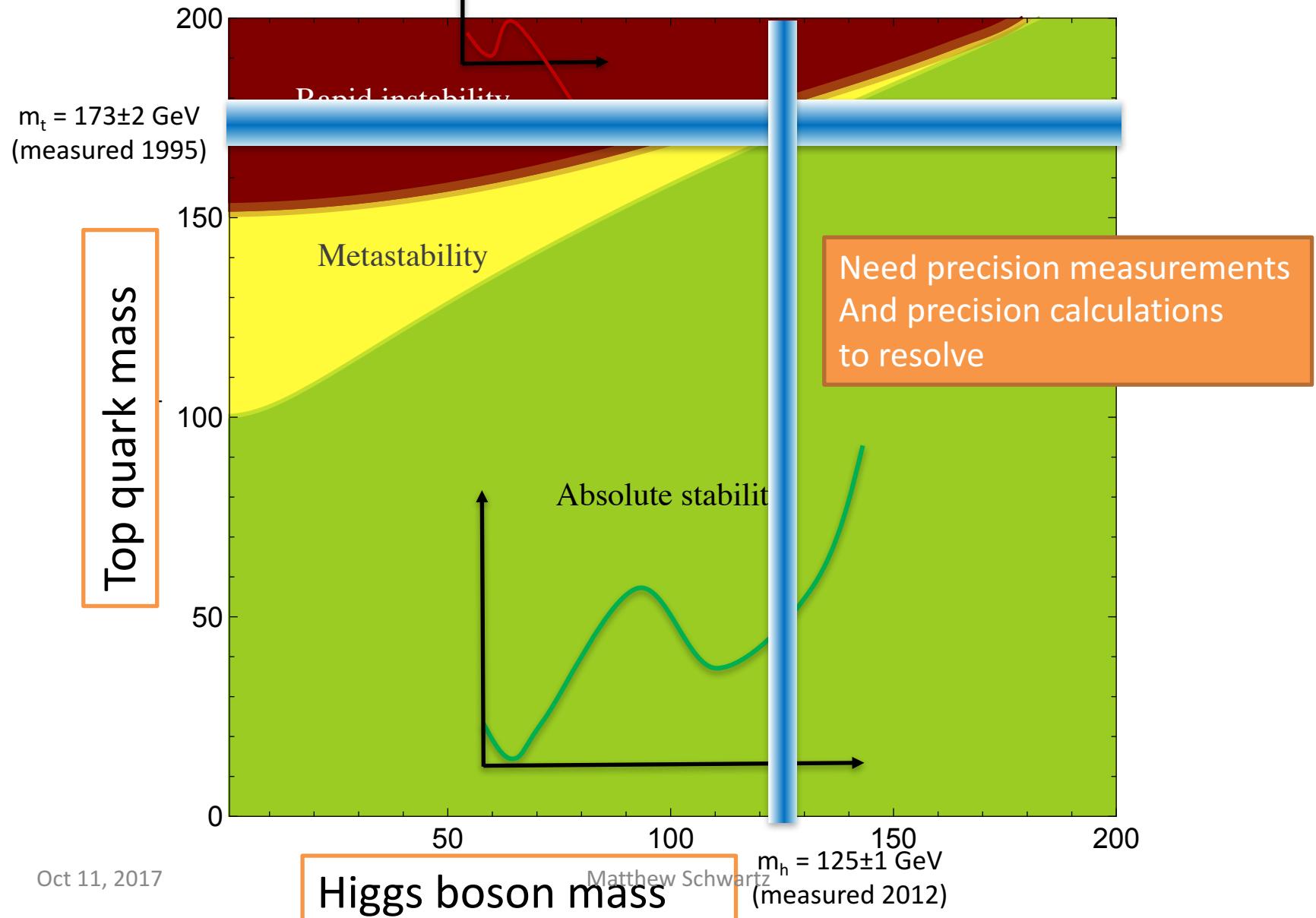
$$V(h) = \Lambda + \frac{1}{2}m^2(h - v)^2 + \frac{\lambda^2}{16\pi^2}h^4 \ln \frac{h}{v} + \dots$$



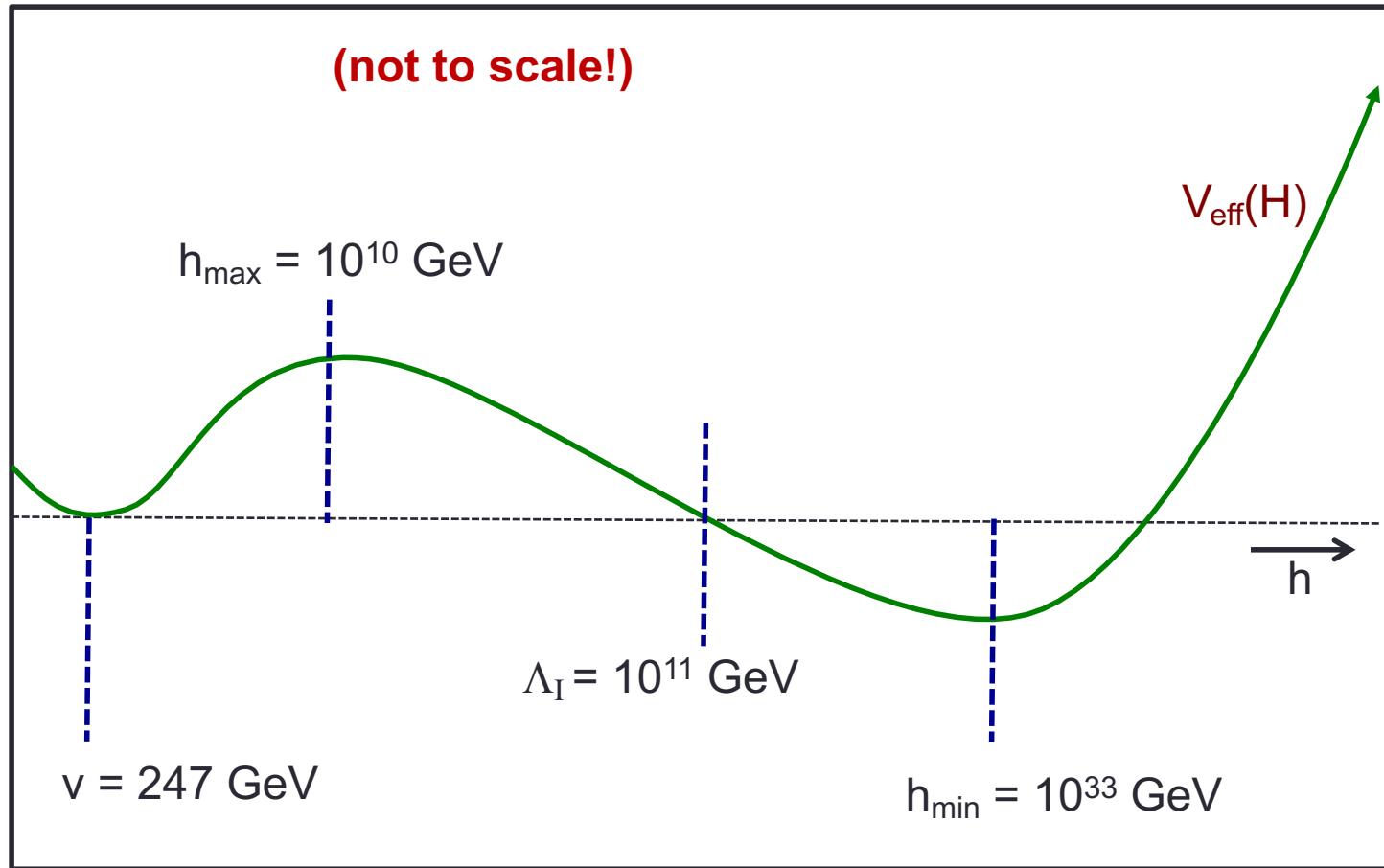

- Quantum corrections are **calculable!**
- Small corrections for  $h \sim v$
- Can be large for  $h \gg v$
- Limit on calculability is  $h \lesssim M_{\text{Pl}} = 10^{19} \text{ GeV}$


# Natural units $M_{pl} = 1$




# What could happen?

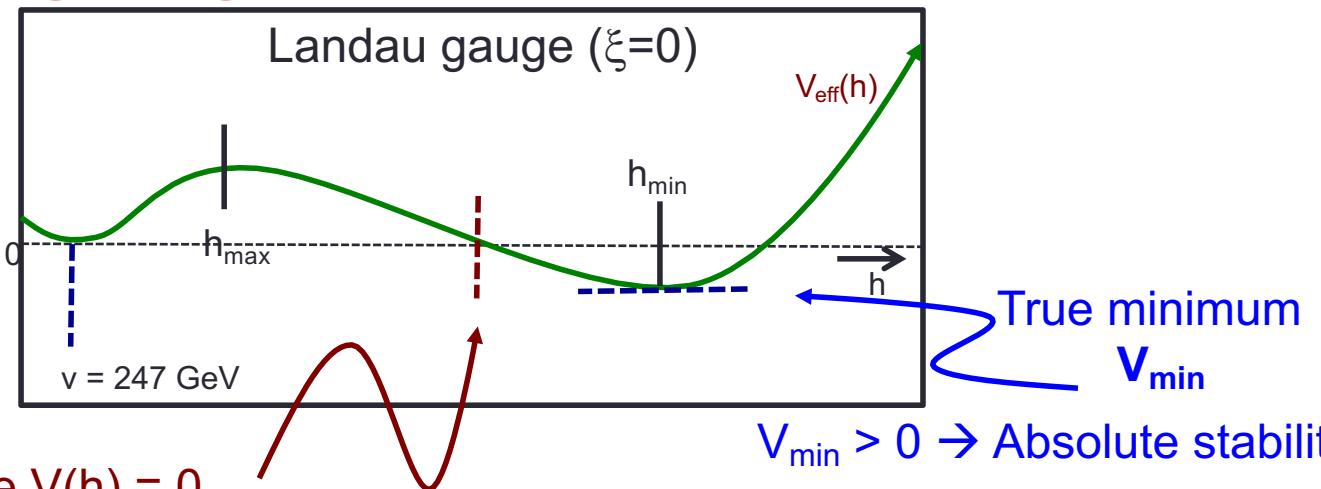



## Standard Model Effective Potential



# Stability phase diagram

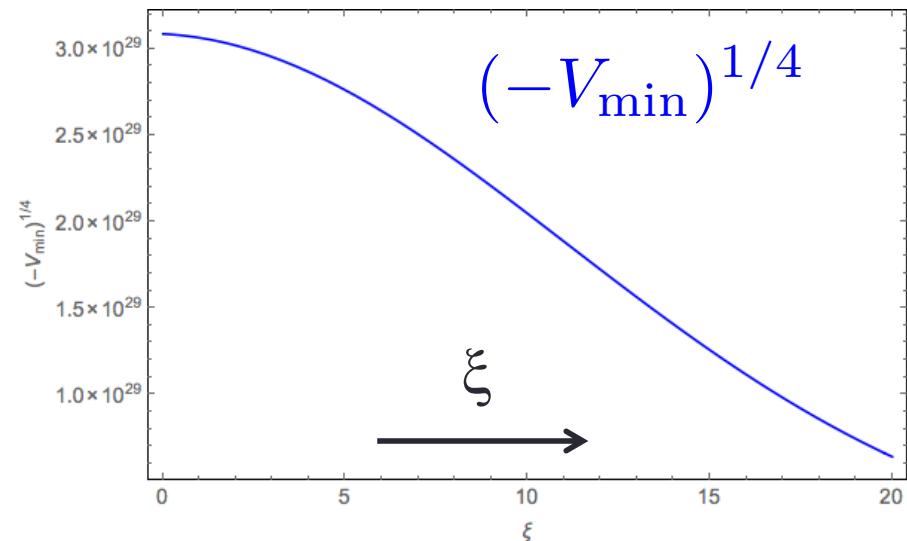
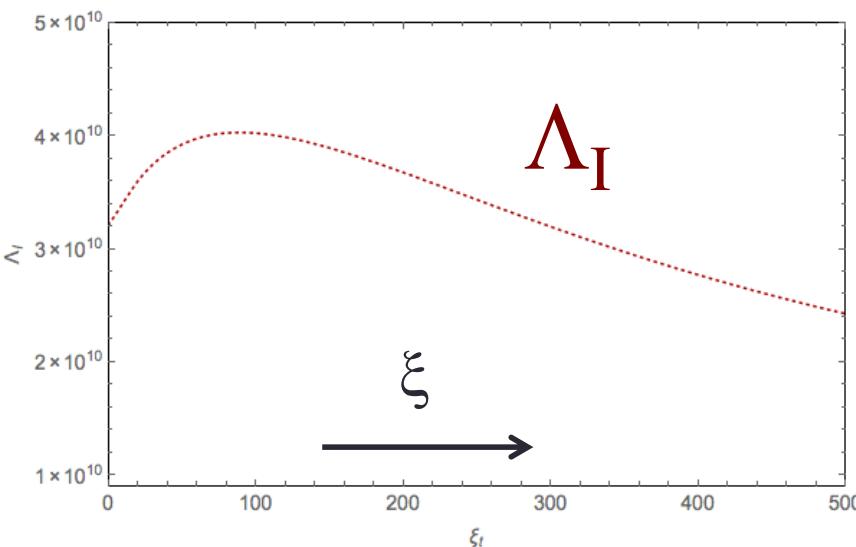



# Standard Model Effective Potential



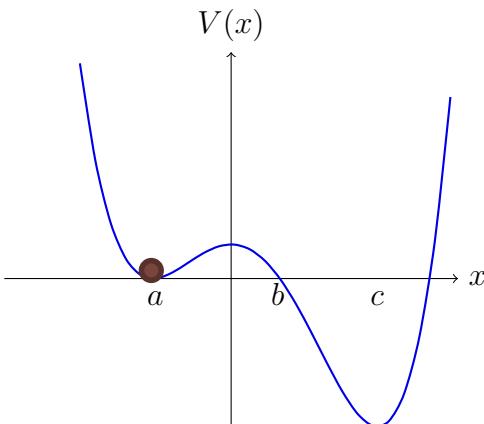
Are these scales physical?

Is the stability Planck sensitive?



# Problem 1: gauge dependence



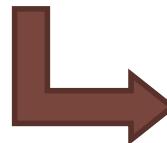
Instability scale  $\Lambda_I$


= value of  $h$  where  $V(h) = 0$

- Indicates sensitivity to new physics

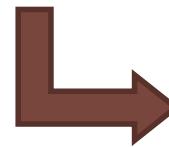


- $h_{\text{min}}$  also gauge dependent
- $h_{\text{max}}$  also gauge dependent
- ...


# Problem 2: $\Gamma = 0$



Isolate ground state energy  
from late times


$$Z \equiv \langle a | e^{-H\mathcal{T}} | a \rangle = \int_{x(0)=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]}$$

$$Z = \sum_E e^{-ET} |\psi_E(a)|^2$$



$$E_0 = - \lim_{\mathcal{T} \rightarrow \infty} \frac{1}{\mathcal{T}} \ln Z$$

Decay rate is the imaginary  
part of the energy



$$\frac{\Gamma}{2} = \text{Im} \lim_{\mathcal{T} \rightarrow \infty} \frac{1}{\mathcal{T}} \ln Z$$

Clearly this is not exactly what is meant

- **Z is real**
- True ground state at  $E_c = V(c)$  has nothing to do with the false vacuum

How do we get an imaginary part?

# Problem 3: $\Gamma = \infty$

Assume the “standard” formula:

$$\frac{\Gamma}{2} = \text{Im} \lim_{\tau \rightarrow \infty} \frac{1}{\tau} \ln \int \mathcal{D}\phi e^{-S[\phi_b] - \frac{1}{2}S''[\phi_b]\phi^2}$$

$\curvearrowleft$

$\phi_b$  = “bounce” = solution to the Euclidean equations of motion  $\square\phi - V'(\phi_b) = 0$

Massive case (Higgs potential)

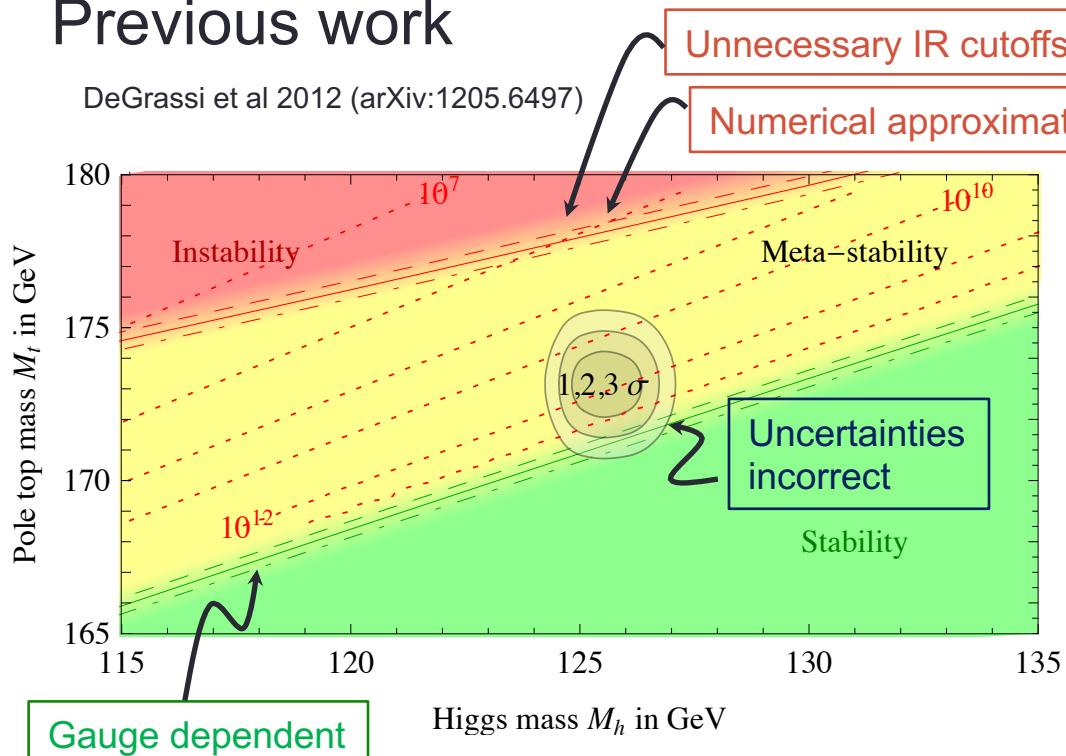
$$V'(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda\phi^4 \quad \longrightarrow \quad \text{No solutions}$$

Massless case (scaleless potential)

$$V'(\phi) = \frac{1}{4}\lambda\phi^4 \quad \longrightarrow \quad \text{Too many solutions} \quad \phi_b^{R,x_0^\mu}(x) = \sqrt{\frac{8}{-\lambda}} \frac{R}{R^2 + (x + x_0)^2}$$

- rate per unit volume
- bubbles of true vacuum can form anywhere
- not a problem

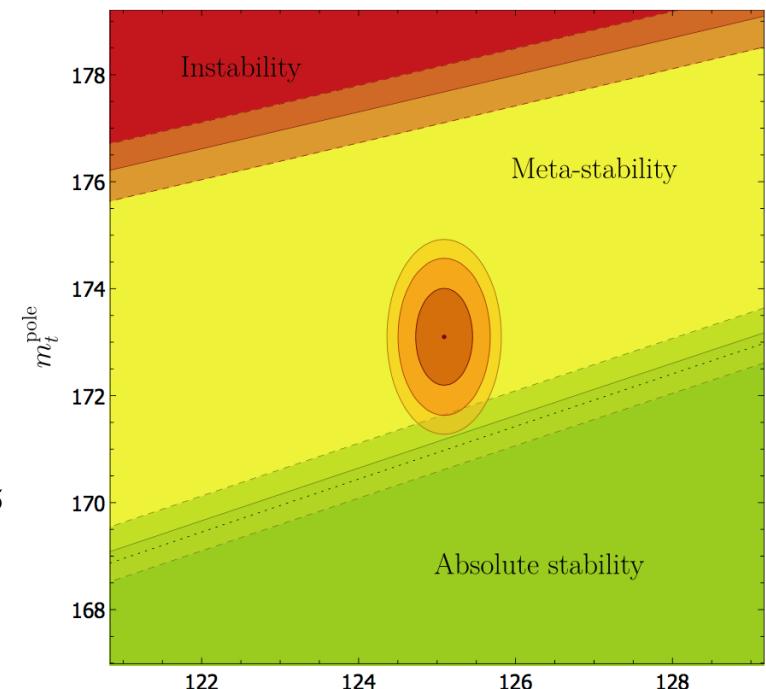
$$\frac{\Gamma}{V} \sim \# \quad \longleftrightarrow \quad \Gamma \sim \lim_{T \rightarrow \infty} T \cdot V \# \quad \longleftrightarrow \quad x_0 \text{ (translations)}$$


$$\Gamma \sim \int_0^\infty dR = \infty \quad \longleftrightarrow \quad R \text{ (rescalings)}$$

- bubbles of any size can form
- rate is infinite!

# Summary

## Previous work


DeGrassi et al 2012 (arXiv:1205.6497)



- Improper use of renormalization group
- Based on heuristic Coleman-Callan formula

## Our work

- No IR cutoffs
- Completely analytic rate formula



- Gauge invariant formula used
- Gauge invariance checked explicitly
- Uncertainties handled carefully
- Decay rate derived rigorously in QFT

# COMPUTING FUNCTIONAL DETERMINANTS

---

# How do we calculate a decay rate?

NLO formula: 
$$\frac{\Gamma}{2} = \text{Im} \lim_{\tau \rightarrow \infty} \frac{1}{\tau} \ln \int \mathcal{D}\phi e^{-S[\phi_b] - \frac{1}{2} S''[\phi_b] \phi^2}$$

Step 1:  
Find the bounce

$\phi_b$  = “bounce” = solution to the Euclidean equations of motion

$$\square\phi - V'(\phi_b) = 0$$

$$V(\phi) = \frac{1}{4}\lambda\phi^4 \quad \longrightarrow \quad \phi_b^{R,x_0^\mu}(x) = \sqrt{\frac{8}{-\lambda}} \frac{R}{R^2 + (x + x_0)^2}$$

5 parameter family  
of bounce solutions

$$x_0 \text{ (translations)} \quad \longrightarrow \quad \Gamma \sim \lim_{T \rightarrow \infty} T \cdot V \# \quad \longrightarrow \quad \frac{\Gamma}{V} \sim \#$$

- rate per unit volume
- bubbles of true vacuum can form anywhere

$$R \text{ (rescalings)} \quad \longrightarrow \quad \Gamma \sim \int_0^\infty dR = \infty$$

- Bubbles of any size can form

# Warm up: 1D scalar theory

Step 2:  
Reduce to math problem

$$V(\phi) = \frac{1}{4}\lambda\phi^4 \longrightarrow \phi_b^{R,x_0^\mu}(x) = \sqrt{\frac{8}{-\lambda}} \frac{R}{R^2 + (x + x_0)^2}$$

Need to compute

$$Z = \int \mathcal{D}\phi e^{-S[\phi_b] - \frac{1}{2}\phi S''[\phi_b]\phi} = \frac{1}{\sqrt{\det S''[\phi_b]}} e^{-S[\phi_b]}$$

Action is finite:

$$\det S''[\phi_b] = \prod_j \lambda_j$$

$$S[\phi_b] = \int d^4x \left[ \frac{1}{2}(\partial_\mu \phi_b)^2 + \frac{1}{4}\lambda\phi_b^4 \right] = -\frac{8\pi^2}{3\lambda} > 0$$

Compute determinant by **multiplying eigenvalues**

$$S''[\phi_b]\phi_j = (-\square + 3\lambda\phi_b^2)\phi_j = \lambda_j\phi_j$$

- How do you find the eigenvalues???
- How do you multiply them together (infinite product)?

A. Just do it 

B. Use “**elementary Fredholm theory**” [Coleman Erice lectures, p. 340]

- a.k.a. Gelfand-Yaglom method

Step 3:  
Solve math problem

# A. Explicit eigenvalues

Choose one R and one center  $\phi_b(x) = \sqrt{\frac{8}{-\lambda}} \frac{R}{R^2 + r^2}$

Want to solve

$$(-\square + 3\lambda\phi_b^2)\phi_j = \lambda_j\phi_j$$

5 modes with  $\lambda_j = 0$ :

4 translation modes  $\phi_T = \partial_\mu \phi_b$    $S''[\phi_b]\partial_\mu\phi_b = \partial_\mu(S'[\phi_b]) = 0$

- Finite Jacobian going to “collective coordinates”
- Integral over  $x_0$  gives expected V T factor

1 dilatation mode  $\phi_d = \partial_R \phi_b$

- Infinite Jacobian going to “collective coordinates”
- Integral over R gives infinity
- Infinities don’t cancel – they multiply  $Z = \infty^2$

How do we find the rest of the eigenvalues?

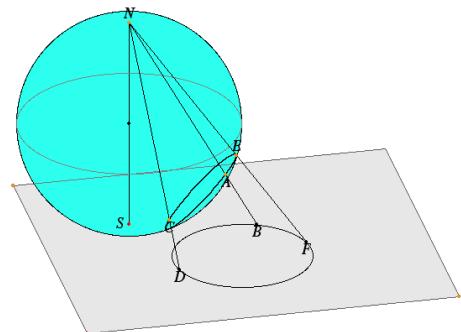
$$\left[ -\square - \frac{24R^2}{(R^2 + r^2)^2} \right] \phi_j = \lambda_j \phi_j$$

Also need  $-\square \hat{\phi}_j = \hat{\lambda}_j \hat{\phi}_j$

$\left. \quad \right\}$

$B = \frac{\det'(-\square + \lambda\phi_b^2)}{\det(-\square)} = \frac{\prod_j \lambda_j}{\prod_j \hat{\lambda}_j}$ 

$\det'$  = determinant with zero modes removed


# Stereographic projection

Andreassen, Frost, MDS (arXiv:1707.08124)

Rescale away constants

$$\mathcal{O} = -\square - \frac{24R^2}{(R^2 + r^2)^2} \xrightarrow{R=1} \mathcal{O} = -\square - \frac{24}{(1 + r^2)^2}$$

Stereographic mapping to 4-sphere



$$\left. \begin{array}{l} \eta^\mu = \frac{2x^\mu}{1+r^2} \\ \eta^5 = \frac{1-r^2}{1+r^2} \end{array} \right\} \begin{array}{l} \eta^2 = 1 \\ \phi_b = \eta^5 + 1 \end{array} \xrightarrow{\quad} \mathcal{O} \cdot \phi_j = \phi_b (-\vec{L}_4^2 + 1) \cdot (\phi_b \phi_j)$$

- Angular momentum operator on 4-sphere
- Eigenfunctions are 4D spherical harmonics

$$\vec{L}_4^2 Y_{njk} = \frac{1}{6} (n+1)(n+2) Y_{njk}$$

$$B = \frac{\det'(-\square + 3\lambda\phi_b^2)}{\det(-\square)} = \frac{\det'(\vec{L}_4^2 - 1)}{\det(\vec{L}_4^2)} = \frac{\prod_n \left[ -\frac{(n+1)(n+2)}{6} + 1 \right]^{d_n}}{\prod_n \left[ -\frac{(n+1)(n+2)}{6} \right]^{d_n}}$$

Degeneracy:  $d_n = \frac{1}{6}(n+1)(n+2)(2n+3)$

# Shortcut!

$$B = \frac{\det'(-\square + 3\lambda\phi_b^2)}{\det(-\square)} = \frac{\det(3\lambda\phi_b^2)}{\det(3\lambda\phi_b^2)} \times \frac{\det' \left( \frac{1}{3\lambda\phi_b^2} \square - 1 \right)}{\det \left( \frac{1}{3\lambda\phi_b^2} \square \right)}$$


Note:

eigenfunctions of rescaled operator are **not** eigenfunctions of original operator:

- Same eigenfunctions
- Eigenvalues shifted by 1

$$\left( \frac{1}{3\lambda\phi_b^2} \square - 1 \right) \phi_j = \lambda_j \phi_j \longrightarrow (-\square + 3\lambda\phi_b^2) \phi_j = -\lambda_j 3\lambda\phi_b^2 \cdot \phi_j$$


Explicitly, eigenfunctions are:

$$\phi_{nslm}(r, \alpha, \theta, \phi) = \frac{1}{r} P_{n+1}^{-s-1} \left( \frac{R^2 - r^2}{R^2 + r^2} \right) Y^{slm}(\alpha, \theta, \phi)$$

$$\phi_{0000} = \sqrt{\frac{2}{\pi}} \frac{R}{R^2 + r^2}$$

$$\phi_{1000} = \sqrt{\frac{2}{\pi}} R \frac{R^2 - r^2}{(R^2 + r^2)^2}$$

$$\phi_{2000} = \sqrt{\frac{2}{\pi}} \frac{R(r^4 + R^4 - 3r^2R^2)}{(r^2 + R^2)^3}$$

Degeneracy:

$$d_n = \frac{1}{6}(n+1)(n+2)(2n+3) = 1, 5, 14, 30, \dots$$

Eigenvalues of  $\frac{1}{3\lambda\phi_b^2} \square - 1$  are

$$\lambda_n^\phi = \lambda_{nslm} = \frac{(n-1)(n+4)}{6} = -\frac{2}{3}, 0, 1, \frac{7}{3}, \dots$$

1 negative eigenvalue (tunneling)  
5 zero eigenvalues  
(translation/dilatation)

Eigenvalues of  $\frac{1}{3\lambda\phi_b^2} \square$  are

$$\hat{\lambda}_n^\phi = \lambda_n^\phi + 1 = \frac{(n+1)(n+2)}{6} = \frac{1}{3}, 1, 2, \frac{10}{3}, \dots$$

# Evaluate product

Andreassen, Frost, MDS (arXiv:1707.08124)

Product is **UV divergent** (large angular momentm n)

- Regulate with dimensional regularization
- Possible to evaluate exactly

$$B = \sqrt{\frac{\det'(-\square + 3\lambda\phi_b^2)}{\det(-\square)}} = \sqrt{\frac{\prod_n \left[-\frac{(n+1)(n+2)}{6} + 1\right]^{d_n}}{\prod_n \left[-\frac{(n+1)(n+2)}{6}\right]^{d_n}}} = \frac{25}{36} \sqrt{\frac{5}{6}} \exp \left[ \frac{3}{2\varepsilon} - \frac{5}{4} + 6\zeta'(-1) + 3 \ln \frac{R\mu}{2} \right]$$

Decay rate is then

$$\frac{\Gamma}{V} = \frac{1}{2TV} e^{-S[\phi_b]} \int d^4x \int dR J_T^4 J_d \sqrt{\frac{\det'(-\square + 3\lambda\phi_b^2)}{\det(-\square)}}$$

Jacobian for translation

$$J_T = \frac{1}{R} \sqrt{\frac{6S[\phi_b]}{5\pi}}$$

Jacobian for dilitation

$$J_d = \frac{1}{R} \sqrt{\frac{6S[\phi_b]}{5\pi}}$$

Finite after rescaling

Still IR divergent  
(integral over R)

$$\frac{\Gamma}{V} = e^{-S[\phi_b]} \frac{1}{2} \left( \frac{6S[\phi_b]}{5\pi} \right)^{\frac{5}{2}} \int \frac{dR}{R^5} \frac{25}{36} \sqrt{\frac{5}{6}} \exp \left[ \frac{3}{2\varepsilon} - \frac{5}{4} + 6\zeta'(-1) + 3 \ln \frac{R\mu}{2} \right]$$

# Integral over R

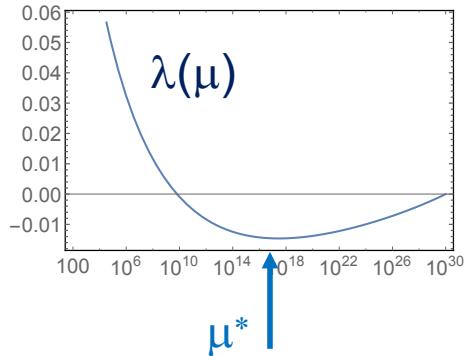
Andreassen, Frost, MDS (arXiv:1707.08124)

$$\frac{\Gamma}{V} = \int_0^\infty \frac{dR}{R^5} e^{\frac{1}{\hbar} \frac{8\pi^2}{3\lambda(\mu)} - \frac{8\pi^2}{3} \frac{\beta(\mu)}{\lambda(\mu)^2} \ln(\mu R)} (\dots) = \infty$$

- Can't choose  $\mu = R$  in integrand, since R is integrated over
- Can choose  $\mu = \mu^*$  where  $\beta(\mu^*) = 0$  (fixed point of  $\lambda$ )

$$\frac{\Gamma}{V} = e^{\frac{1}{\hbar} \frac{8\pi^2}{3\lambda(\mu)}} \int \frac{dR}{R^5} = \infty$$

- Knowing 1-loop exponent gives  $\mu$  and R dependence at 2-loops


$$\Gamma_2 = \int_0^\infty \frac{dR}{R^5} e^{\hbar S[\phi_b^*] \frac{\beta'_{0*}}{\lambda_*} \ln^2 R \mu^*} = \mu_*^4 \sqrt{-\frac{\pi \lambda_*}{\hbar S[\phi_b^*] \beta'_{0*}}} e^{-\frac{4\lambda_*}{\hbar S[\phi_b^*] \beta'_{0*}}}$$

↙ Superleading dependence on  $\hbar$

Step 4:  
Use perturbation theory properly

- All terms fixed by 1-loop RGEs important.
  - After some careful power-counting and resummation

$$\frac{\Gamma}{V} = \left[ e^{-S[\phi_b]} \frac{1}{2} (R J_T)^4 (R J_d) \text{Im} \sqrt{\frac{\det \widehat{\mathcal{O}}_\phi}{\det' \mathcal{O}_\phi}} \right]_{R=\mu^{-1}=(\mu^*)^{-1}} \times \mu_*^4 \sqrt{-\frac{\pi \lambda_* S[\phi_b^*]}{\beta'_{0*}}} e^{-\frac{4\lambda_*}{\hbar S[\phi_b^*] \beta'_{0*}}} \left[ \frac{\lambda_*}{\lambda_{1\text{-loop}}(\hat{\mu})} - 1 - \frac{4\lambda_*}{S[\phi_b^*]^2 \beta'_{0*}} \right]$$



# Gauge bosons

Quadratic fluctuations around the bounce in Fermi gauges:  $\mathcal{L}_{\text{GF}} = \frac{1}{2\xi}(\partial_\mu A_\mu)^2$

$$\mathcal{L}_{\text{Fermi}} = \frac{1}{2}A_\mu \left[ (-\square + g^2\phi_b^2)\delta_{\mu\nu} + \frac{\xi-1}{\xi}\partial_\mu\partial_\nu \right] A_\nu + \frac{1}{2}G \left[ -\square + \lambda\phi_b^2 \right] G + gA_\mu(\partial_\mu\phi_b)G - g\phi_bA_\mu\partial_\mu G - \bar{c}\square c$$

- Bounce is spherically symmetric, use **3D spherical harmonics**
- Radial fluctuations of longitudinal, scalar, and Goldstone modes couple
- Need

$$\det' \begin{pmatrix} -\Delta_s + \frac{3}{r^2} + g^2\phi_b^2 & -\frac{2\sqrt{s(s+2)}}{r^2} & g\phi'_b - g\phi_b\partial_r \\ -\frac{2\sqrt{s(s+2)}}{r^2} & -\Delta_s - \frac{1}{r^2} + g^2\phi_b^2 & -\frac{\sqrt{s(s+2)}}{r}g\phi_b \\ 2g\phi'_b + g\phi_b\partial_r + \frac{3}{r}g\phi_b & -\frac{\sqrt{s(s+2)}}{r}g\phi_b & -\Delta_s + \lambda\phi_b^2 \end{pmatrix}$$

---


$$\det \begin{pmatrix} -\Delta_s + \frac{3}{r^2} & -\frac{2\sqrt{s(s+2)}}{r^2} & 0 \\ -\frac{2\sqrt{s(s+2)}}{r^2} & -\Delta_s - \frac{1}{r^2} & 0 \\ 0 & 0 & -\Delta_s \end{pmatrix}$$

- **Mapping to 4-sphere does not help**
- Need **new tricks** to compute this ratio

# Gelfand-Yanglom method

Want to compute  $R = \frac{\det \mathcal{O}_1}{\det \mathcal{O}_2} = \frac{\prod_j \lambda_{1j}}{\prod_j \lambda_{2j}}$

1. Find zero-modes regular at  $r=0$   $\mathcal{O}_1\phi_1 = 0$  and  $\mathcal{O}_2\phi_2 = 0$

2.  $R$  is given by the simple formula  $R = \left[ \lim_{r \rightarrow 0} \frac{\phi_2(r)}{\phi_1(r)} \right] \times \left[ \lim_{r \rightarrow \infty} \frac{\phi_1(r)}{\phi_2(r)} \right]$

That's it!

**Example**  $R_s = \frac{\det \left[ \frac{1}{3\lambda\phi_b^2} \Delta_s - 1 \right]}{\det \left[ \frac{1}{3\lambda\phi_b^2} \Delta_s \right]} = \prod_{n \geq s} \frac{\frac{1}{6}(n+1)(n+2) - 1}{\frac{1}{6}(n+1)(n+2)} = \frac{s(s-1)}{(s+2)(s+3)}$  

$$\phi_1(r) = \frac{r^s}{(R^2 + r^2)^2} \left( R^4 + \frac{2R^2(s-1)}{s+2} r^2 + \frac{s(s-1)}{(s+2)(s+3)} r^4 \right)$$

$$\phi_2(r) = r^s$$



$$\lim_{r \rightarrow 0} \frac{\phi_2(r)}{\phi_1(r)} = 1$$



$$\lim_{r \rightarrow \infty} \frac{\phi_1(r)}{\phi_2(r)} = \frac{s(s-1)}{(s+2)(s+3)}$$

$$R_s = \frac{s(s-1)}{(s+2)(s+3)}$$



# Integrate gauge boson fluctuations

$$\Delta_s \equiv \partial_r^2 + \frac{3}{r}\partial_r - \frac{s(s+2)}{r^2}$$

$$\begin{pmatrix} -\Delta_s + \frac{3}{r^2} + g^2\phi_b^2 & -\frac{2\sqrt{s(s+2)}}{r^2} & g\phi'_b - g\phi_b\partial_r \\ -\frac{2\sqrt{s(s+2)}}{r^2} & -\Delta_s - \frac{1}{r^2} + g^2\phi_b^2 & -\frac{\sqrt{s(s+2)}}{r}g\phi_b \\ 2g\phi'_b + g\phi_b\partial_r + \frac{3}{r}g\phi_b & -\frac{\sqrt{s(s+2)}}{r}g\phi_b & -\Delta_s + \lambda\phi_b^2 \end{pmatrix} \begin{pmatrix} \Psi_1 \\ \Psi_2 \\ \Psi_3 \end{pmatrix} = 0$$

- Need to find 3 linearly independent solutions
- Would have been impossible, but...
  - Don't need full solutions, just asymptotic behavior (large and small r)
  - Can simplify with auxiliary equations Endo et al, 2017



A lot of hard work

$$= \frac{\det \mathcal{M}_s^{SLG}}{\det \widehat{\mathcal{M}}_s^{SLG}} = \frac{\det \widehat{\Psi}(0)}{\det \Psi(0)} \frac{\det \Psi(\infty)}{\det \widehat{\Psi}(\infty)} = C_\eta \frac{s}{s+2}$$

$$C_\eta = \frac{\Gamma(1+s)\Gamma(2+s)}{\Gamma(s+\frac{3}{2}-\frac{\kappa}{2})\Gamma(s+\frac{3}{2}+\frac{\kappa}{2})}$$

$$\kappa \equiv \sqrt{1 + \frac{8g^2}{\lambda}}$$

- Result is non-perturbative in g
- Still need to take product over spins s
- Still need to renormalize

# Renormalize

Subtract order  $g^2$  terms

$$\begin{aligned} \left[ \ln R_{s, \text{diag}}^{SLG, R_\xi} \right]_{\text{sub}} &= \frac{2(s^3 + 4s^2 + 4s + 2)}{s^2(s+1)^2} - 4\psi'(s) \\ &+ \left[ \frac{2(s^4 + 9s^3 + 20s^2 + 18s + 8)}{s^2(s+1)^2(s+2)} - 8\psi'(s) \right] \frac{g^2}{\lambda} \\ &+ \left[ \frac{2(2s+5)(3s^4 + 12s^3 + 18s^2 + 12s + 4)}{s^2(s+1)^2(s+2)^2} - 12\psi'(s) \right] \frac{g^4}{\lambda^2} \end{aligned}$$

$$\psi(z) = \frac{\Gamma'(z)}{\Gamma(z)}$$



Add in  $g^2$  terms with d-dimensional loops in MS

$$-S_{GG}^{R_\xi} = \text{---} \circ \text{---} = \left( \frac{g^2 + \lambda}{\lambda} \right)^2 \left[ \frac{1}{6\varepsilon} + \frac{5}{18} + \frac{1}{6}\gamma_E + \frac{1}{6} \ln \pi R^2 \mu^2 \right]$$

$$-S_{AA}^{R_\xi} = \text{---} \circ \text{---} = \frac{g^4}{\lambda^2} \left[ \frac{2}{3\varepsilon} + \frac{7}{9} + \frac{2}{3}\gamma_E + \frac{2}{3} \ln \pi R^2 \mu^2 \right]$$

$$-S_{AG}^{R_\xi} = \text{---} \circ \text{---} = -\frac{g^2}{\lambda} \left[ \frac{4}{3\varepsilon} + \frac{26}{9} + \frac{4}{3}\gamma_E + \frac{4}{3} \ln \pi R^2 \mu^2 \right]$$

$$-S_{\bar{c}c}^{R_\xi} = \text{---} \circ \text{---} = \frac{g^4}{\lambda^2} \left[ -\frac{1}{3\varepsilon} - \frac{5}{9} - \frac{1}{3}\gamma_E - \frac{1}{3} \ln \pi R^2 \mu^2 \right]$$



Final answer

# THE LIFETIME OF THE STANDARD MODEL

---

# Decay rate in Standard Model

Final formula

$$\frac{\Gamma}{V} = e^{-S[\phi_b]} \frac{1}{2} \text{Im} V_{SU(2)} J_G^3 (RJ_T)^4 (RJ_d) \sqrt{\frac{\det \widehat{\mathcal{O}}_h}{\det' \mathcal{O}_h}} \sqrt{\frac{\det \widehat{\mathcal{O}}_{ZG}}{\det' \mathcal{O}_{ZG}}} \frac{\det \widehat{\mathcal{O}}_{WG}}{\det' \mathcal{O}_{WG}} \sqrt{\frac{\det \mathcal{O}_{\bar{t}t}}{\det \widehat{\mathcal{O}}_{\bar{t}t}}} \sqrt{\frac{\det \mathcal{O}_{\bar{b}b}}{\det \widehat{\mathcal{O}}_{\bar{b}b}}} \\ \times \mu_\star^4 \sqrt{-\frac{\pi S[\phi_b^\star] \lambda_\star}{\beta'_{0\star}}} e^{-\frac{4\lambda_\star}{S[\phi_b^\star] \beta'_{0\star}}} \left[ \frac{\lambda_\star}{\lambda_{\text{1-loop}}(\hat{\mu})} - 1 - \frac{4\lambda_\star}{S[\phi_b^\star]^2 \beta'_{0\star}} \right] \quad (6.2)$$

Everything known analytically:

$$\sqrt{\frac{\det \widehat{\mathcal{O}}_{ZG}}{\det' \mathcal{O}_{ZG}}} = \exp \left[ -\frac{3}{2} S_{\text{fin}} \left( -\frac{g_Z^2}{12\lambda} \right) - \frac{1}{2} S_{\text{diff}}^{AG} \left( -\frac{g_Z^2}{12\lambda} \right) - S_{\text{loops}}^{AG} \left( -\frac{g_Z^2}{12\lambda} \right) - \frac{1}{2} S_{\text{fin}}^G \right]$$

$$\frac{\det \widehat{\mathcal{O}}_{WG}}{\det' \mathcal{O}_{WG}} = \exp \left[ -3 S_{\text{fin}} \left( -\frac{g_W^2}{12\lambda} \right) - S_{\text{diff}}^{AG} \left( -\frac{g_W^2}{12\lambda} \right) - 2 S_{\text{loops}}^{AG} \left( -\frac{g_W^2}{12\lambda} \right) - S_{\text{fin}}^G \right]$$

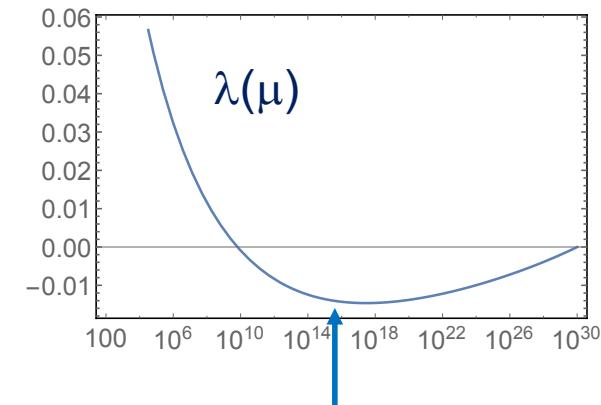
...



$$S_{\text{fin}}(x) = (-3 + 6\gamma_E)x^2 + \frac{11}{36} + \ln 2\pi + \frac{3}{4\pi^2}\zeta(3) - 4\zeta'(-1) \\ - x\kappa_x \left[ \psi^{(-1)} \left( \frac{3 + \kappa_x}{2} \right) - \psi^{(-1)} \left( \frac{3 - \kappa_x}{2} \right) \right] + \left( 6x - \frac{1}{6} \right) \left[ \psi^{(-2)} \left( \frac{3 + \kappa_x}{2} \right) + \psi^{(-2)} \left( \frac{3 - \kappa_x}{2} \right) \right] \\ + \kappa_x \left[ \psi^{(-3)} \left( \frac{3 + \kappa_x}{2} \right) - \psi^{(-3)} \left( \frac{3 - \kappa_x}{2} \right) \right] - 2 \left[ \psi^{(-4)} \left( \frac{3 + \kappa_x}{2} \right) + \psi^{(-4)} \left( \frac{3 - \kappa_x}{2} \right) \right] \quad (4.8)$$

$$\sqrt{\frac{\det \mathcal{M}_{\bar{t}t}}{\det \widehat{\mathcal{M}}_{\bar{t}t}}} = \exp \left[ \frac{N_C}{2} S_{\text{fin}}^{\bar{\psi}\psi} \left( \sqrt{\frac{y_t^2}{\lambda}} \right) - N_C S_{\text{loops}}^{\bar{\psi}\psi} \left( \frac{y_t^2}{\lambda} \right) \right]$$

# Numerical results


Inputs with negligible uncertainty:

$$G_F = 1.115 \times 10^{-5} \text{ GeV}^{-2}; \quad m_W^{\text{pole}} = 80.385 \text{ GeV}, \quad m_Z^{\text{pole}} = 91.1876 \text{ GeV}, \quad m_b^{\text{pole}} = 4.93 \text{ GeV}$$

Inputs with non-negligible uncertainty:

$$m_t^{\text{pole}} = 173.1 \pm 0.6 \text{ GeV} \quad m_h^{\text{pole}} = 125.09 \pm 0.24 \text{ GeV} \quad \alpha_s(m_Z) = 0.1181 \pm 0.0011$$

- Convert to MS at weak scale
  - 2-loop threshold corrections
  - 2-loop electroweak/strong mixed contributions
  - 3 and 4 loop strong contributions
  - 3-loop running for all, with 4-loops for  $\alpha_s$



Scale where  $\beta_\lambda(\mu^*) = 0$  is  $\mu_* = 3.11 \times 10^{17} \text{ GeV}$

Quartic at  $\mu^*$ :

$$\lambda(\mu_*) = -0.0138$$

$$\Gamma \sim e^{-\frac{8\pi^2}{\lambda(\mu^*)}} \sim e^{-800}$$

- Sets units for decay

$$\Gamma \sim (\mu^*)^4 \sim 10^{70} \text{ GeV}^4$$

All order  $\sim 100$  in exponent

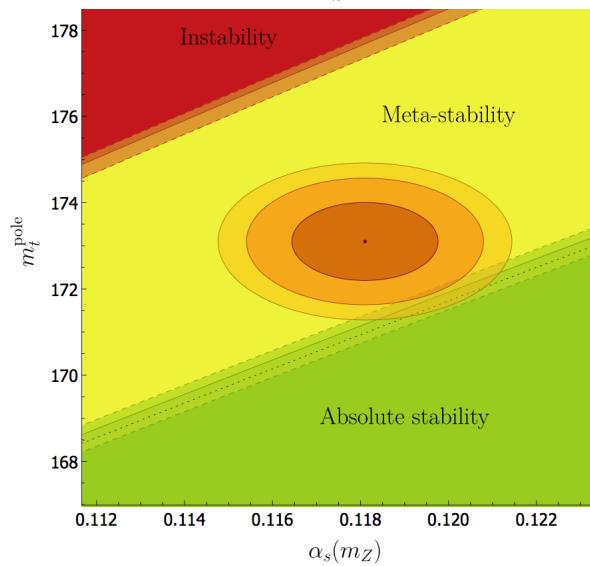
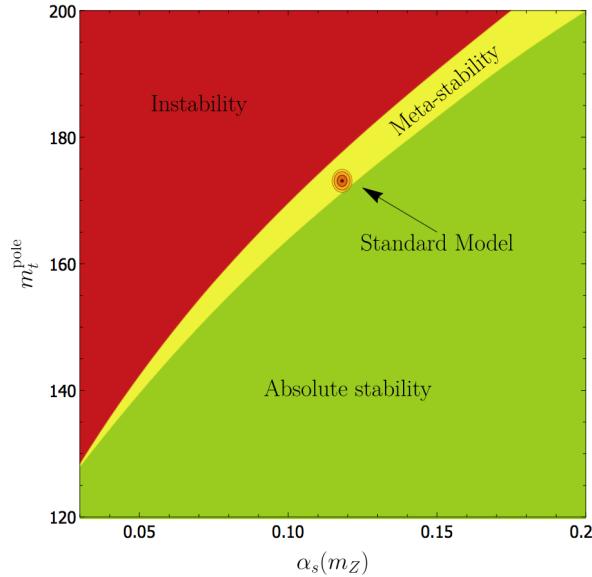
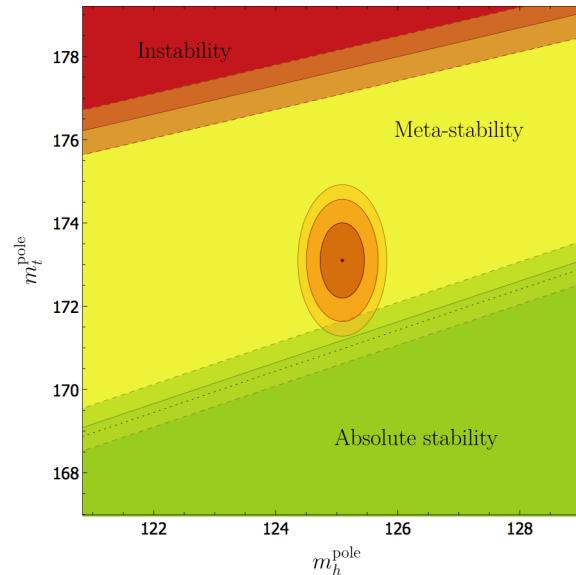
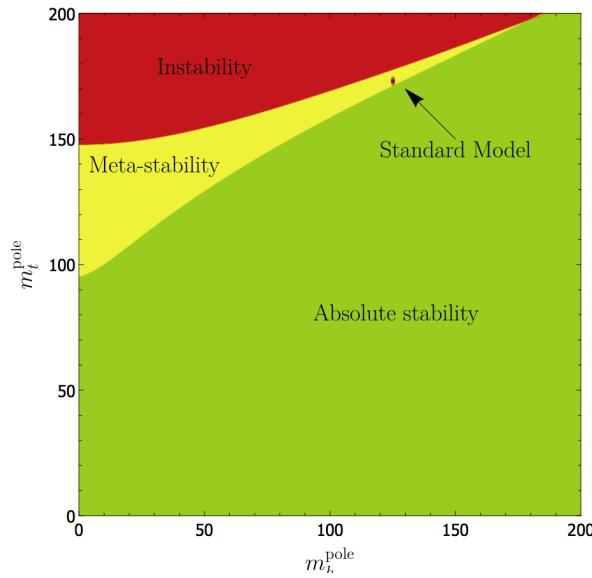
Compare to lifetime of the universe

$$H_0 = 67.4 \frac{\text{km}}{\text{s Mpc}} = 1.44 \times 10^{-42} \text{ GeV}$$

$$H_0^4 = 10^{-168} \text{ GeV}^4$$

# Decay rate of our universe

Andreassen, Frost, MDS (arXiv:1707.08124)





Put all the factors in

$$\begin{aligned}
 \frac{\Gamma}{V} &= \underbrace{e^{-S[\phi_b]}}_{10^{-826}} \underbrace{V_{SU(2)}}_{10^2} \underbrace{J_G^3}_{10^5} \underbrace{(RJ_T)^4 (RJ_d)}_{10^7} \underbrace{\sqrt{\frac{\det \hat{\mathcal{O}}_h}{\det' \mathcal{O}_h}}}_{10^{-2}} \underbrace{\sqrt{\frac{\det \hat{\mathcal{O}}_{ZG}}{\det' \mathcal{O}_{ZG}}}}_{10^{17}} \underbrace{\frac{\det \hat{\mathcal{O}}_{WG}}{\det' \mathcal{O}_{WG}}}_{10^{19}} \underbrace{\sqrt{\frac{\det \mathcal{O}_{\bar{t}t}}{\det \hat{\mathcal{O}}_{\bar{t}t}}}}_{10^{25}} \underbrace{\sqrt{\frac{\det \mathcal{O}_{\bar{b}b}}{\det \hat{\mathcal{O}}_{\bar{b}b}}}}_{0.995} \\
 &\quad \times \underbrace{\mu_\star^4}_{10^{70} \text{ GeV}^4} \underbrace{\sqrt{-\frac{\pi \lambda_\star}{S[\phi_b^\star] \beta'_{0\star}}} e^{-\frac{4\lambda_\star}{S[\phi_b^\star] \beta'_{0\star}}}}_{1.09} \underbrace{S[\phi_b^\star] \left[ \frac{\lambda_\star}{\lambda_{\text{1-loop}}(\hat{\mu})} - 1 - \frac{4\lambda_\star}{S[\phi_b^\star]^2 \beta'_{0\star}} \right]}_{0.653} \\
 &= 10^{-683} \text{ GeV}^4 \times \binom{10^{-279}}{10^{162}}_{m_t} \times \binom{10^{-39}}{10^{35}}_{m_h} \times \binom{10^{-186}}{10^{127}}_{\alpha_s} \times \binom{10^{-61}}{10^{102}}_{\text{thr.}} \times \binom{10^{-2}}{10^2}_{\text{NNLO}} \\
 &= 10^{-683_{-202}^{+409}} \text{ GeV}^4
 \end{aligned}$$

$$\tau_{\text{SM}} = 10^{139_{-51}^{+102}} \text{ years}$$

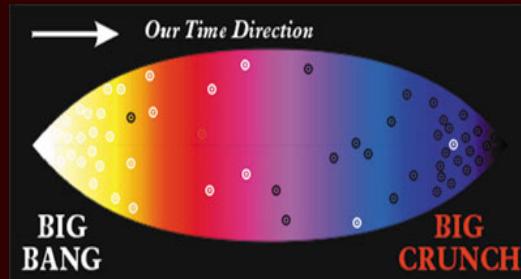
# Stability phase diagram

Andreassen, Frost, MDS (arXiv:1707.08124)

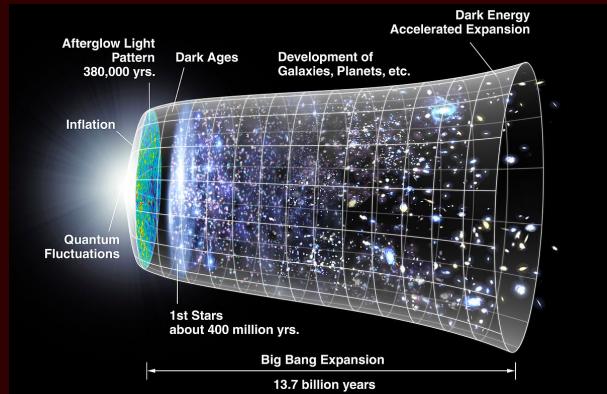


$$\frac{\Gamma}{V} = 10^{-683^{-409}_{+202}} \text{ GeV}^4$$

$$\tau_{\text{SM}} = 10^{139^{+102}_{-51}} \text{ years}$$

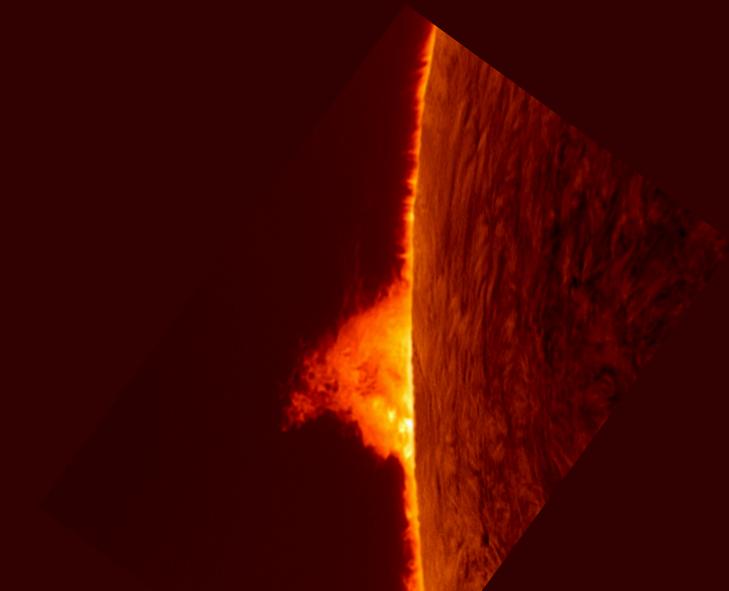

Top mass and  $\alpha_s$   
biggest experimental  
uncertainties

# Conclusions: the fate of the universe


## 1. Static universe



## 2. Big Crunch

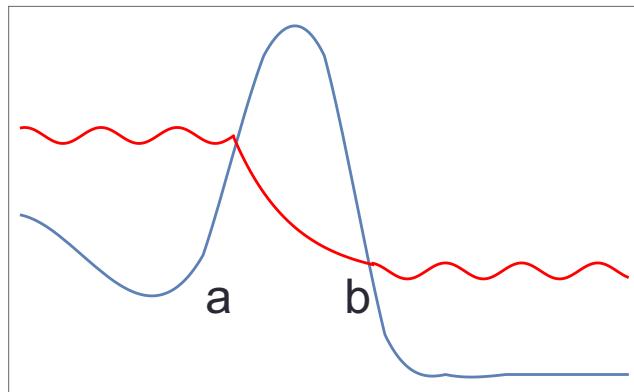



## 3. Cold and Empty Future



## 4. Vacuum decay

- Universe is infinite
- Decay rate is finite
- Somewhere a bubble of true vacuum has formed ( $10^{139}$  light years away)
- Wall is barreling towards us at the speed of light

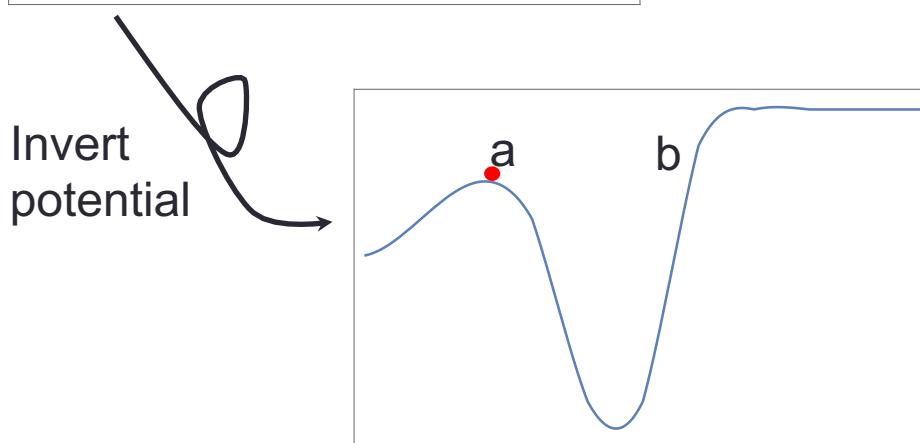



# DERIVING THE DECAY RATE FORMULA

---

Coleman & Callan (1977)

# Tunneling and WKB

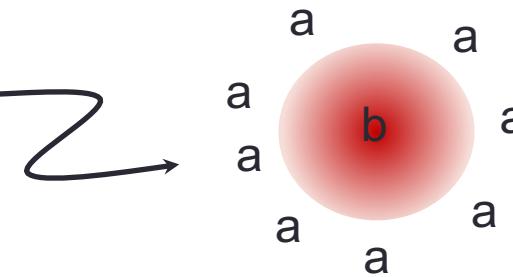



Coleman (Erice p.266): “Every child knows that the amplitude for transmission obeys the WKB formula”

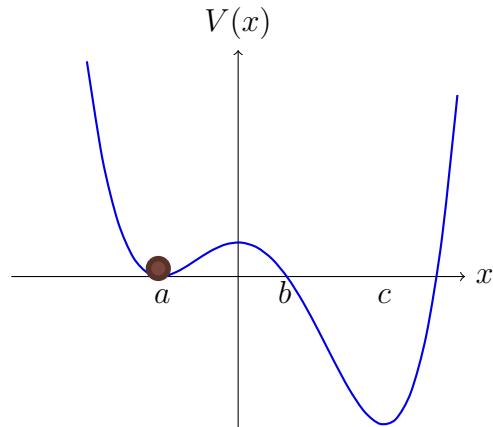
$$T = \exp \left\{ - \int_a^b dx \sqrt{2(V - E)} \right\}$$

Coleman 1977

- $T$  can be written as  $e^{-S_E[x_b]}$   
  
 “bounce” path  $x_b(\tau)$




- Solution to equations of motion with “inverted” potential  $-V(x)$
- Starts at  $a$ , ends at  $a$ , passes through  $b$

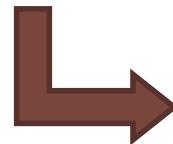

Rate  $\Gamma \propto T = e^{-S[x_b]}$

QFT: Rate  $\Gamma \propto e^{-S_E[\phi_b]}$

QFT bounce has  $\phi_b(\vec{x}) = a$  at  $|\vec{x}| = \infty$   
 $\phi_b(0) = b$



# Tunneling from path integral



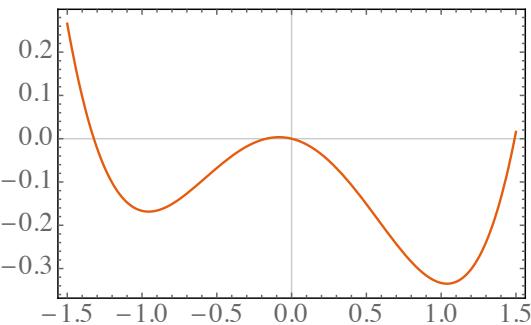

Coleman and Callan 1977

$$Z \equiv \langle a | e^{-H\mathcal{T}} | a \rangle = \int_{x(0)=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]}$$


$$Z = \sum_E e^{-ET} |\psi_E(a)|^2$$

Isolate ground state energy  
from late times




$$E_0 = - \lim_{\mathcal{T} \rightarrow \infty} \frac{1}{\mathcal{T}} \ln Z$$

Decay rate is the imaginary  
part of the energy



$$\frac{\Gamma}{2} = \text{Im} \lim_{\mathcal{T} \rightarrow \infty} \frac{1}{\mathcal{T}} \ln Z$$

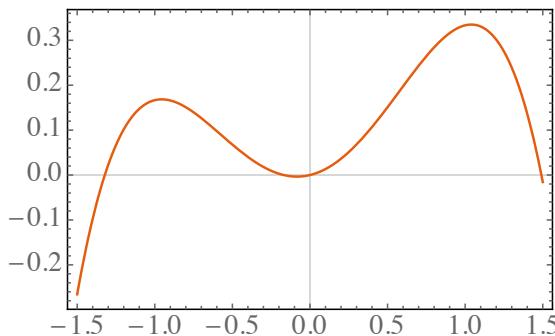
# Saddle points



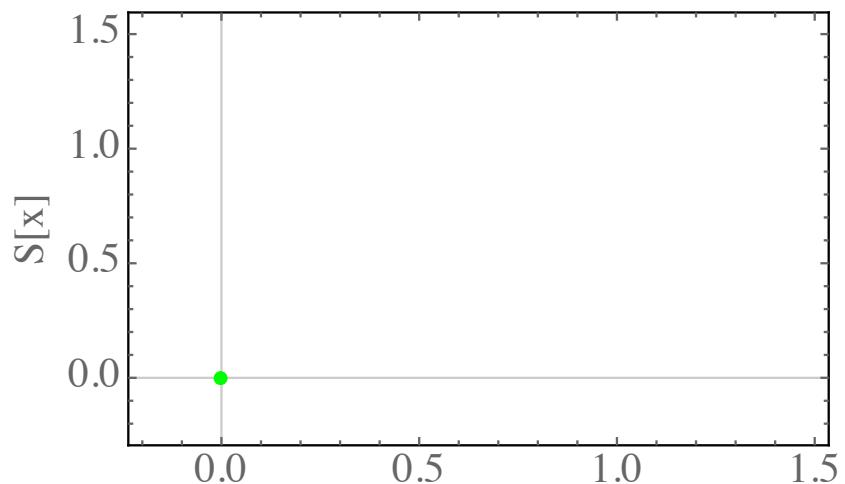
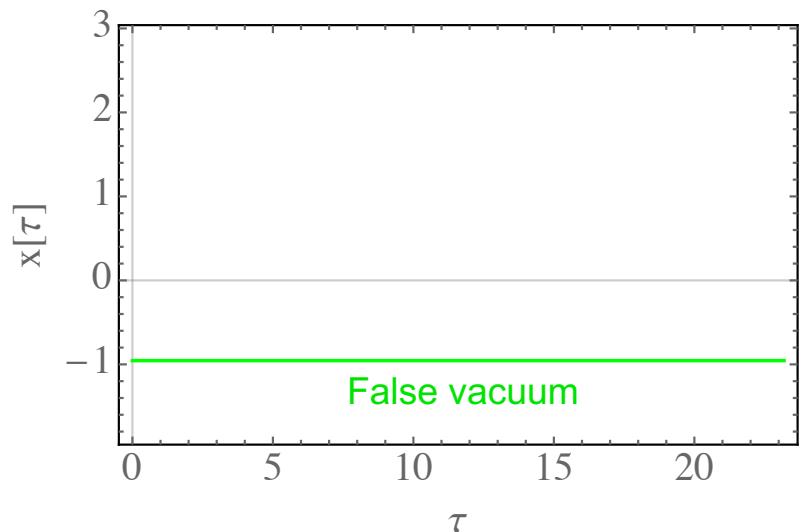
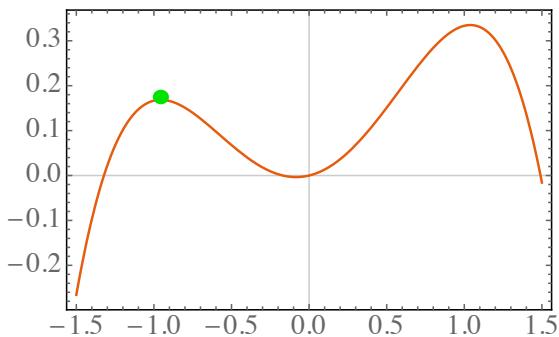
$$Z \equiv \langle a | e^{-H\mathcal{T}} | a \rangle = \int_{x(0)=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]}$$

Dominated by **saddle points**  
 = solutions to the Euclidean equations of motion

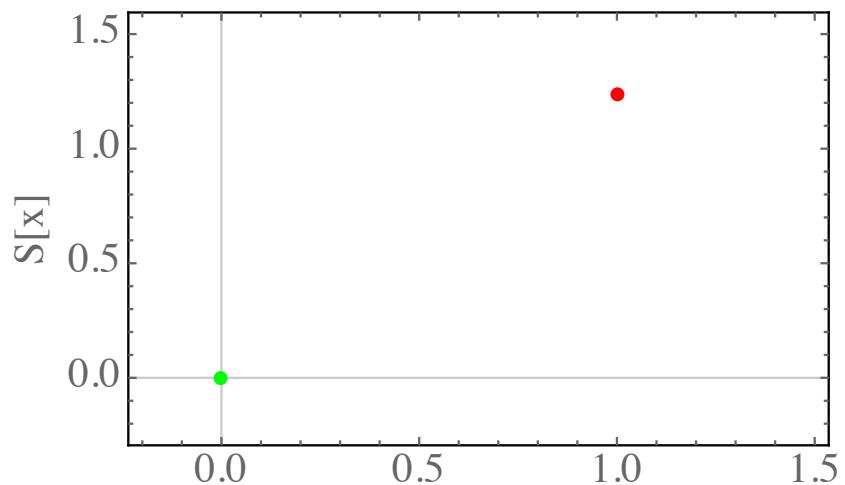
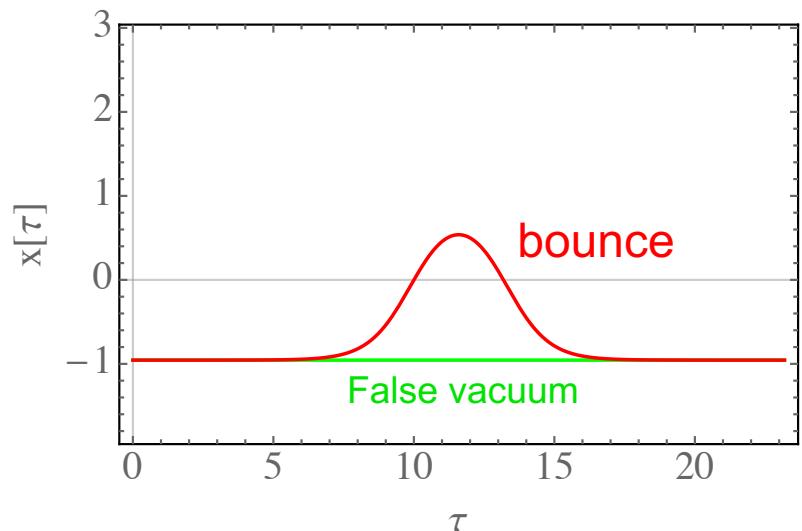
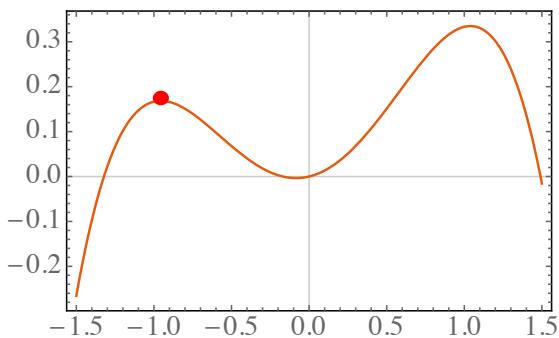
$$S = \int dt \left[ \frac{1}{2} (\partial_t x) - V(x) \right]$$


$$\partial_t^2 x = -V'(x)$$

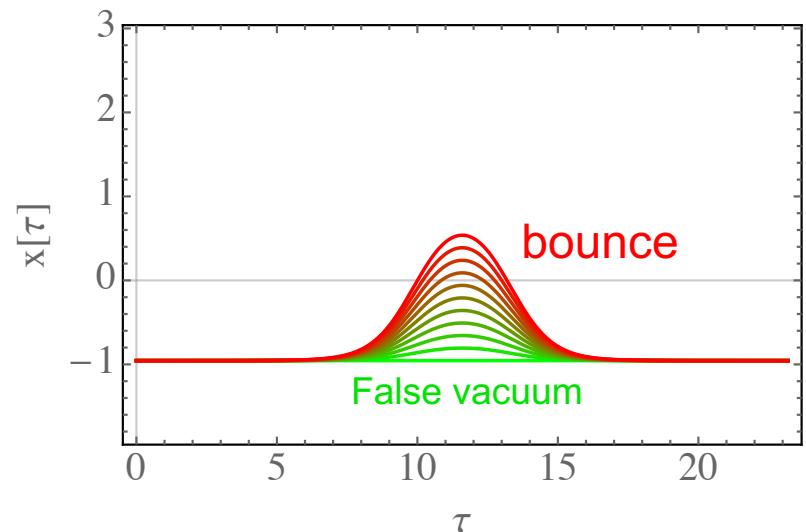
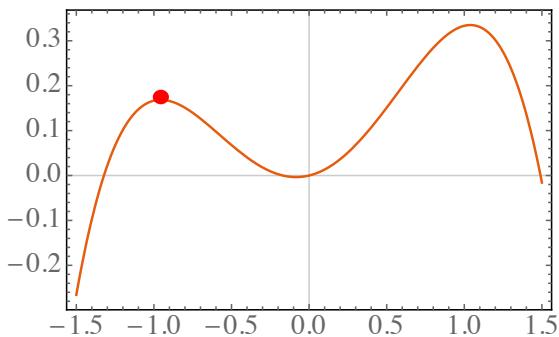
$$S_E = \int d\tau \left[ \frac{1}{2} (\partial_\tau x) + V(x) \right]$$




$$\partial_\tau^2 x = V'(x)$$

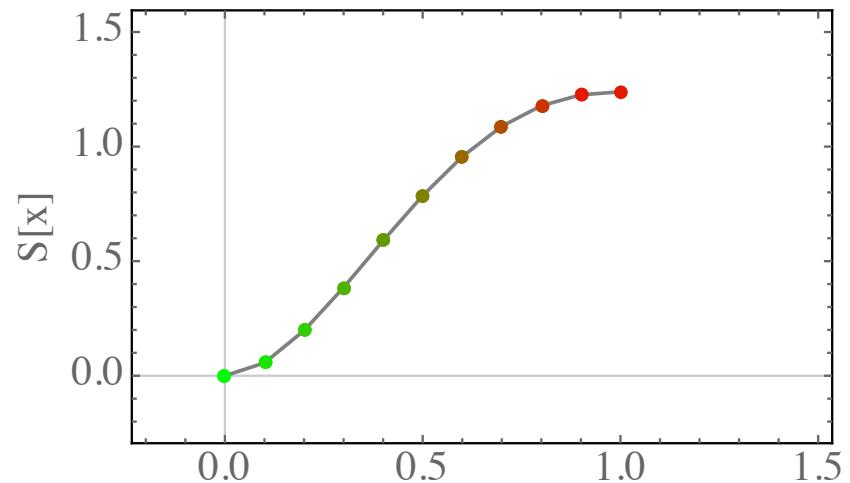





particle rolling down the **inverted potential**  
 with boundary conditions  $x(0) = x(\mathcal{T}) = a$





# Saddle points




# Saddle points



# Saddle points



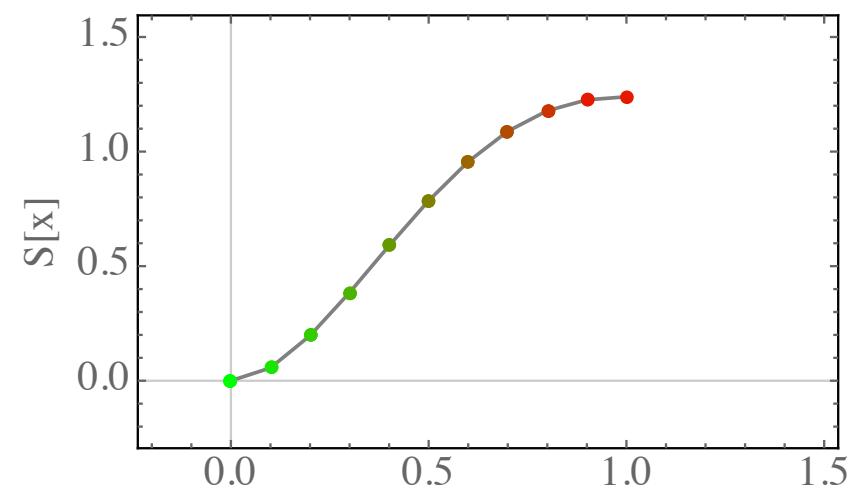
Bounce is a saddle point of action:  
local maximum along one direction



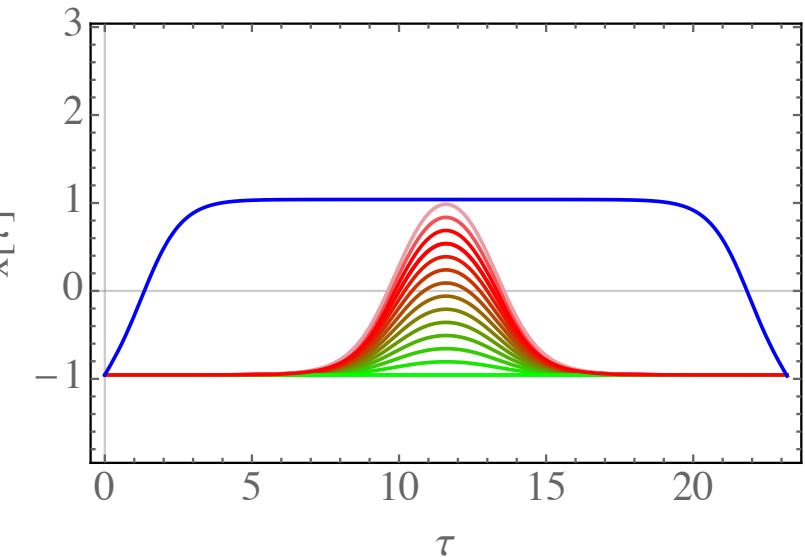
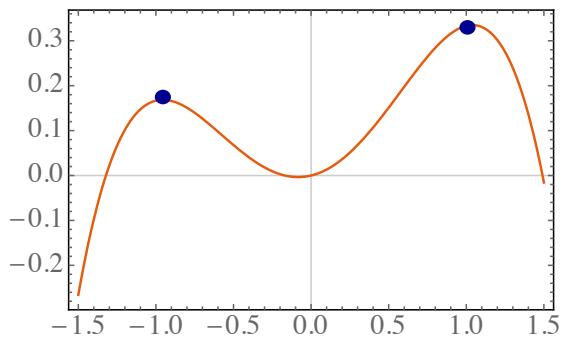
Maximum  $\rightarrow$  negative eigenvalue of  $S''$   $\rightarrow$   $Z$  has an imaginary part

$$\begin{aligned}
 Z &= \int_{x(0)=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]} \\
 &= \int_{x(0)=0}^{x(\mathcal{T})=0} \mathcal{D}x e^{-S_E[\bar{x}] - \frac{1}{2} S''_E[\bar{x}] x^2 - \dots} \\
 &= e^{-S_E[\bar{x}]} \int_{x(0)=0}^{x(\mathcal{T})=0} \mathcal{D}x e^{-\frac{1}{2} \int d\tau \{-x \partial_\tau^2 x + x V''(\bar{x}) x\}} \\
 &= \int d\xi_0 \dots d\xi_n e^{-\sum_n \frac{1}{2} \lambda_n \xi_n^2} \\
 &= \sqrt{\frac{2\pi}{\lambda_1}} \sqrt{\frac{2\pi}{\lambda_2}} \dots
 \end{aligned}$$

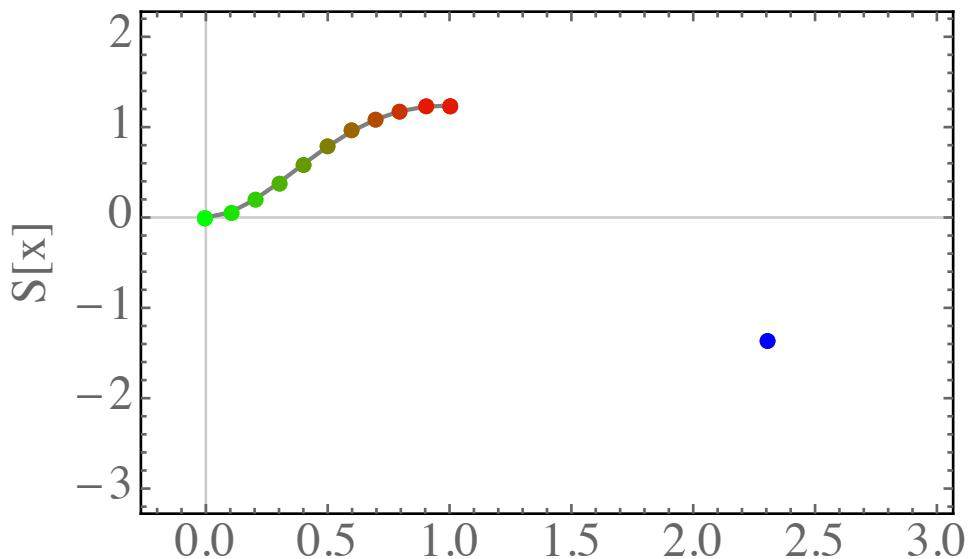
$$\frac{\Gamma}{2} = \text{Im} \lim_{\mathcal{T} \rightarrow \infty} \frac{1}{\mathcal{T}} \ln Z \neq 0$$


But  $Z$  is real! So how did this happen?

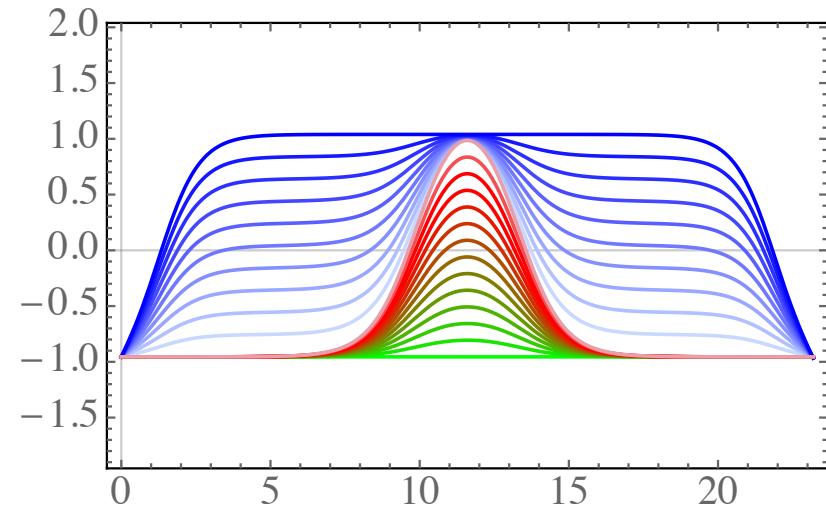
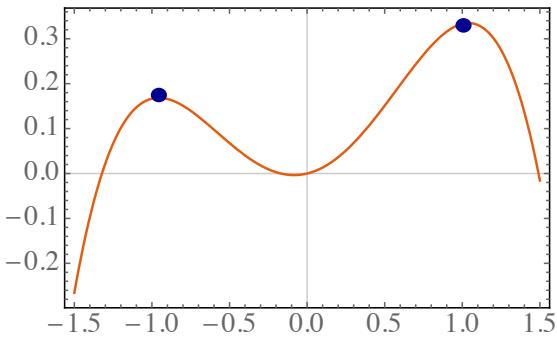
$$Z \equiv \langle a | e^{-H\mathcal{T}} | a \rangle = \int_{x(0)=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]}$$



$$x(\tau) = \sum \xi_n y_n(\tau)$$

$$\begin{aligned}
 [-\partial_\tau^2 + V''(\bar{x})] y_n &= \lambda_n y_n \\
 \int d\tau y_n y_m &= \delta_{nm}
 \end{aligned}$$

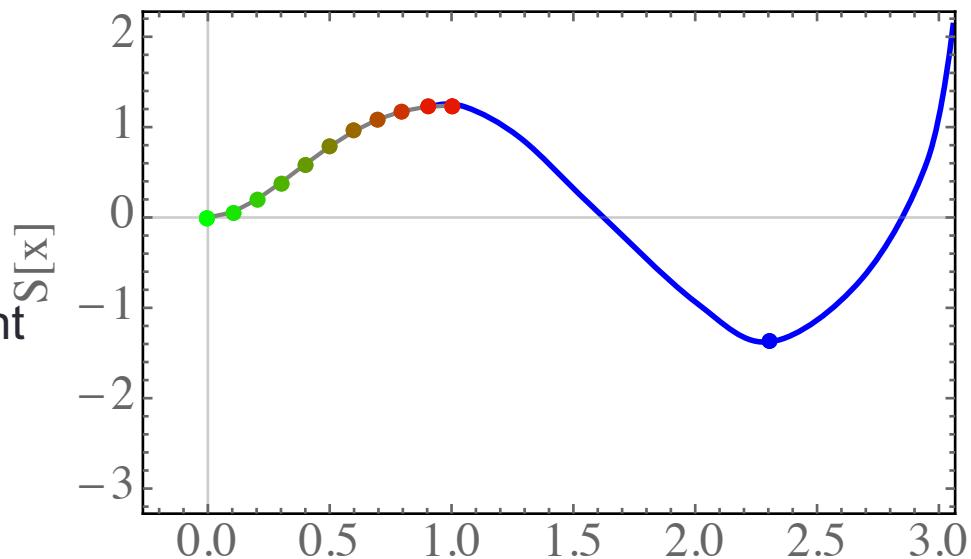

One of these is **negative** ( $\lambda_1 < 0$ )  
if  $\bar{x}$  is a maximum of  $S$  in some direction





# The Shot

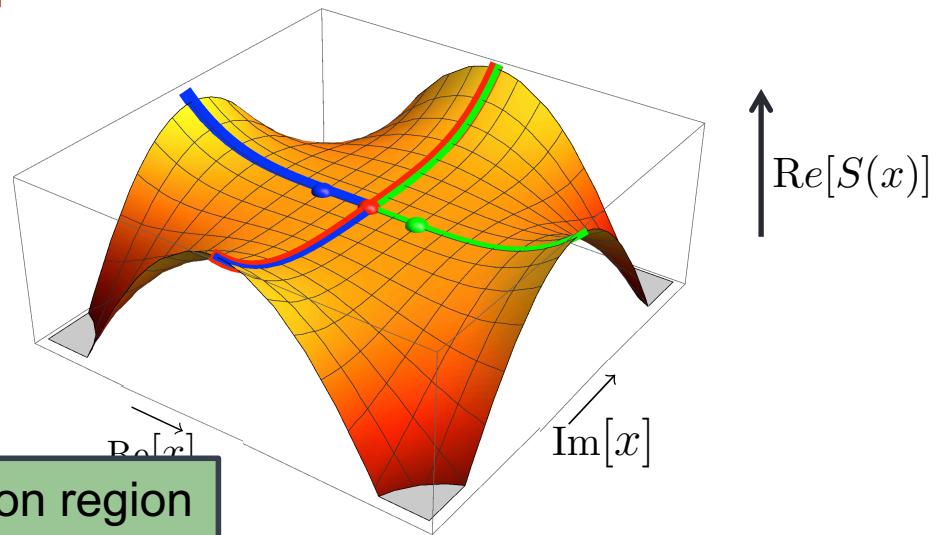
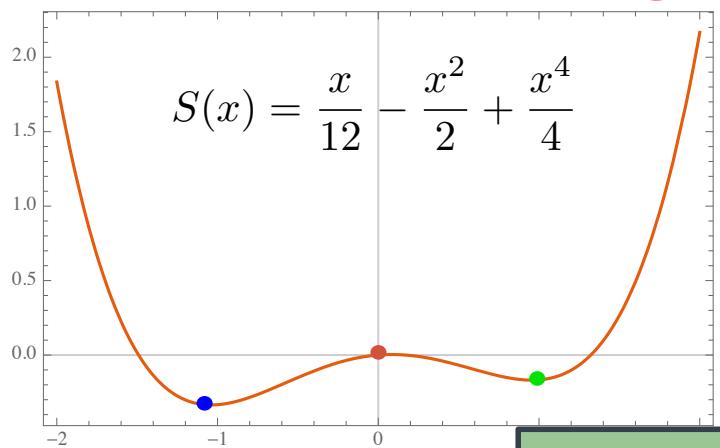


Shot stays at true vacuum most of the time

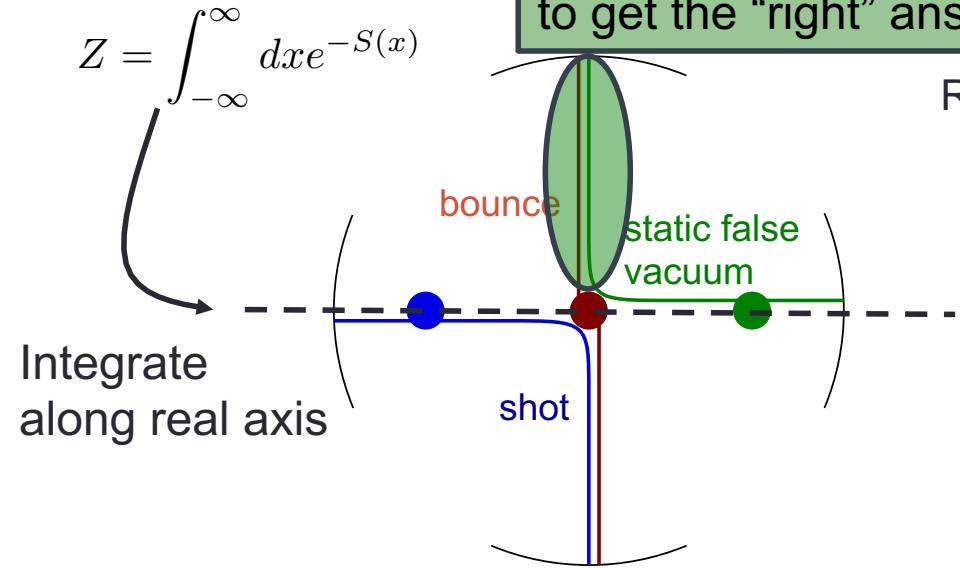



# The Shot





$$\begin{aligned}
 Z \equiv \langle a | e^{-H\mathcal{T}} | a \rangle &= \int_{x(0)=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]} \\
 &\approx e^{-S_E[x_{\text{shot}}]} \left( \gg e^{-S_E[x_{\text{bounce}}]} \right) \\
 &= e^{-E_0 \mathcal{T}}
 \end{aligned}$$

Shot stays at true vacuum most of the time




- **Bounce** is exponentially subdominant
- Consistent expansion must drop it
- **True vacuum dominates**

# Contour integration



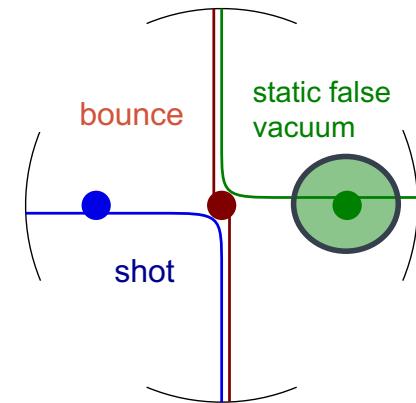
Need this integration region  
to get the “right” answer



Real axis = sum of steepest descent contours

$$\begin{aligned}
 \int_{\mathbb{R}} &= \int_{C_{\text{shot}}} + \int_{C_{\text{bounce}}} + \int_{C_{\text{FV}}} \\
 &= e^{-S(x_{\text{shot}})} + i \frac{\Gamma}{2} \mathcal{T} \\
 &\quad + e^{-S(x_{\text{bounce}})} - i \Gamma \mathcal{T} \\
 &\quad + e^{-S(x_{\text{FV}})} + i \frac{\Gamma}{2} \mathcal{T} \\
 &\approx e^{-S(x_{\text{shot}})}
 \end{aligned}$$

# Discontinuity


Can we just integrate along the **FV** contour?

**Yes**, at least for this toy integral

$$Z = \int_C dx e^{-S(x)}$$

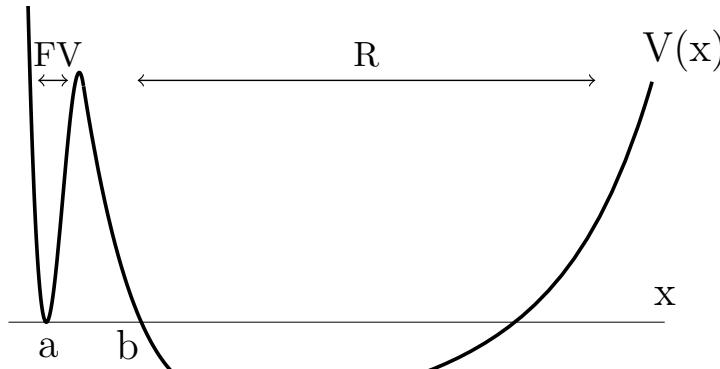
**No**

- Not clear what “fixing to a contour” means for a path integral
- Saddle point approximation **loses the imaginary part**
  - Expanding around the saddle gives a **real integral**
  - Imaginary part comes from region far away
- Saddle point approximation **does work** for the discontinuity



$$1/2 \left[ \left( \text{Diagram 1} \right) - \left( \text{Diagram 2} \right) \right] = 1/2 \left( \text{Diagram 3} \right)$$

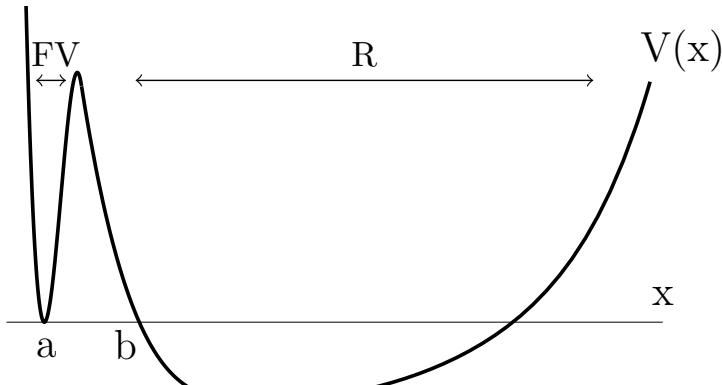
Diagrams 1 and 2 show a path (green line with arrows) starting at a blue dot, going up to a red dot, then right to a green dot, and finally down to a blue dot. Diagram 1 has a red vertical line at the top. Diagram 2 has a blue vertical line at the top. Diagram 3 shows a red vertical line with two red arrows pointing downwards, representing a discontinuity.


## 3. DIRECT METHOD

---

Andreassen, Farhi, Frost, MDS (2016)

# Quantum mechanics

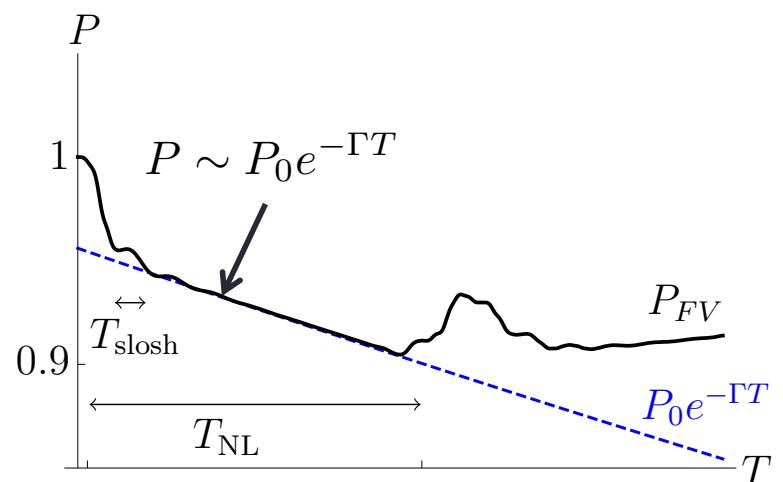
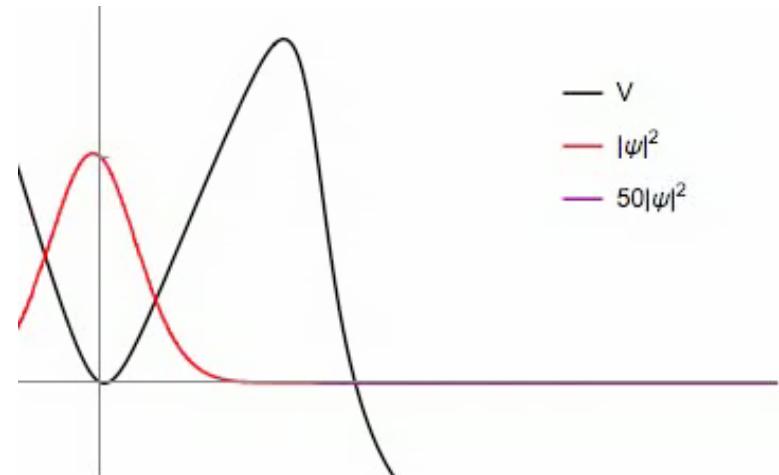

$$i\partial_t\psi(x, t) = \left[-\frac{1}{2m}\partial_x^2 + V(x)\right]\psi(x, t)$$



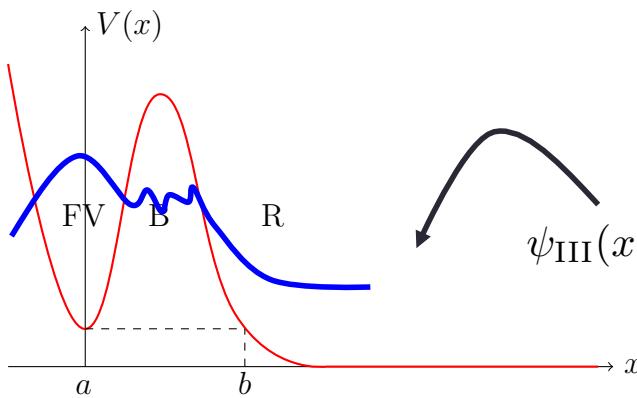
$$P_{FV}(T) \equiv \int_{FV} dx |\psi(x, T)|^2$$

# Quantum mechanics

$$i\partial_t\psi(x, t) = \left[ -\frac{1}{2m}\partial_x^2 + V(x) \right] \psi(x, t)$$


$$P_{\text{FV}}(T) \equiv \int_{\text{FV}} dx |\psi(x, T)|^2$$


Two time scales

- $T > T_{\text{slosh}}$  – removes transients
- $T < T_{\text{NL}}$  -- avoids all  $\psi$  in true vacuum

$$\Gamma = - \lim_{\frac{T}{T_{\text{slosh}}} \rightarrow \infty} \lim_{\frac{T}{T_{\text{NL}}} \rightarrow 0} \frac{1}{P_{\text{FV}}} \frac{d}{dT} P_{\text{FV}}$$



# Gamow's method



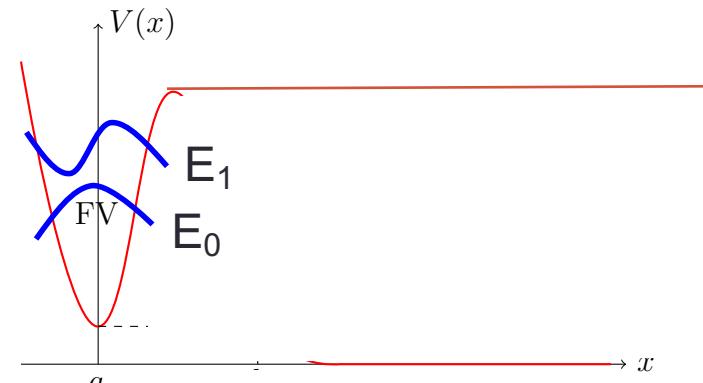
- Hermitian Hamiltonian  $\rightarrow$  energies are real  
 $\rightarrow \psi^* \psi$  independent of time

$$\psi_{\text{III}}(x, t) = C e^{i(kx - Et)} + D e^{-i(kx - Et)}$$

Enforces  $T \ll T_{\text{NL}}$  (no return flux)

Choose outgoing boundary conditions:  $D=0$ ,  $\psi_{\text{III}}(x, t) = C e^{i(kx - Et)}$

- Modes now have outgoing flux


$$J = i(\psi^* \partial_x \psi - \psi \partial_x \psi^*) = -2p$$

- Violates unitarity  $\rightarrow$  energies are complex

$$E = E_0 - \frac{i}{2} \Gamma \quad \psi(x, t) = e^{-iE_0 t - \frac{1}{2} \Gamma t} \psi_0(x)$$

- Probability is time dependent

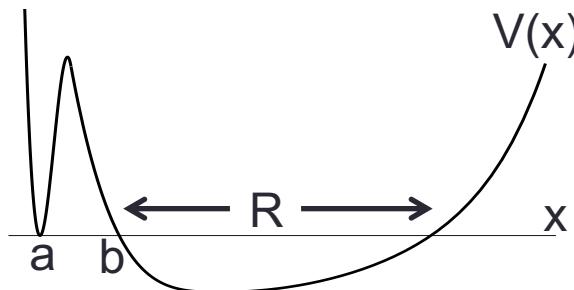
$$P = \int \psi^* \psi \sim e^{-\Gamma t}$$



Assume  $E_1, E_2$  etc components already died off

Enforces  $T \gg T_{\text{slosh}}$  (only metastable FV decay)

# A direct approach


Back to our definition

$$P_{\text{FV}}(T) \equiv \int_{\text{FV}} dx |\psi(x, T)|^2$$

$$\Gamma = - \lim_{\frac{T}{T_{\text{slosh}}} \rightarrow \infty} \lim_{\frac{T}{T_{\text{NL}}} \rightarrow 0} \frac{1}{P_{\text{FV}}} \frac{d}{dT} P_{\text{FV}}$$

$T \gg T_{\text{slosh}}$  (only metastable FV decay)

$T \ll T_{\text{NL}}$  (no return flux)



Propagator from  $a$  to  $x_f$  in time  $T$

$$D(a, x_f, T) \equiv \int_{x(0)=a}^{x(T)=x_f} \mathcal{D}x e^{iS[x]}$$

- Start with:  $\psi(x, t = 0) = \delta(x - a)$
- We will compute

$$\Gamma_R \equiv \lim_{\substack{T/T_{\text{NL}} \rightarrow 0 \\ T/T_{\text{slosh}} \rightarrow \infty}} \frac{1}{P_{\text{FV}}} \frac{dP_R}{dT}$$

$$P_R(T) = \int_R dx_f |D(a, x_f, T)|^2$$

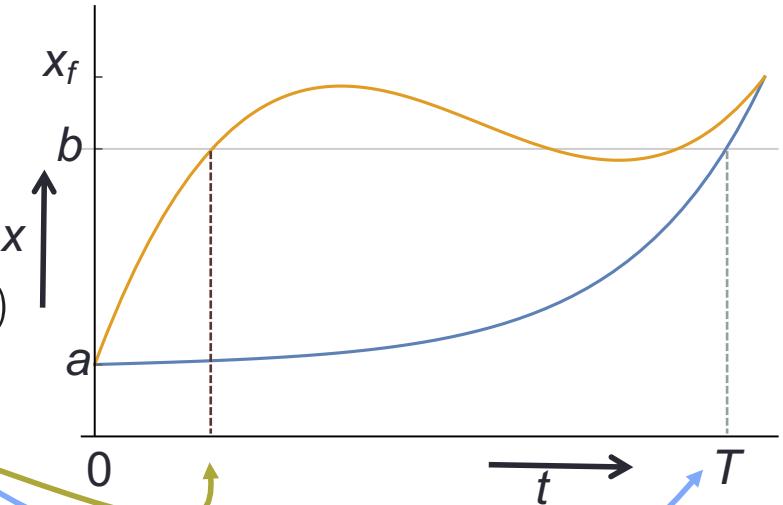
probability of finding  $\psi$   
in region  $R$  at time  $T$

# Step 1: Split up propagator

$$D(a, x_f, T) \equiv \int_{x(0)=a}^{x(T)=x_f} \mathcal{D}x e^{iS[x]}$$

Split path integral into *before b* and *after b*:

$$D(a, x_f, T) = \int_{x(0)=a}^{x(T)=x_f} \mathcal{D}x e^{iS[x]} \int dt \delta(t - t_b[x])$$


$t_b[x] \equiv \text{First time path } x(t) \text{ hits } b$

$$= \int dt \underbrace{\int_{x(0)=a}^{x(t)=b} \mathcal{D}x e^{iS[x]} \delta(t - t_b[x])}_{\bar{D}(a, b, t)} \underbrace{\int_{x(t)=b}^{x(T)=x_f} \mathcal{D}x e^{iS[x]}}_{D(b, x_f, T-t)}$$

hits b only once, at t

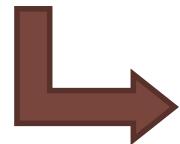
- Regular propagator from b to  $x_f$
- Paths can go back past b

$$D(a, x_f, T) = \int dt \bar{D}(a, b, t) D(b, x_f, T-t)$$



# Step 2: Apply $T \ll T_{NL}$

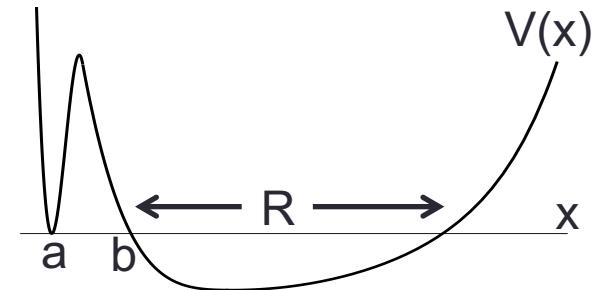
$$D(a, x_f, T) = \int dt \bar{D}(a, b, t) D(b, x_f, T - t)$$


- Hits b only once, at t

- Regular propagator from b to  $x_f$
- Paths can go back past b

$$\begin{aligned} P_R(T) &= \int_R dx_f |D(a, x_f, T)|^2 \\ &= \int dx_f dt_1 dt_2 \bar{D}(a, b, t_1) \bar{D}^*(a, b, t_2) D(b, x_f, T - t_1) D(b, x_f, T - t_2) \\ &\quad \langle x_f, T | b, t_1 \rangle \langle b, t_2 | x_f, T \rangle \end{aligned}$$

$T \ll T_{NL}$  (no return flux)


Propagation from  $b$  out of  $R$  is negligible:  $\int_R dx_f |x_f\rangle \langle x_f| = 1$



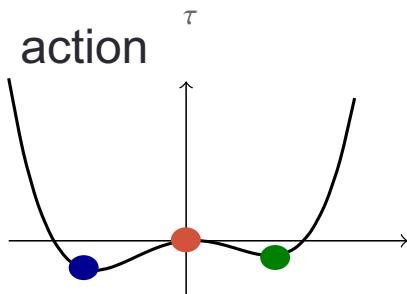
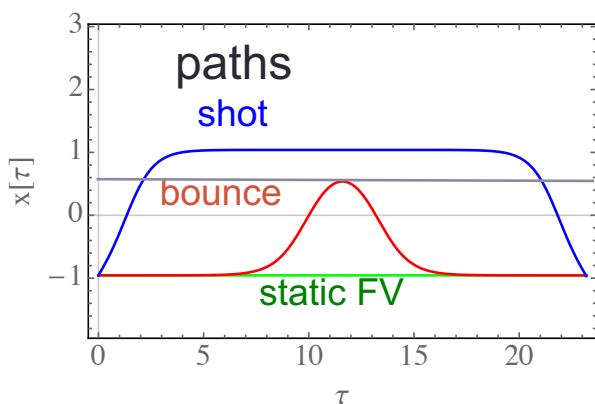
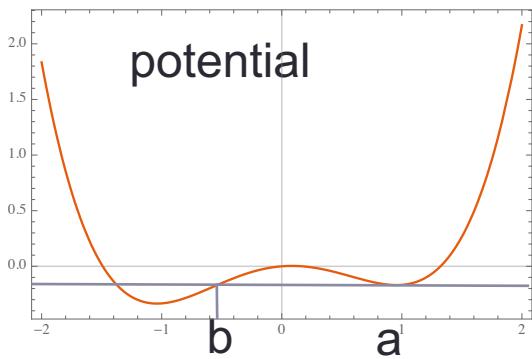
$$\begin{aligned} P_R(T) &= \int dt_1 dt_2 \bar{D}(a, b, t_1) \bar{D}^*(a, b, t_2) \langle b, t_2 | b, t_1 \rangle \\ &= \int_0^T dt D(a, b, t) \bar{D}^*(a, b, t) + \text{c.c.} \end{aligned}$$

# Step 3: Simplify

$$P_R(T) = \int_0^T dt D(a, b, t) \bar{D}^*(a, b, t) + \text{c.c.}$$



$$\Gamma_R \equiv \lim_{\substack{T/T_{\text{NL}} \rightarrow 0 \\ T/T_{\text{slosh}} \rightarrow \infty}} \frac{1}{P_{\text{FV}}} \frac{dP_R}{dT} = \lim_{T \rightarrow \infty} \frac{D(a, b, T) \bar{D}^*(a, b, T)}{\int_{\text{FV}} dx |D(a, x, T)|^2} + \text{c.c.}$$




Go to Euclidean time and take

$T \gg T_{\text{slosh}}$

$$\Gamma_R = 2\text{Im} \lim_{T \rightarrow \infty} \left( \frac{\int_{x(-\mathcal{T})=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]} \delta(\tau_b[x])}{\int_{x(-\mathcal{T})=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]}} \right)_{\mathcal{T} \rightarrow iT}$$

- Non-perturbative definition of the decay rate
- Does not require analytic continuing potential
- Does not require saddle-point approximation

# Expansion



$$\Gamma_R = 2\text{Im} \lim_{T \rightarrow \infty} \left( \frac{\int_{x(-\mathcal{T})=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]} \delta(\tau_b[x])}{\int_{x(-\mathcal{T})=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]}} \right)_{\mathcal{T} \rightarrow iT}$$

Bounce dominates numerator

$$\approx \frac{\exp(-S_{\text{shot}}) + \exp(-S_{\text{bounce}})}{\exp(-S_{\text{shot}}) + \exp(-S_{\text{bounce}}) + \exp(-S_{\text{FV}})}$$

FV dominates denominator

$$S_{\text{shot}} = E_{\text{TV}}\mathcal{T} + S_S^0 = iE_{\text{TV}}T + S_S^0$$

$$S_{\text{FV}} = E_{\text{FV}}\mathcal{T} = iE_{\text{FV}}T$$

$$S_{\text{bounce}} = E_{\text{FV}}\mathcal{T} + S_B^0 = iE_{\text{FV}}T + S_B^0$$

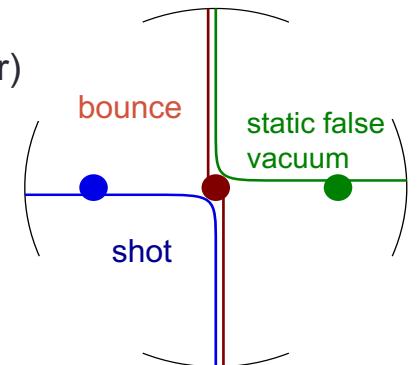
$$S_S^0 > S_B^0 > 0$$

b  
=2.5

a  
=1.2

shot must go faster than bounce,  
→ it has more kinetic energy




$$e^{-S_{\text{FV}}} \gg e^{-S_{\text{bounce}}} \gg e^{-S_{\text{shot}}}$$

# Factor of 1/2

$\Gamma = \text{Im} (\text{FV contour}) = \frac{1}{2} \text{Im} (\text{bounce contour})$

forces all paths to hit b at time t=0

$$\Gamma_R = 2\text{Im} \lim_{T \rightarrow \infty} \left( \frac{\int_{x(-\mathcal{T})=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]} \delta(\tau_b[x])}{\int_{x(-\mathcal{T})=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]}} \right)_{\mathcal{T} \rightarrow iT}$$



Expand around bounce:  $x(\tau) = \bar{x}(\tau) + \sum \xi_n y_n(\tau)$

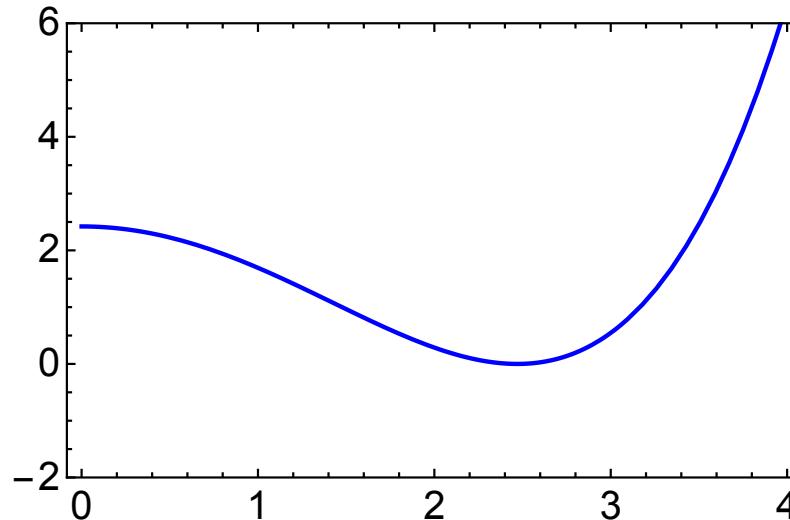
Hits b at its maximum

linear in  $\xi_n$

$$\Gamma^{\text{NLO}} = \frac{e^{-S_E[\bar{x}]} e^{-S_E[x_{FV}]}}{e^{-S_E[x_{FV}]}} \lim_{\mathcal{T} \rightarrow \infty} \left| \frac{2\text{Im} \int d^n \zeta J[\tau_*(\zeta), \zeta] e^{-\frac{1}{2} \sum \lambda_i \zeta_i^2} \Theta[\xi_n y_n(0)]}{\int \mathcal{D}\delta x e^{-\frac{1}{2} S_E''[x_{FV}] \delta x^2}} \right|$$

- Half the fluctuations don't hit b, half do
- Gaussian integral is symmetric.
- Can remove  $\Theta$ -function restriction and multiply by  $\frac{1}{2}$

Must hit b


$$\boxed{\Gamma^{\text{NLO}} = \frac{e^{-S_E[\bar{x}]} e^{-S_E[x_{FV}]}}{e^{-S_E[x_{FV}]}} \sqrt{\frac{S_E[\bar{x}]}{2\pi}} \left| \frac{\det'(-\partial_t^2 + V''(\bar{x}(t)))}{\det(-\partial_t^2 + V''(a))} \right|^{-1/2}}$$

- Agrees with Coleman-Callan formula at NLO, but valid to all orders
- Does not rely on saddle-point approximation
- Actually connects formula to decay rate

# EFFECTIVE POTENTIALS

---

# How do we compute $V_{\text{eff}}$ ?



Classical potential:  $V(h) = \Lambda + m^2 h^2 + \lambda h^4$

- Renormalizable
- Three parameters ( $\Lambda$ ,  $m$  and  $\lambda$ ), measured from data

How can the quantum-corrected potential be computed?

# How do we compute $V_{\text{eff}}$ ?

Method 1:

$$\int \mathcal{D}H e^{i\Gamma} \equiv \int \mathcal{D}H \underbrace{\mathcal{D}\psi \cdots \mathcal{D}A}_{\text{Integrate out everything but } H} e^{iS}$$

Effective Action

Classical action

Integrate out everything but H

$$\Gamma = \int d^4x \left\{ -Z[H]H\Box H - V_{\text{eff}}(H) + \dots \right\}$$

## Problems:

- Generally non-local (has nasty things like  $\ln \frac{1 + \Box/m_t^2}{H^2}$  in it)
- Nearly impossible to compute
- Can't include loops of  $H$  itself this way

OK if  $H \approx \langle H \rangle$

If we integrate over everything,  
effective action is just a number

$$e^{i\Gamma} = \int \mathcal{D}H \cdots \mathcal{D}A e^{iS}$$

## Method 2: Legendre transform

Classical action

$$\frac{\delta S}{\delta H} \Big|_{H=v} = 0$$

↑  
Classical minimum

We want an effective action

$$\frac{\delta \Gamma}{\delta H} \Big|_{H=H_q} = 0$$

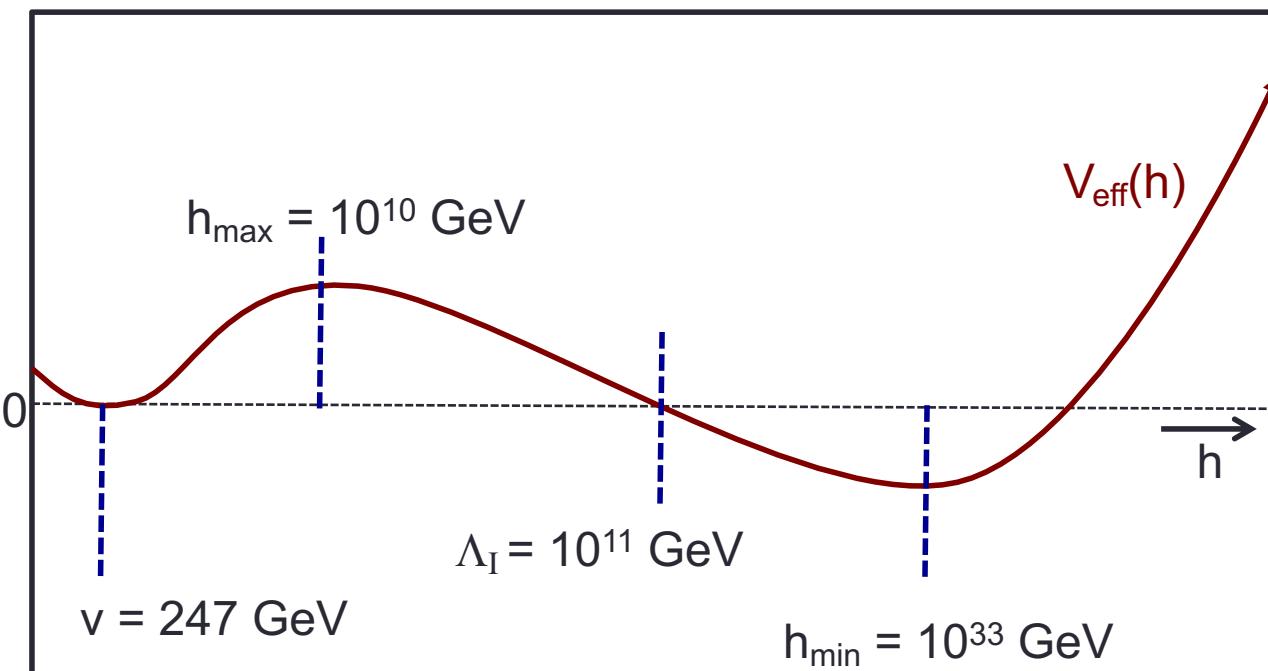
↑  
True quantum minimum

1. Compute  $W[J]$       $e^{W[J]} \equiv \int \mathcal{D}H \dots \mathcal{D}A e^{i \int d^4x \{ \mathcal{L} + JH \}}$

2. Solve  $H = \frac{\partial W}{\partial J}$  for  $J[H]$

3. Compute  $\Gamma[H] = W[J[H]] - \int d^4x H J[H]$

Current introduced by hand  
So that  $\Gamma$  depends on something


Has the property that  $\frac{\delta \Gamma}{\delta H} = J[H]$  so that  $\frac{\delta \Gamma}{\delta H} = 0$  when  $J=0$  (i.e. in original theory)

- Agrees with method 1 in perturbation theory

What do you get?

Tree-level (classical)

$$\begin{aligned}
 V_{\text{eff}} = & \frac{1}{4} \lambda h^4 - m^2 h^2 \\
 & + h^4 \frac{1}{2048\pi^2} \left[ -5g_1^4 + 6(g_1^2 + g_2^2)^2 \ln \frac{h^2(g_1^2 + g_2^2)}{4\mu^2} - 10g_1^2 g_2^2 - 15g_2^4 + 12g_2^4 \ln \frac{g_2^2 h^2}{4\mu^2} + 144y_t^4 - 96y_t^4 \ln \frac{y_t^2 h^2}{2\mu^2} \right] \\
 & + \frac{-1}{256\pi^2} \left[ \xi_B g_1^2 \left( \ln \frac{\lambda h^4 (\xi_B g_1^2 + \xi_W g_2^2)}{4\mu^4} - 3 \right) + \xi_W g_2^2 \left( \ln \frac{\lambda^3 h^{12} \xi_W^2 g_2^4 (\xi_B g_1^2 + \xi_W g_2^2)}{64\mu^{12}} - 9 \right) \right] \lambda h^4 \\
 & \text{one-loop} \quad + \dots
 \end{aligned}$$



What do you get?

Tree-level (classical)

$$\begin{aligned}
 V_{\text{eff}} = & \frac{1}{4} \lambda h^4 - m^2 h^2 \\
 & + h^4 \frac{1}{2048\pi^2} \left[ -5g_1^4 + 6(g_1^2 + g_2^2)^2 \ln \frac{h^2(g_1^2 + g_2^2)}{4\mu^2} - 10g_1^2 g_2^2 - 15g_2^4 + 12g_2^4 \ln \frac{g_2^2 h^2}{4\mu^2} + 144y_t^4 - 96y_t^4 \ln \frac{y_t^2 h^2}{2\mu^2} \right] \\
 & + \frac{-1}{256\pi^2} \left[ \xi_B g_1^2 \left( \ln \frac{\lambda h^4 (\xi_B g_1^2 + \xi_W g_2^2)}{4\mu^4} - 3 \right) + \xi_W g_2^2 \left( \ln \frac{\lambda^3 h^{12} \xi_W^2 g_2^4 (\xi_B g_1^2 + \xi_W g_2^2)}{64\mu^{12}} - 9 \right) \right] \lambda h^4 \\
 & + \dots
 \end{aligned}$$

one-loop

Two curious features

- 1. Not gauge-invariant
- 2. Large logarithms

# 1. Gauge-dependence

**Method 1** to compute  $\Gamma$  **is** gauge-invariant:

$$\int \mathcal{D}H e^{i\Gamma} \equiv \int \mathcal{D}H \underbrace{\mathcal{D}\psi \cdots \mathcal{D}A e^{iS}}_{}$$

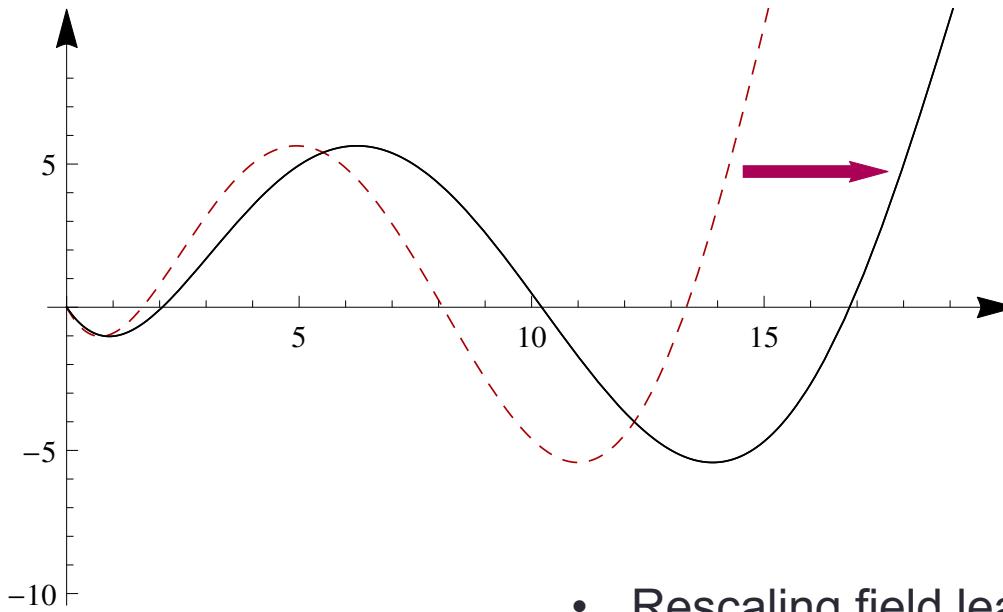
Completely integrate over gauge-orbits

Action/energy at minimum also gauge-invariant:  $e^{i\Gamma} = \int \mathcal{D}H \cdots \mathcal{D}A e^{iS}$

**Method 2** to compute  $\Gamma$  introduces a **charged source J**

$$e^{W[J]} \equiv \int \mathcal{D}H \cdots \mathcal{D}A e^{i \int d^4x \{ \mathcal{L} + JH \}}$$

$$\Gamma = W - HJ$$

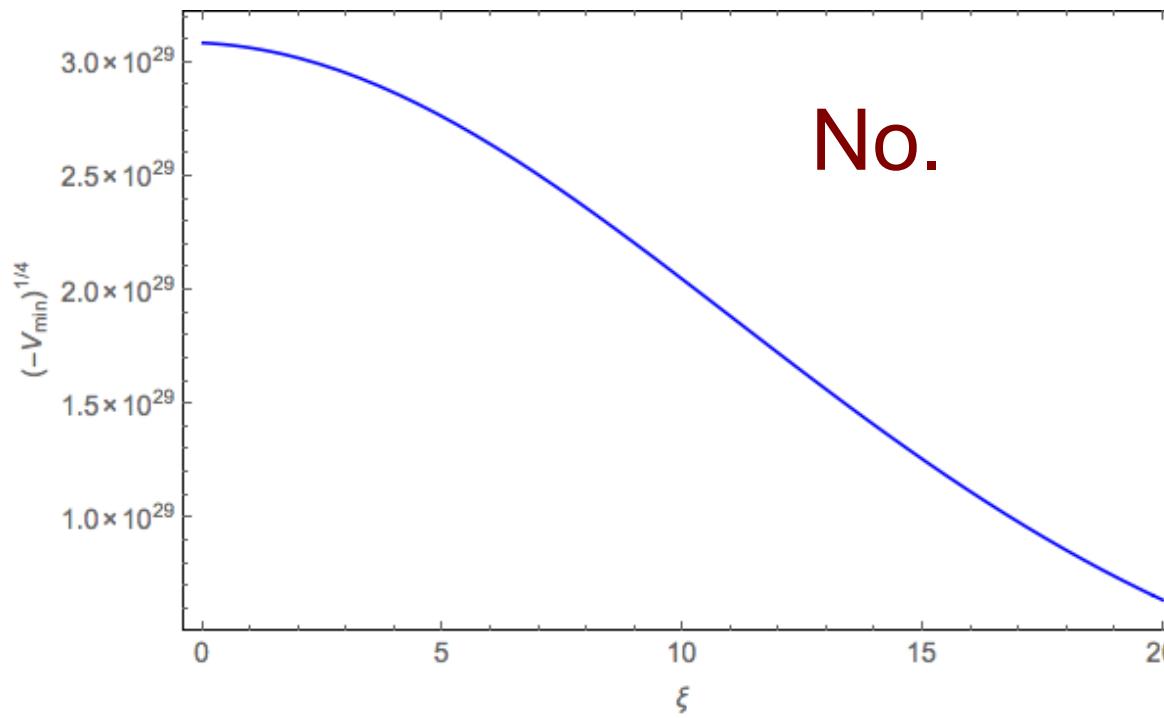

$$\frac{\delta \Gamma}{\delta H} = J$$

- Action **away from minimum** has **current** present
- Action **at minimum** has **no current**, should be gauge-invariant

Encoded in  
Nielsen identity

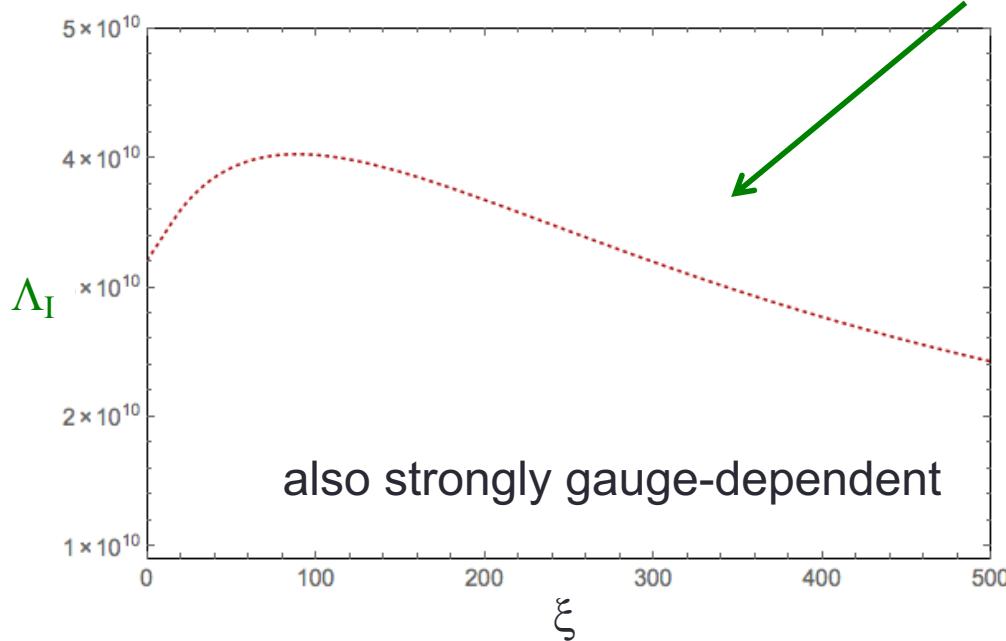
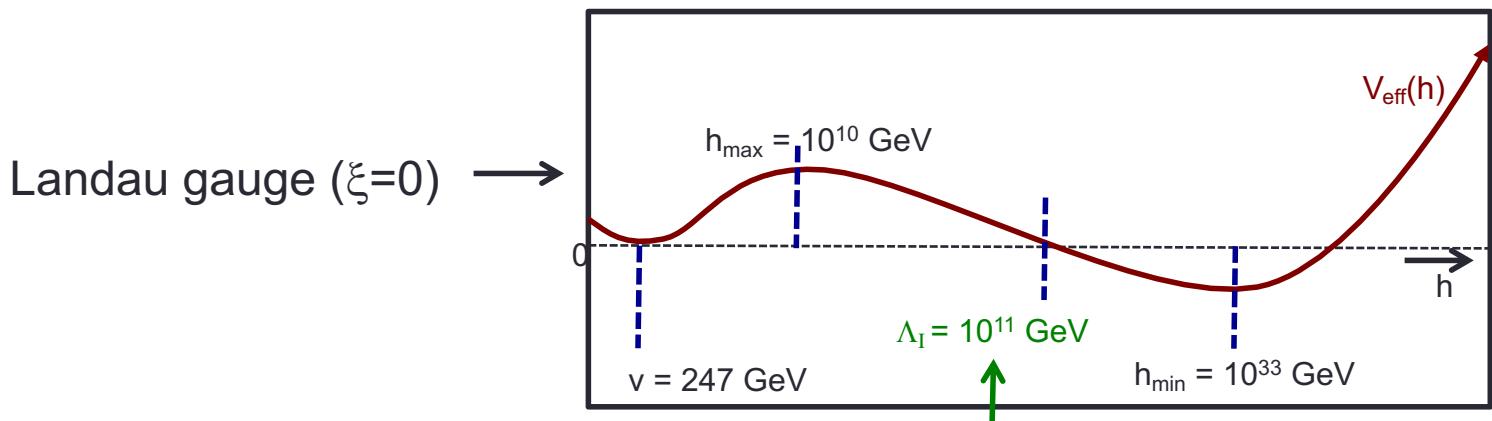
$$\left[ \xi \frac{\partial}{\partial \xi} + C(h, \xi) \frac{\partial}{\partial h} \right] V_{\text{eff}}(h, \xi) = 0$$

# Potential at minimum indep. of rescaling




- Rescaling field leaves  $V_{\min}$  unchanged

Nielsen identity



$$\left[ \xi \frac{\partial}{\partial \xi} + C(h, \xi) \frac{\partial}{\partial h} \right] V_{\text{eff}}(h, \xi) = 0$$

# But is it?



$(-V_{\min})^{1/4}$  appears linearly-dependent on gauge parameter  $\xi$

# What about field values?



- $h_{\text{min}}$  also gauge dependent
- $h_{\text{max}}$  also gauge dependent
- ...

## 2. Large Logarithms

Can be resummed with RGE:

Explicit  $\mu$  dependence

$$\left( \mu \frac{\partial}{\partial \mu} + \beta_i \frac{\partial}{\partial g_i} - \gamma h \frac{\partial}{\partial h} \right) V_{\text{eff}} = 0$$

compensated for by rescaling couplings and fields

- Same RGE as 1PI Green's functions or off-shell matrix elements
- Observables/S-matrix elements satisfy simpler RGE:

$$\left( \mu \frac{\partial}{\mu} + \beta_i \frac{\partial}{\partial g_i} \right) \sigma = 0$$

- Field-rescaling term canceled by LSZ wavefunction Z-factors



Effective potential depends on the normalization of fields??!!

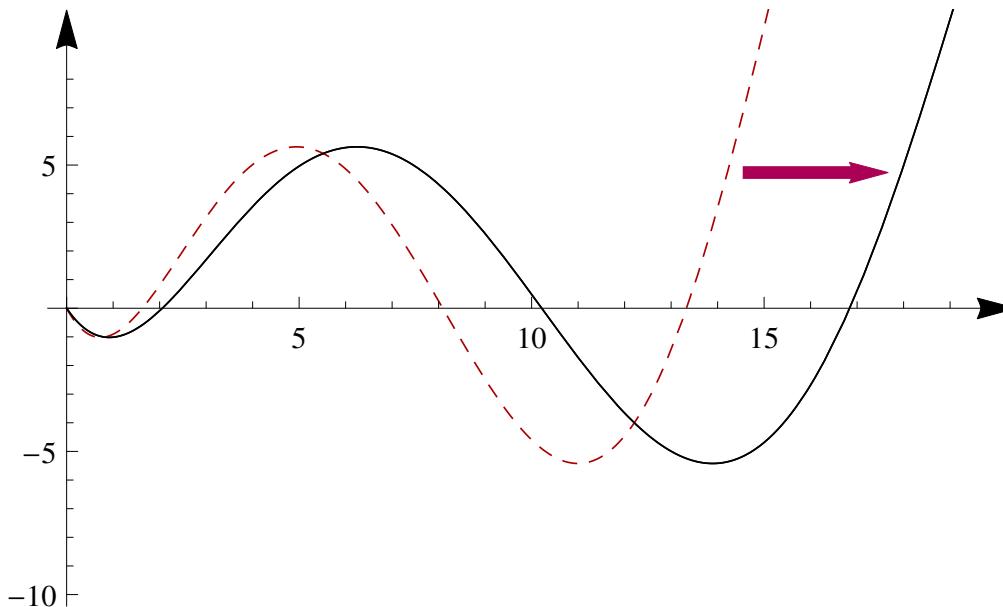
# Resum logarithms

1. Compute  $V_{\text{eff}}$  to fixed order (say 2-loops) at scale (say)  $\mu_0 \sim 100 \text{ GeV}$
2. Solve RGE  $\left( \mu \frac{\partial}{\partial \mu} + \beta_i \frac{\partial}{\partial g_i} - \gamma h \frac{\partial}{\partial h} \right) V_{\text{eff}} = 0$

$$V_{\text{eff}}(h, g_i, \mu) \rightarrow V_{\text{eff}}(e^{\Gamma(\mu_0, \mu)} h, g_i(\mu), \mu)$$

$\Gamma(\mu_0, \mu) \equiv \int_{\mu_0}^{\mu} \gamma(\mu') d \ln \mu'$

3. Set  $\mu \sim h$


$$V_{\text{eff}}(h, \mu_0) = V_{\text{eff}}(e^{\Gamma(\mu_0, h)} h, g_i(h), h)$$

Potential depends on scale  $\mu_0$  where it is calculated??!!



$$\left( \frac{\partial}{\partial \mu_0} - \gamma h \frac{\partial}{\partial h} \right) V(h, \mu_0) = 0$$

# Potential at minimum



Nielsen identity (gauge invariance)

$$\left[ \xi \frac{\partial}{\partial \xi} + C(h, \xi) \frac{\partial}{\partial h} \right] V_{\text{eff}}(h, \xi) = 0$$

Calculation-scale invariance

$$\left( \frac{\partial}{\partial \mu_0} - \gamma h \frac{\partial}{\partial h} \right) V(h, \mu_0) = 0$$

$V_{\text{min}}$  should be gauge invariant and independent of how it is calculated

# Even gauge-invariant $\Gamma$ is unphysical

Even if we source a gauge-invariant field  $e^{W[J]} \equiv \int \mathcal{D}H \dots \mathcal{D}A e^{i \int d^4x \{\mathcal{L} + JH\}}$

$$\left. \begin{aligned} e^{W[J]} &\equiv \int \mathcal{D}H \dots \mathcal{D}A e^{i \int d^4x \{\mathcal{L} + JH^\dagger H\}} \\ e^{W[J]} &\equiv \int \mathcal{D}H \dots \mathcal{D}A e^{i \int d^4x \{\mathcal{L} + J|H|\}} \end{aligned} \right\} \quad \Gamma(h) \text{ is now gauge-invariant}$$

Effective potential still depends on how it is calculated  $\left( \frac{\partial}{\partial \mu_0} - \gamma h \frac{\partial}{\partial h} \right) V(h, \mu_0) = 0$

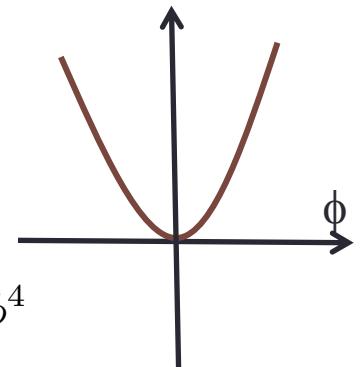
- This is OK.
- Off-shell quantities can be unphysical
- **Observables should be physical**
  - S-matrix elements
  - Vacuum energy ( $V_{\min}$ )
  - Tunnelling rates
  - Critical temperature

But are they?

## What about field values?

- Instability scale?
- Inflation scale?
- Planck/new physics sensitivity?

Are these questions about observables?


# SCALAR QED

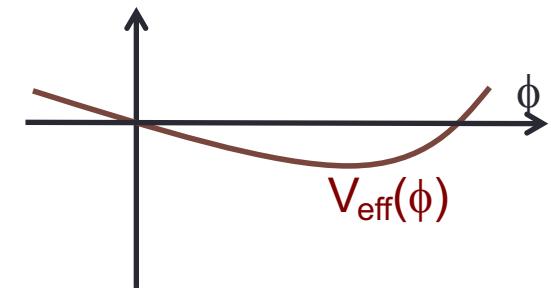
---

# Scalar QED

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^2 + \frac{1}{2}|D_\mu\phi|^2 - V(\phi)$$

$$\uparrow \sim V_0(\phi) = \frac{\lambda}{24}\phi^4$$




- mass term gives small corrections, so we drop it

1-loop potential in  $R_\xi$  gauges:

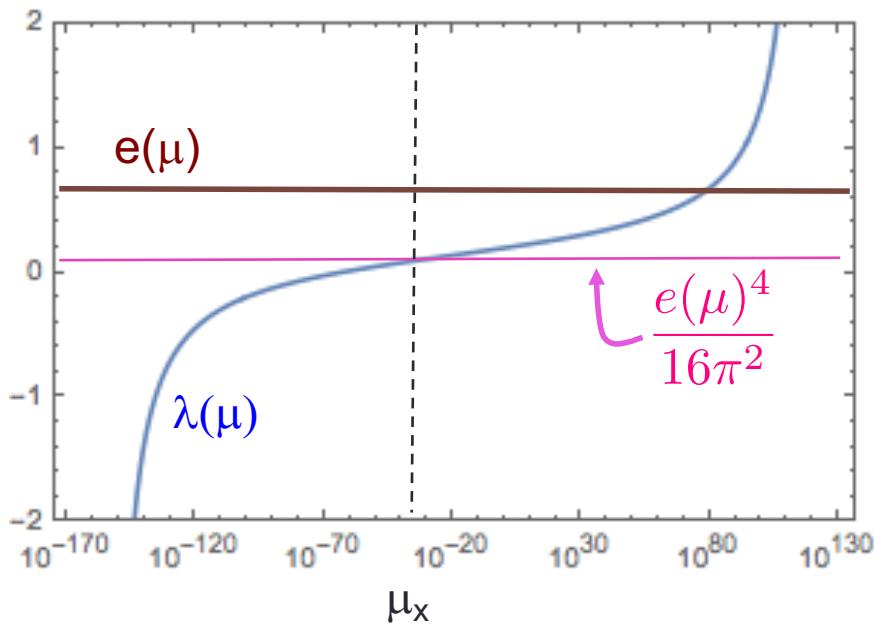
$$V_1(\phi) = \phi^4 \frac{\hbar}{16\pi^2} \left[ \frac{3}{4}e^4 \left( \ln \frac{e^2\phi^2}{\mu^2} - \frac{5}{6} \right) + \frac{\lambda^2}{16} \left( \ln \frac{\lambda\phi^2}{2\mu^2} - \frac{3}{2} \right) \right. \\ \left. + \left( \frac{\lambda^2}{144} - \frac{1}{12}e^2\lambda\xi \right) \left( \ln \frac{\phi^2}{\mu^2} - \frac{3}{2} \right) + \frac{1}{4}K_+^4 \ln K_+^2 + \frac{1}{4}K_-^4 \ln K_-^2 \right] \\ K_\pm^2 = \frac{1}{12} \left( \lambda \pm \sqrt{\lambda^2 - 24\lambda e^2 \xi} \right)$$

- Not gauge-invariant

- For most values of  $e$  and  $\lambda$ , there is no minimum
- When  $\lambda \approx \frac{e^4}{16\pi^2}$   $\Rightarrow V_0 \approx V_1$
- And....  $V_{\min}$  depends on  $\xi$



Spontaneous symmetry breaking


# When is $\lambda \approx \frac{e^4}{16\pi^2}$ ?

Solve  
RGEs:

$$\left. \begin{aligned} \beta_e &= \frac{\hbar}{16\pi^2} \left( \frac{e^3}{3} \right) + \dots \\ \beta_\lambda &= \frac{\hbar}{16\pi^2} \left( 36e^4 - 12e^2\lambda + \frac{10\lambda^2}{3} \right) \end{aligned} \right\}$$

$$e^2(\mu) = \frac{e^2(\mu_0)}{1 - \frac{e^2(\mu_0)}{24\pi^2} \ln \frac{\mu}{\mu_0}}$$

$$\lambda(\mu) = \frac{e^2(\mu)}{10} \left[ 19 + \sqrt{719} \tan \left( \frac{\sqrt{719}}{2} \ln \frac{e(\mu)^2}{C} \right) \right]$$



- $e$  runs relatively slowly
- For any  $e$ ,  $\lambda$  runs through all values
- There is always a scale  $\mu_X$  where

$$\lambda(\mu_X) \approx \frac{e(\mu_X)^4}{16\pi^2}$$

- Near this scale,  $V_{\text{eff}}$  is perturbative

# Proper loop expansion

$$V_0(\phi) = \frac{\lambda}{24}\phi^4$$

$$V_1(\phi) = \phi^4 \frac{\hbar}{16\pi^2} \left[ \frac{3}{4}e^4 \left( \ln \frac{e^2\phi^2}{\mu^2} - \frac{5}{6} \right) + \frac{\lambda^2}{16} \left( \ln \frac{\lambda\phi^2}{2\mu^2} - \frac{3}{2} \right) \right. \\ \left. + \left( \frac{\lambda^2}{144} - \frac{1}{12}e^2\lambda\xi \right) \left( \ln \frac{\phi^2}{\mu^2} - \frac{3}{2} \right) + \frac{1}{4}K_+^4 \ln K_+^2 + \frac{1}{4}K_-^4 \ln K_-^2 \right]$$

$\uparrow \quad \uparrow$

$$K_{\pm}^2 = \frac{1}{12} \left( \lambda \pm \sqrt{\lambda^2 - 24\lambda e^2 \xi} \right)$$

Comparable when

$$\lambda \approx \hbar \frac{e^4}{16\pi^2}$$

- Then  $V_0$  and  $V_1$  of order  $\hbar$

These terms all have extra  $\hbar$  suppression

Expanding in  $\hbar$  with  $\lambda \sim \hbar$

order  $\hbar$  :  $V^{\text{LO}} = \frac{\lambda}{24}\phi^4 + \frac{\hbar e^4}{16\pi^2}\phi^4 \left( -\frac{5}{8} + \frac{3}{2} \ln \frac{e\phi}{\mu} \right) \longrightarrow V_{\text{min}}^{\text{LO}} = -\frac{3}{128\pi^2}e^4 \langle \phi \rangle^4$

order  $\hbar^2$  :  $V^{\text{NLO}} = \frac{\hbar e^2 \lambda}{16\pi^2} \phi^4 \left( \frac{\xi}{8} - \frac{\xi}{24} \ln \frac{e^2 \lambda \xi \phi^4}{6\mu^4} \right) \longrightarrow V_{\text{min}}^{\text{NLO}} = \dots$

Problem: higher-loop contributions also of order  $\hbar^2$

# 2-Loop potential in scalar QED

- Known in Landau gauge
- Some terms computed by Kang (1974), not in  $\overline{\text{MS}}$
- Some terms at order  $e^6 \hbar^2$  unknown

We computed all the relevant 2-loop graphs:

$$\text{Diagram 1} = \frac{\hbar^2 \phi^4 e^6}{(16\pi^2)^2} \xi \left[ -12 \ln^2 \frac{e\phi}{\mu} + \left( 8 - 3 \ln \frac{\lambda\xi}{6e^2} \right) \ln \frac{e\phi}{\mu} - \frac{5}{2} - \frac{\pi^2}{16} - \frac{3}{16} \ln^2 \frac{\lambda\xi}{6e^2} + \ln \frac{\lambda\xi}{6e^2} \right]$$

$$\text{Diagram 2} = \frac{\hbar^2 \phi^4 e^6}{(16\pi^2)^2} \left[ (2 + 6\xi) \ln^2 \frac{e\phi}{\mu} - (3 + 7\xi) \ln \frac{e\phi}{\mu} + \frac{7}{4} + \frac{\pi^2}{8} + \frac{15}{4}\xi + \frac{3\pi^2}{8}\xi \right]$$

$$\text{Diagram 3} = \frac{\hbar^2 \phi^4 e^6}{(16\pi^2)^2} \left[ (18 + 6\xi) \ln^2 \frac{e\phi}{\mu} - (21 + 7\xi) \ln \frac{e\phi}{\mu} + \frac{47}{4} + \frac{7\pi^2}{24} + \frac{15}{4}\xi + \frac{3\pi^2}{8}\xi \right]$$

$$\text{Diagram 4} = \frac{\hbar^2 \phi^4 e^6}{(16\pi^2)^2} \xi \left[ -12 \ln^2 \frac{e\phi}{\mu} + 14 \ln \frac{e\phi}{\mu} - \frac{15}{2} - \frac{3\pi^2}{4} \right]$$

Then the relevant part of the 2-loop potential is

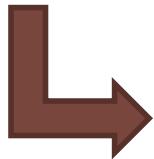
$$V_2 = \left( \frac{\hbar}{16\pi^2} \right)^2 e^6 \phi^4 \left[ (10 - 6\xi) \ln^2 \frac{e\phi}{\mu} + \left( -\frac{62}{3} + 4\xi - \frac{3}{2}\xi \ln \frac{\lambda\xi}{6e^2} \right) \ln \frac{e\phi}{\mu} + \xi \left( -\frac{1}{2} + \frac{1}{4} \ln \frac{\lambda\xi}{6e^2} \right) + \frac{71}{6} \right] + \dots \text{ terms of order } \hbar^3$$

# Potential at minimum

$$V^{\text{LO}} = \frac{\lambda}{24} \phi^4 + \frac{\hbar e^4}{16\pi^2} \phi^4 \left( -\frac{5}{8} + \frac{3}{2} \ln \frac{e\phi}{\mu} \right)$$

$$V^{\text{NLO}} = \frac{\hbar e^2 \lambda}{16\pi^2} \phi^4 \left( \frac{\xi}{8} - \frac{\xi}{24} \ln \frac{e^2 \lambda \xi \phi^4}{6\mu^4} \right) + \frac{\hbar^2 e^6}{(16\pi^2)^2} \phi^4 \left[ (10 - 6\xi) \ln^2 \frac{e\phi}{\mu} + \left( -\frac{62}{3} + 4\xi - \frac{3}{2}\xi \ln \frac{\lambda\xi}{6e^2} \right) \ln \frac{e\phi}{\mu} + \xi \left( -\frac{1}{2} + \frac{1}{4} \ln \frac{\lambda\xi}{6e^2} \right) + \frac{71}{6} \right]$$

- Solve  $V'(\phi=v) = 0$  for  $\lambda(v)$ :


$$\lambda = \frac{\hbar e^4}{16\pi^2} \left( 6 - 36 \ln \frac{ev}{\mu} \right) + \frac{\hbar e^6}{(16\pi^2)^2} \left\{ -160 - 24\xi + (376 + 90\xi) \ln \frac{ev}{\mu} - 240 \ln^2 \frac{ev}{\mu} + 9\xi \ln \left[ \frac{\xi \hbar \mu^2}{16\pi^2 v^2} \left( 1 - 6 \ln \frac{ev}{\mu} \right) \right] \right\}$$

- Plug in to  $V(v)$ :

$$V_{\min} = v^4 \frac{e^4 \hbar}{16\pi^2} \left( -\frac{3}{8} \right) + v^4 \frac{e^6 \hbar^2}{(16\pi^2)^2} \frac{1}{12} \left\{ 62 - 9\xi + (-60 + 18\xi) \ln \frac{ev}{\mu} + \frac{9}{2}\xi \ln \left[ \frac{e^2 \xi \hbar}{16\pi^2} \left( 1 - 6 \ln \frac{ev}{\mu} \right) \right] \right\}$$

Still gauge-dependent!

Problem:  $v = \langle \phi \rangle$  is gauge-dependent



Express  $V_{\min}$  in terms of only other dimensionful scale:  $\mu$

# In terms of $\mu_X$

Define  $\mu_X$  by

$$\lambda(\mu_X) \equiv \frac{\hbar}{16\pi^2} e^4(\mu_X) \left[ 6 - 36 \ln[e(\mu_X)] \right]$$

- Tree-level vev is  $v=\mu_X$
- Exact (non-perturbative) definition of  $\mu_X$

Then, vev is:

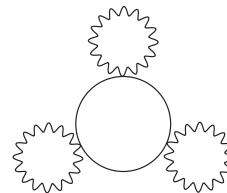
$$v = \mu_X + \mu_X \frac{\hbar e^2}{16\pi^2} \left\{ -\frac{40}{9} + \frac{94}{9} \ln e - \frac{20}{3} \ln^2 e - \frac{\xi}{2} + \frac{3}{2} \xi \ln e + \frac{\xi}{4} \ln \left[ \frac{\xi \hbar}{16\pi^2} (1 - 6 \ln e) \right] - \frac{1}{6} \xi + \xi \ln e \right\}.$$

- gauge-dependent vev is OK – not physical

Potential at minimum is:

$$V_{\min} = \frac{e^4 \hbar}{16\pi^2} \mu_X^4 \left( -\frac{3}{8} \right) + \frac{e^6 \hbar}{(16\pi^2)^2} \mu_X^4 \left( \frac{71}{6} - \frac{62}{3} + 10 \ln^2 e \right) + \frac{e^6 \hbar}{(16\pi^2)^2} \mu_X^4 \left( \frac{\xi}{4} - \frac{3}{2} \xi \ln e \right)$$

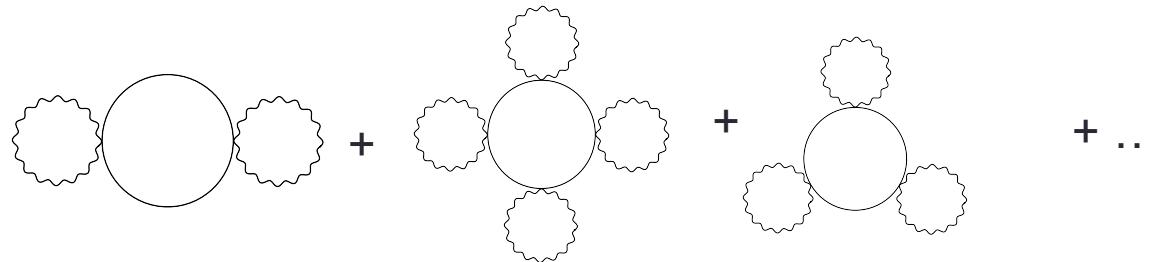
- gauge-dependent vacuum energy is **not OK**


Still gauge-dependent!

What's missing?

More diagrams!

# Daisy resummation


Higher order graphs can scale like inverse powers of  $\lambda$ :



$$\propto (e^2)^3 (e^2 \phi^2)^3 \int \frac{d^4 k}{2\pi^4} \left( \frac{i}{k^2 - \frac{\lambda}{2} \phi^2} \right)^3 \propto \phi^4 \frac{e^{12}}{\lambda}$$

Effective masses depend on  $\lambda$

Only one series of graphs contribute at order  $\sim \hbar^2$



“daisy diagrams”

We can sum the series:

$$V^{e^6 \text{daisies}} = \phi^4 \frac{\hbar}{16\pi^2} \left( -\frac{e^2 \lambda \xi}{24} \right) \left[ \frac{\hat{\lambda}(\phi)}{\lambda} + \left( 1 - \frac{\hat{\lambda}(\phi)}{\lambda} \right) \ln \left( 1 - \frac{\hat{\lambda}(\phi)}{\lambda} \right) \right]$$

$$\hat{\lambda}(\phi) \equiv \frac{\hbar e^4}{16\pi^2} \left( 6 - 36 \ln \frac{e\phi}{\mu} \right)$$

# Full potential at NLO:

$$\begin{aligned}
 V^{\text{NLO}} = & \frac{\hbar e^2 \lambda}{16\pi^2} \phi^4 \left( \frac{\xi}{8} - \frac{\xi}{24} \ln \frac{e^2 \lambda \xi \phi^4}{6\mu^4} \right) \\
 & + \frac{\hbar^2 e^6}{(16\pi^2)^2} \phi^4 \left[ (10 - 6\xi) \ln^2 \frac{e\phi}{\mu} + \left( -\frac{62}{3} + 4\xi - \frac{3}{2}\xi \ln \frac{\lambda\xi}{6e^2} \right) \ln \frac{e\phi}{\mu} + \xi \left( -\frac{1}{2} + \frac{1}{4} \ln \frac{\lambda\xi}{6e^2} \right) + \frac{71}{6} \right] \\
 & + \phi^4 \frac{\hbar e^2 \lambda}{16\pi^2} \left( -\frac{\xi}{24} \right) \left[ \frac{\widehat{\lambda}(\phi)}{\lambda} + \left( 1 - \frac{\widehat{\lambda}(\phi)}{\lambda} \right) \ln \left( 1 - \frac{\widehat{\lambda}(\phi)}{\lambda} \right) \right]
 \end{aligned}$$

Now... vacuum energy is gauge-invariant!

$$V_{\min} = -\frac{3\hbar e^4}{128\pi^2} \mu_X^4 + \frac{e^6 \hbar^2}{(16\pi^2)^2} \mu_X^4 \left( \frac{71}{6} - \frac{62}{3} \ln e + 10 \ln^2 e \right)$$

Field values are still gauge-dependent:

$$v = \mu_X + \mu_X \frac{\hbar e^2}{16\pi^2} \left\{ -\frac{40}{9} + \frac{94}{9} \ln e - \frac{20}{3} \ln^2 e - \frac{\xi}{2} + \frac{3}{2} \xi \ln e + \frac{\xi}{4} \ln \left[ \frac{\xi \hbar}{16\pi^2} (1 - 6 \ln e) \right] - \frac{1}{6} \xi + \xi \ln e \right\}.$$

$$\Lambda_I = \mu_I + \mu_I \frac{\hbar e^2}{16\pi^2} \left\{ -\frac{77}{9} + \frac{124}{9} \ln e - \frac{20}{3} \ln^2 e - \frac{\xi}{2} + \frac{3}{2} \xi \ln e + \frac{\xi}{4} \ln \left[ \frac{\xi \hbar}{16\pi^2} (1 - 6 \ln e) \right] - \frac{5}{12} \xi + \xi \ln e \right\}.$$

# STANDARD MODEL

---

# Lessons from scalar QED

## 1. Gauge invariance requires consistent expansion in $\hbar$



## 2. Don't resum logs by solving RGE for $V_{\text{eff}}$

$$\left( \mu \frac{\partial}{\partial \mu} + \beta_i \frac{\partial}{\partial g_i} - \gamma h \frac{\partial}{\partial h} \right) V_{\text{eff}} = 0$$

- Mixes up orders in  $\hbar$  in an uncontrolled way

## 3. Do resum logs by using couplings at some scale $\mu_X$

- Natural condition for  $\mu_X$  is that  $V_{\text{LO}}'(\phi=\mu_X) = 0$

## 4. Don't express $V_{\text{min}}$ in terms of $v = \langle \phi \rangle$

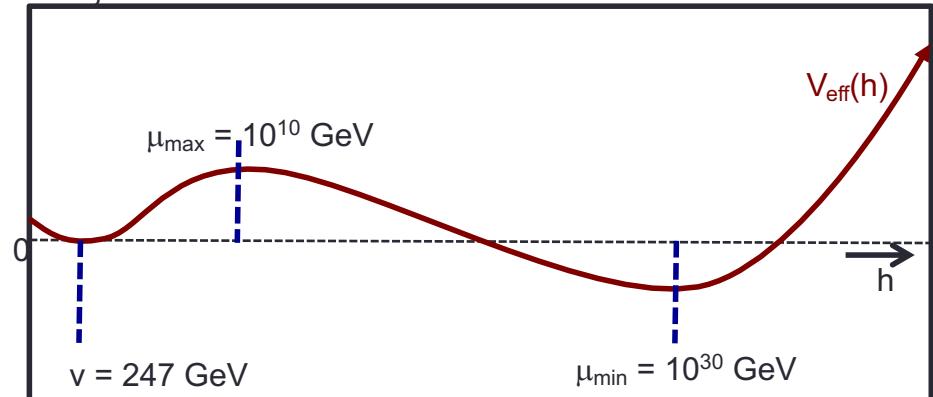
- Express  $V_{\text{min}}$  in terms of  $\mu_X$  instead

# Standard Model

$$V^{(\text{LO})}(h) = \frac{1}{4}\lambda h^4 + h^4 \frac{1}{2048\pi^2} \left[ -5g_1^4 + 6(g_1^2 + g_2^2)^2 \ln \frac{h^2(g_1^2 + g_2^2)}{4\mu^2} \right. \\ \left. - 10g_1^2 g_2^2 - 15g_2^4 + 12g_2^4 \ln \frac{g_2^2 h^2}{4\mu^2} + 144y_t^4 - 96y_t^4 \ln \frac{y_t^2 h^2}{2\mu^2} \right]$$

Tree-level

Part of 1-loop  $\lambda \sim \mathcal{O}(\hbar)$


- Scale  $h = \mu_X$  where  $\frac{d}{dh}V^{(\text{LO})}(h) = 0$  is

$$\lambda = \frac{1}{256\pi^2} \left[ g_1^4 + 2g_1^2 g_2^2 + 3g_2^4 - 48y_t^4 - 3(g_1^2 + g_2^2)^2 \ln \frac{g_1^2 + g_2^2}{4} - 6g_2^4 \ln \frac{g_2^2}{4} + 48y_t^4 \ln \frac{y_t^2}{2} \right]$$

- Run couplings with 3-loop  $\beta$ -functions, find numerical solutions

$$\mu_X^{\max} = 2.46 \times 10^{10} \text{ GeV}$$

$$\mu_X^{\min} = 3.43 \times 10^{30} \text{ GeV}$$



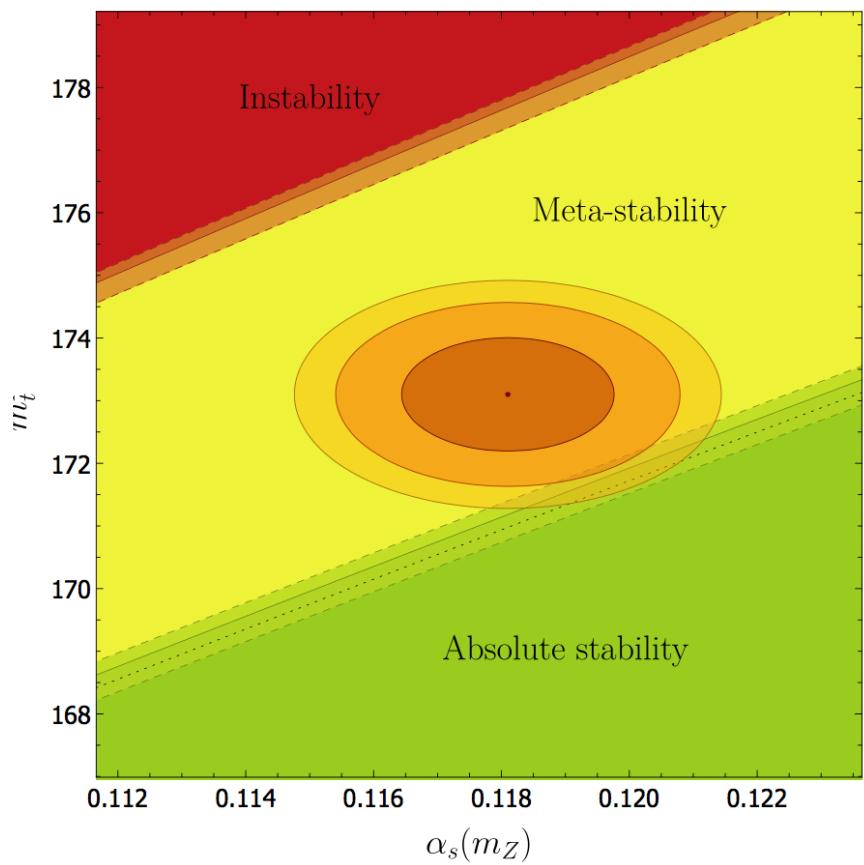
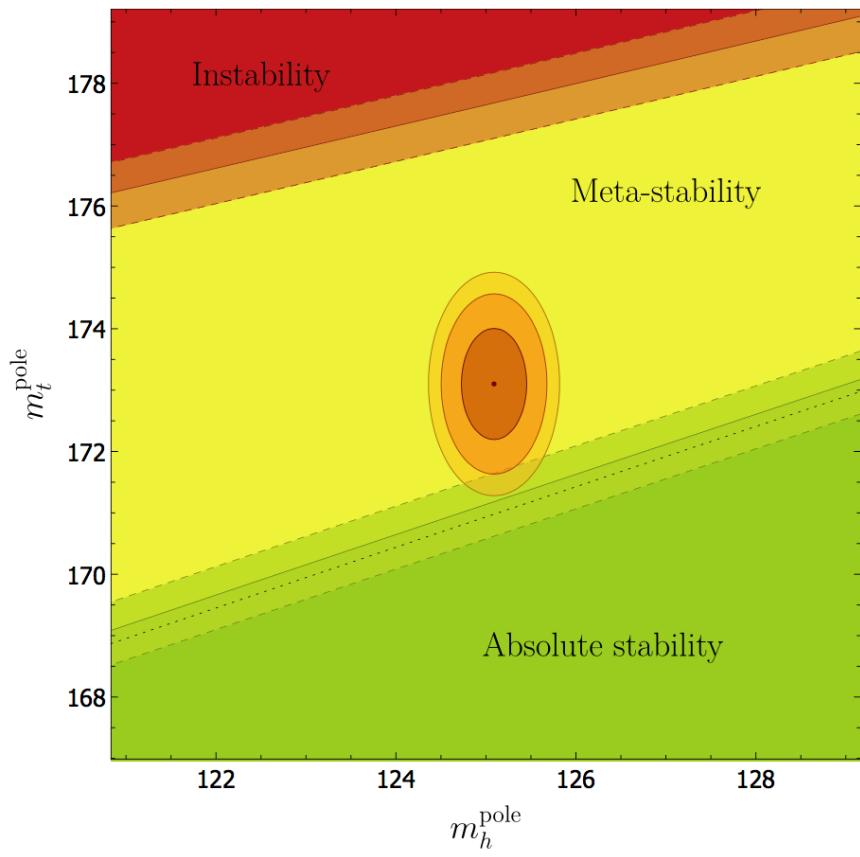
# Standard Model at NLO

- We know the 1-loop contribution to  $V_{\text{NLO}}$

$$V^{(1, \text{NLO})}(h) = \frac{-1}{256\pi^2} \left[ \xi_B g_1^2 \left( \ln \frac{\lambda h^4 (\xi_B g_1^2 + \xi_W g_2^2)}{4\mu^4} - 3 \right) + \xi_W g_2^2 \left( \ln \frac{\lambda^3 h^{12} \xi_W^2 g_2^4 (\xi_B g_1^2 + \xi_W g_2^2)}{64\mu^{12}} - 9 \right) \right] \lambda h^4$$

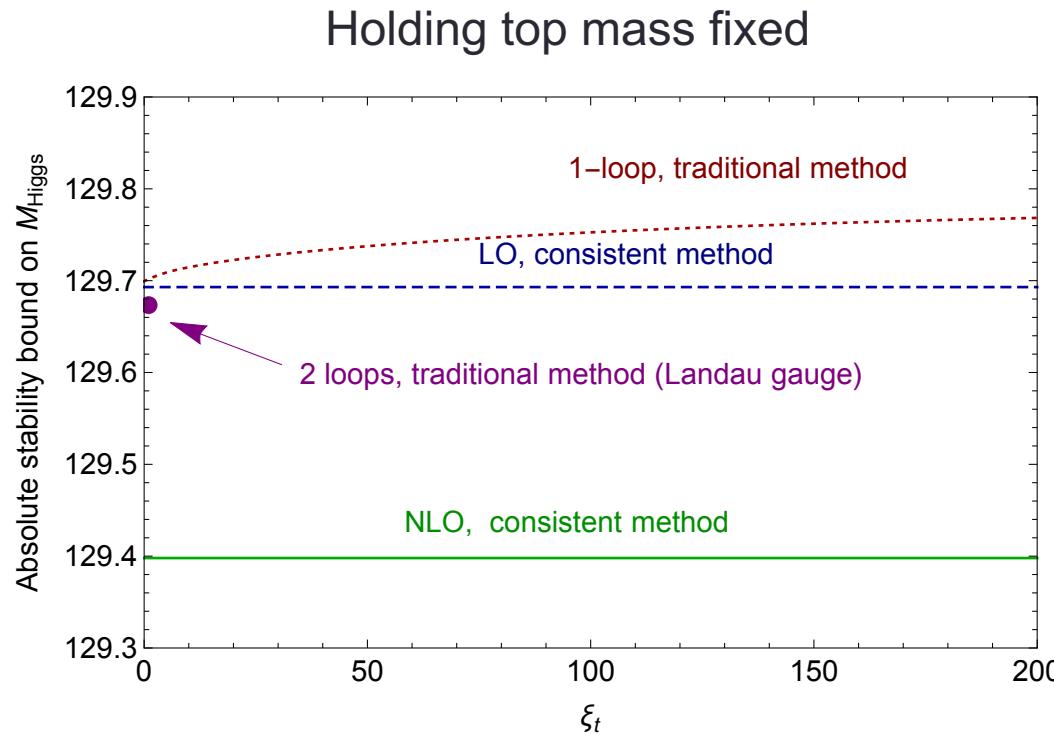
- We know the 2-loop contribution to  $V_{\text{NLO}}$  in Landau gauge

$$\begin{aligned} \lambda_{\text{eff}}^{(2)} = & \frac{1}{(4\pi)^4} \left[ 8g_3^2 y_t^4 (3r_t^2 - 8r_t + 9) + \frac{1}{2} y_t^6 (-6r_t r_W - 3r_t^2 + 48r_t - 6r_{tW} - 69 - \pi^2) + \right. \\ & + \frac{3y_t^2 g_Y^4}{16} (8r_W + 4r_Z - 3r_t^2 - 6r_t r_Z - 12r_t + 12r_{tW} + 15 + 2\pi^2) + \\ & + \frac{y_t^2 g_Y^4}{48} (27r_t^2 - 54r_t r_Z - 68r_t - 28r_Z + 189) + \frac{y_t^2 g_2^2 g_Y^2}{8} (9r_t^2 - 18r_t r_Z + 4r_t + 44r_Z - 57) + \\ & + \frac{g_2^6}{192} (36r_t r_Z + 54r_t^2 - 414r_W r_Z + 69r_W^2 + 1264r_W + 156r_Z^2 + 632r_Z - 144r_{tW} - 2067 + 90\pi^2) + \\ & \left. + \frac{g_2^4 g_Y^2}{192} (12r_t r_Z - 6r_t^2 - 6r_W (53r_Z + 50) + 213r_W^2 + 4r_Z (57r_Z - 91) + 817 + 46\pi^2) + \right. \\ & \left. + \frac{g_2^2 g_Y^4}{576} (132r_t r_Z - 66r_t^2 + 306r_W r_Z - 153r_W^2 - 36r_W + 924r_Z^2 - 4080r_Z + 4359 + \right. \\ & \left. + \frac{g_Y^6}{576} (6r_Z (34r_t + 3r_W - 470) - 102r_t^2 - 9r_W^2 + 708r_Z^2 + 2883 + 206\pi^2) + \right. \\ & \left. + \frac{y_t^4}{6} (4g_Y^2 (3r_t^2 - 8r_t + 9) - 9g_2^2 (r_t - r_W + 1)) + \frac{3}{4} (g_2^6 - 3g_2^4 y_t^2 + 4y_t^6) \text{Li}_2 \frac{g_2^2}{2y_t^2} + \right. \\ & \left. + \frac{y_t^2}{48} \xi \left( \frac{g_2^2 + g_Y^2}{2y_t^2} \right) \left( 9g_2^4 - 6g_2^2 g_Y^2 + 17g_Y^4 + 2y_t^2 (7g_Y^2 - 73g_2^2 + \frac{64g_2^4}{g_Y^2 + g_2^2}) \right) + \right. \\ & \left. + \frac{g_2^2}{64} \xi \left( \frac{g_2^2 + g_Y^2}{g_2^2} \right) \left( 18g_2^2 g_Y^2 + g_Y^4 - 51g_2^4 - \frac{48g_2^6}{g_Y^2 + g_2^2} \right) \right]. \end{aligned}$$



- We don't know the Daisy contribution. But we do know if vanishes in Landau gauge at NLO

$$V^{e^6 \text{daisies}} = \phi^4 \frac{\hbar}{16\pi^2} \left( -\frac{e^2 \lambda \xi}{24} \right) \left[ \frac{\hat{\lambda}(\phi)}{\lambda} + \left( 1 - \frac{\hat{\lambda}(\phi)}{\lambda} \right) \ln \left( 1 - \frac{\hat{\lambda}(\phi)}{\lambda} \right) \right]$$

- Assuming everything works like in scalar QED, we have everything we need for NLO

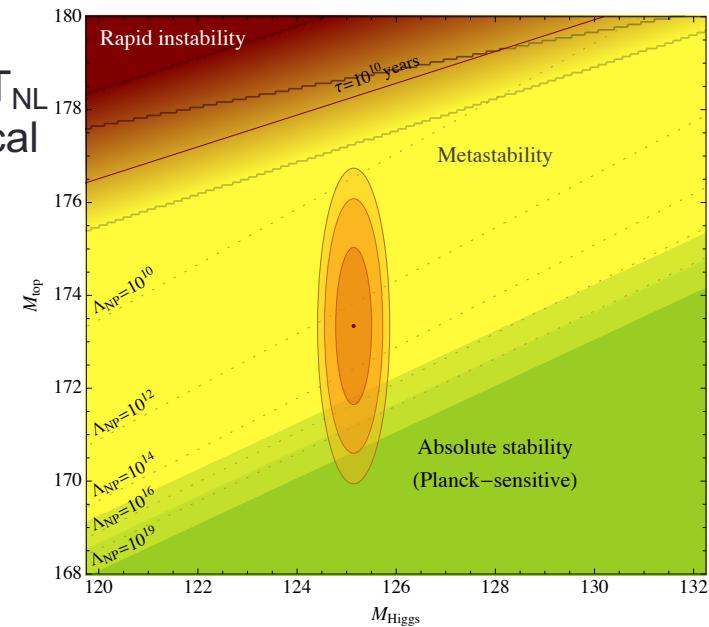

# Results

Absolute stability: for what values of the Higgs and top masses is  $V_{\min} = 0$ ?



# Results

Absolute stability: for what values of the Higgs mass is  $V_{\min} = 0$  at fixed top mass?




- Absolute stability bound lowered by 300 MeV
- Larger shift than including the 2-loop  $V_{\text{eff}}$

# Conclusions

Tunneling involves many **exotic elements** of quantum field theory

- Tunneling rates
  - Two time scales relevant for tunneling:  $T_{\text{slosh}} \ll T \ll T_{\text{NL}}$
  - Asymptotic expansions and analytic continuation critical
    - Can be avoided with a direct approach
- Requires consistent use of perturbation theory
  - $\lambda \sim h$  power counting
- UV physics does not decouple
  - Stability is necessarily Planck-sensitive
  - Can make lifetime shorter, not longer

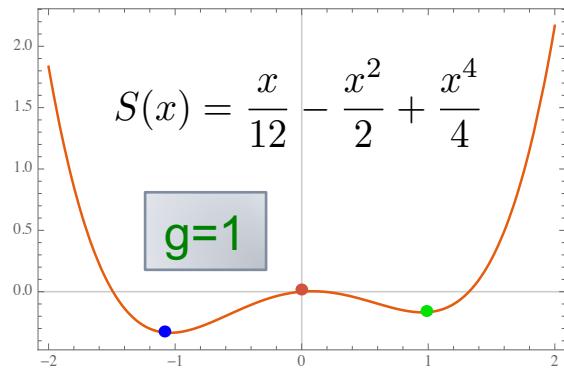


## Do we know if the universe is stable?

- Our universe will probably decay, eventually.
- We don't know how long it will last

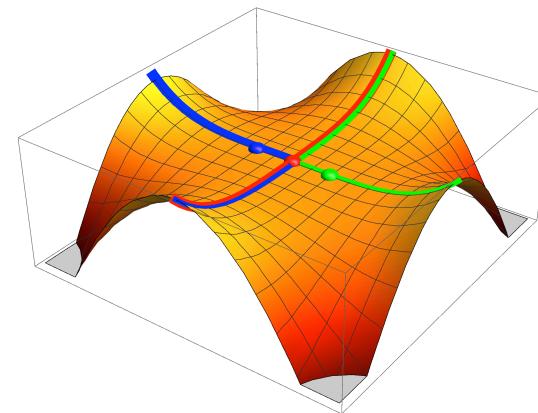
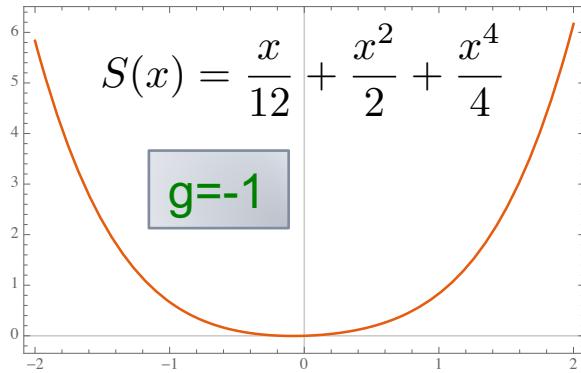
# 2. SCHRODINGER EQUATION

---

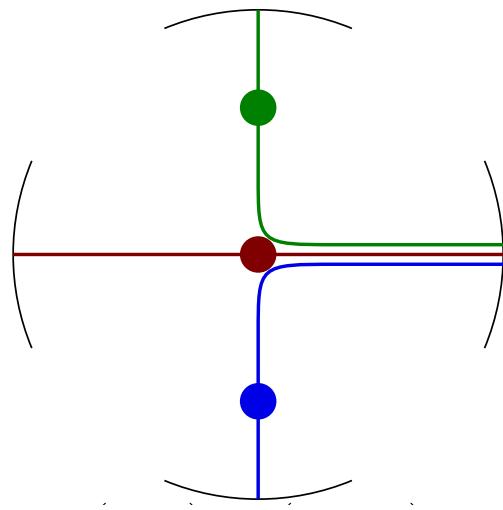
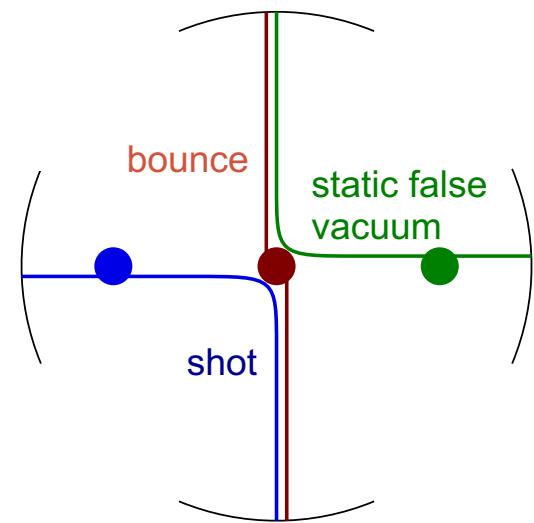
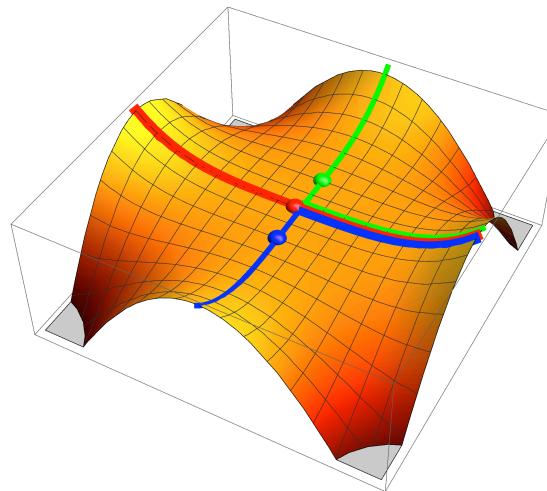

Gamow (1928) & Siegert (1939)

# 1. THE POTENTIAL DEFORMATION METHOD (CONTINUED)

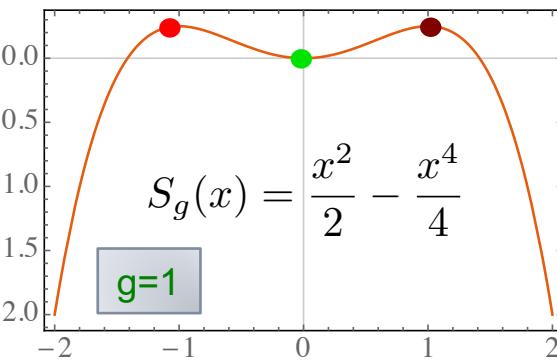
---



Colelman & Callan (1977)

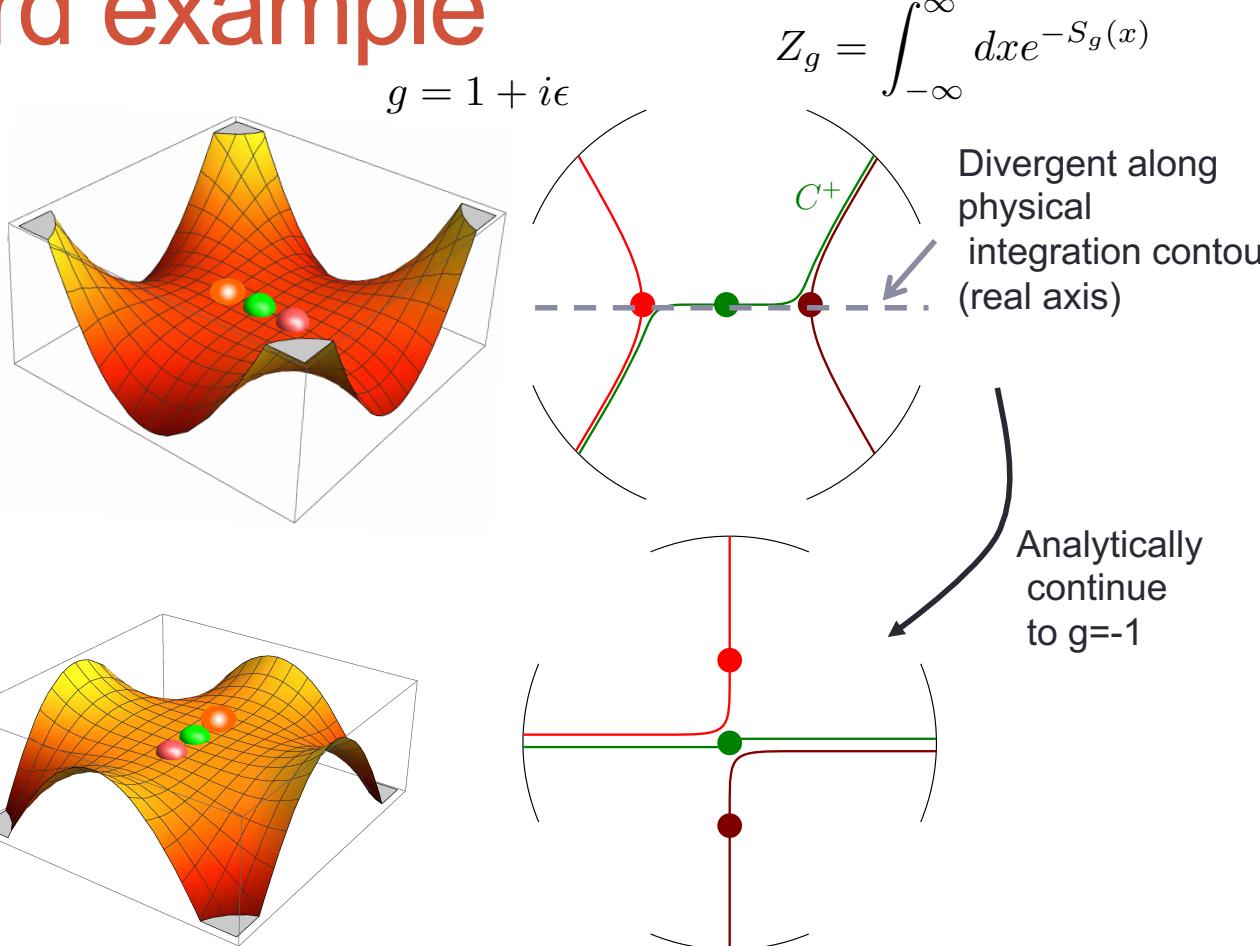
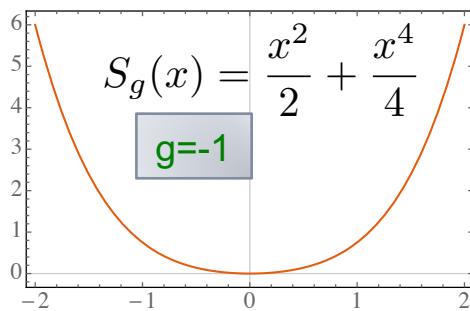
# Potential deformation


$$S_g(x) = \frac{x}{12} - g \frac{x^2}{2} + \frac{x^4}{4}$$


**deform potential  
to prevent tunneling**





$$Z_g = \int_{-\infty}^{\infty} dx e^{-S_g(x)} \left\{ \begin{array}{l} \cdot \text{ real at } g = +1 \\ \cdot \text{ real at } g = -1 \\ \cdot \text{ an analytic function of } g \end{array} \right.$$



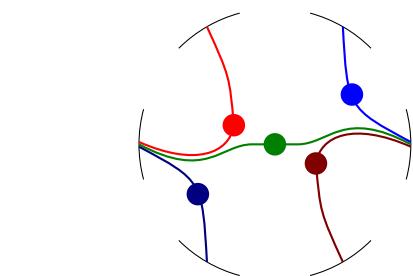
# More standard example



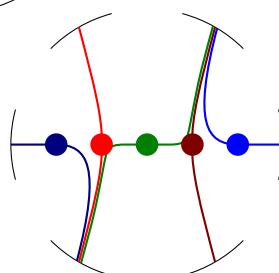
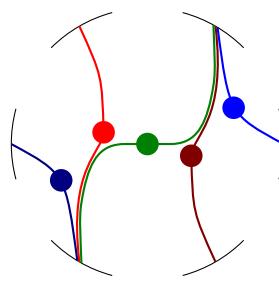
$$S_g(x) = \frac{x^2}{2} - g \frac{x^4}{4}$$



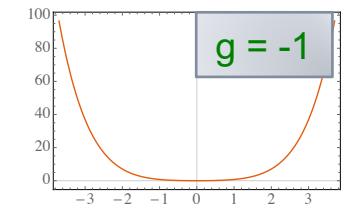
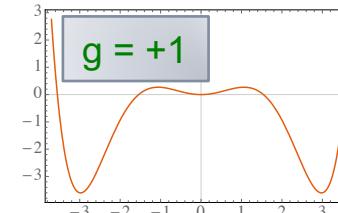
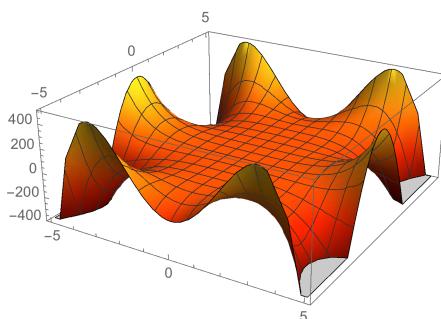
- Fix integration to be **along** contour passing through saddle at  $x=0$
- Return to  $g=1$ , keeping integration **along** green contour
- $Z$  now has imaginary part at  $g=1$


Well-defined procedure. But is the imaginary part the decay rate?

# Add convergence factor



- Modifying potential/action away from region of interest should not affect rate

$$S_g(x) = \frac{x^2}{2} - g \frac{x^4}{4} + \frac{x^6}{60}$$

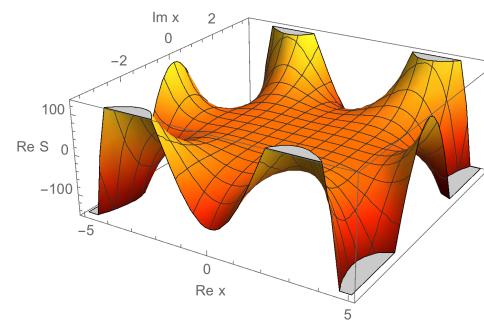



$$g = \exp(i\frac{\pi}{4})$$



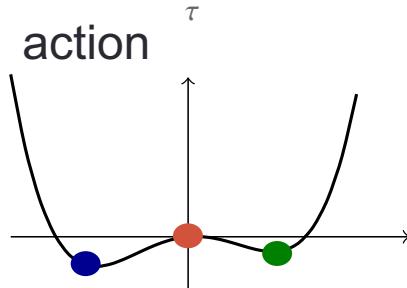
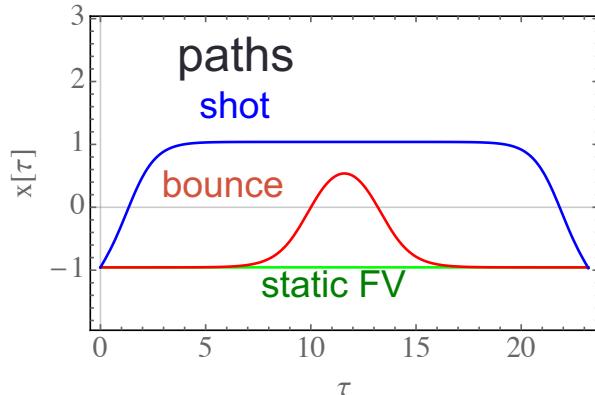
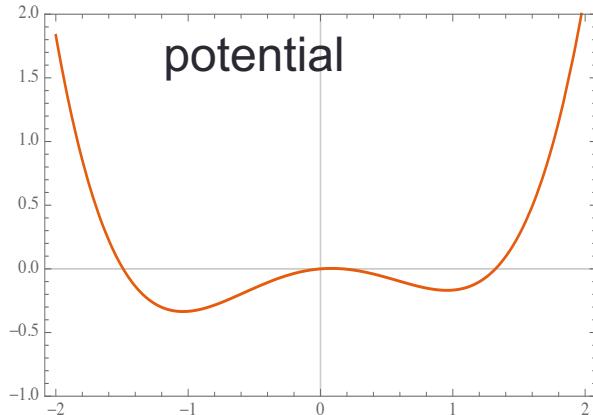
$$g = \exp(i\frac{\pi}{3})$$



$$g = -\exp(-i\epsilon)$$




$$Z_g = \int_{-\infty}^{\infty} dx e^{-S_g(x)}$$




- real at  $g = +1$
- real at  $g = -1$
- $Z_g$  is an analytic function of  $g$

- We can still fix the contour at  $g=-1$  and follow it back.

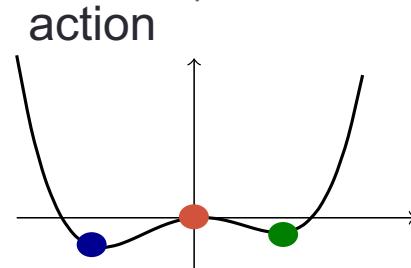
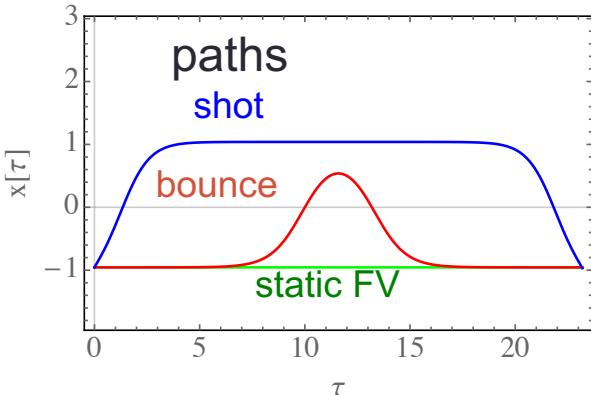
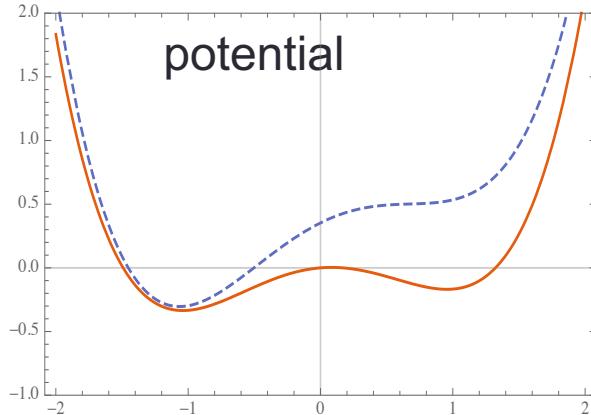
But why?



# Physical limits



$T \gg T_{\text{slosh}}$  (only metastable FV decay)




$T \ll T_{\text{NL}}$  (no return flux)

$$\Gamma = - \lim_{\frac{T}{T_{\text{slosh}}} \rightarrow \infty} \lim_{\frac{T}{T_{\text{NL}}} \rightarrow 0} \frac{1}{P_{\text{FV}}} \frac{d}{dT} P_{\text{FV}}$$

$$\begin{aligned} Z &\equiv \langle a | e^{-H\mathcal{T}} | a \rangle = \int_{x(0)=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]} \\ &\sim e^{-E_0 T} + e^{-E_{FV} T} \\ \xrightarrow{\text{L}} \quad &-\lim_{T \rightarrow \infty} \frac{1}{T} \ln Z = \min(E_0, E_{FV}) \end{aligned}$$

Taking  $T \rightarrow \infty$  picks out true ground state  $E_0$

# Physical limits



$T \gg T_{\text{slosh}}$  (only metastable FV decay)

$T \ll T_{\text{NL}}$  (no return flux)

$$\Gamma = - \lim_{\frac{T}{T_{\text{slosh}}} \rightarrow \infty} \lim_{\frac{T}{T_{\text{NL}}} \rightarrow 0} \frac{1}{P_{\text{FV}}} \frac{d}{dT} P_{\text{FV}}$$

$$\begin{aligned} Z &\equiv \langle a | e^{-H\mathcal{T}} | a \rangle = \int_{x(0)=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]} \\ &\sim e^{-E_0 T} + e^{-E_{FV} T} \\ \Rightarrow & -\lim_{T \rightarrow \infty} \frac{1}{T} \ln Z = \min(E_0, E_{FV}) \end{aligned}$$

Taking  $T \rightarrow \infty$  picks out true ground state  $E_0$

We want to

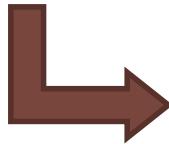
1. Deform the potential so FV is true ground state
2. Take  $T \rightarrow \infty$ 
  - Picks out  $E_{FV}(g)$
3. Deform back

$T \ll T_{\text{NL}}$  (no return flux)

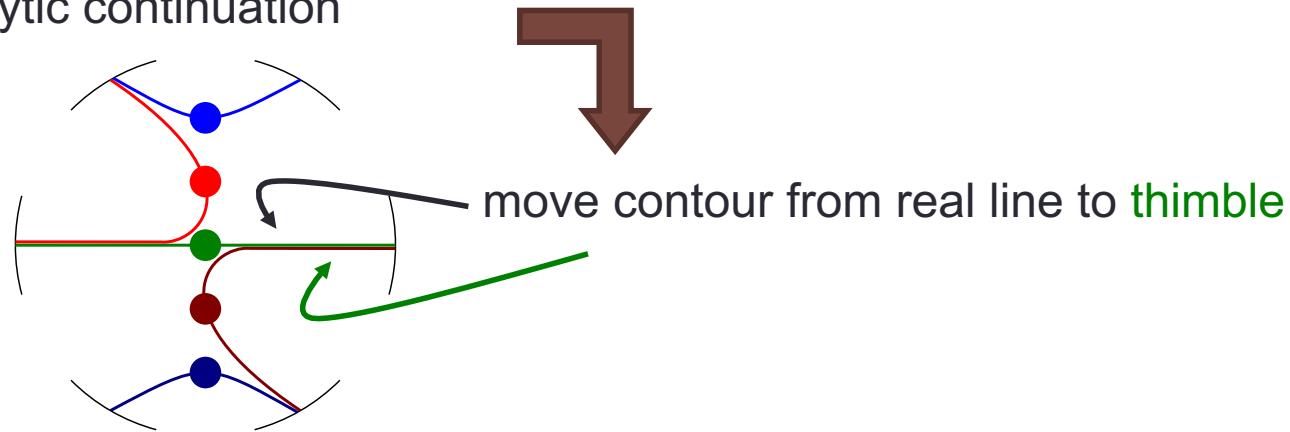
$T \gg T_{\text{slosh}}$  (only metastable FV decay)

The  $T \rightarrow \infty$  limit **does not commute** with analytic continuation

- $\min(E_0, E_{FV})$  is **not analytic**

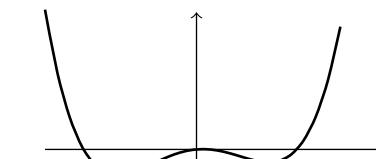

$$Z \sim \int dx e^{-S_E} \sim \int dx e^{-\frac{TE_{FV}}{\hbar}}$$

$\leftarrow$   
 $T \rightarrow \infty$  limit  
 like  $\hbar \rightarrow 0$  limit  
 forces saddle point approximation


# Saddle point approximation

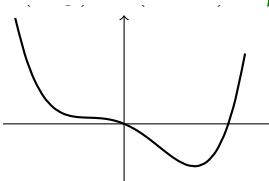
$$\begin{aligned}
 Z_g &= \int dx e^{\frac{1}{\hbar}(-\frac{1}{2}x^2 + \frac{g}{4}x^4)} \\
 &\approx \int dx e^{-\frac{1}{2\hbar}x^2} \left[ 1 + \frac{g}{4}x^4 + \frac{1}{2} \left( \frac{g}{4}x^4 \right)^2 + \dots \right] \\
 &= \sqrt{2\pi} \left( 1 + \frac{3g}{4} + \frac{105g^2}{32} + \frac{3465g^3}{128} + \frac{675\,675g^4}{2048} + \frac{43\,648\,605g^5}{8192} + \frac{7\,027\,425\,405g^6}{65\,536} + \dots \right)
 \end{aligned}$$

- Asymptotic series
- Coefficients grow factorially
- Summing the series does **not** reproduce the original function

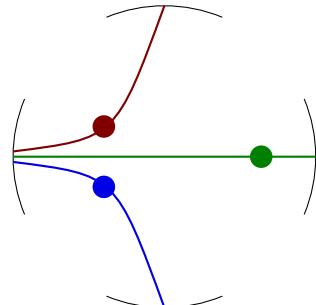



Performing the saddle point approximation does not commute with analytic continuation

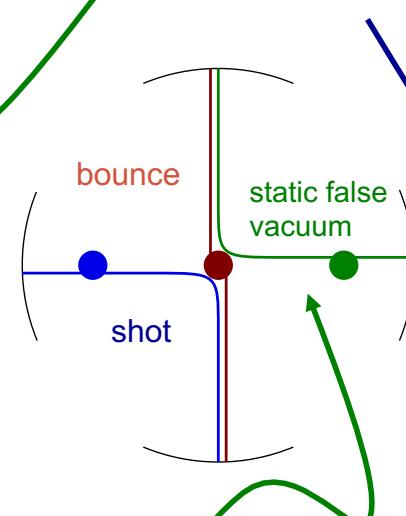



# Examples

$$S_g(x) = h \frac{x}{12} - g \frac{x^2}{2} + \frac{x^4}{4}$$




$$(h, g) = (1, 1 + i\epsilon)$$

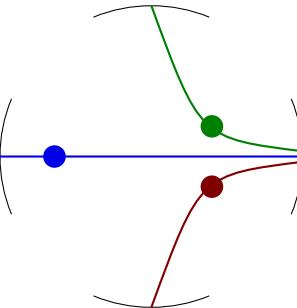
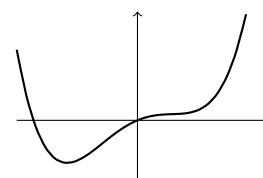

Deform to stabilize  
false vacuum



$$(h, g) = (-5, 1)$$



$T \rightarrow \infty$  limit fixes to green contour


Z has imaginary part  
equal to **half** of the  
bounce contour

Deform to stabilize  
bounce

Z has imaginary part  
equal to **all** of the **bounce contour**

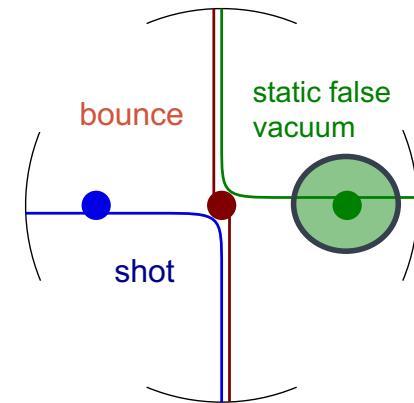
Deform to stabilize  
shot



Z has imaginary part  
equal to **minus half** of the **bounce contour**

- Probability grows with time

# Discontinuity


Can we just integrate along the **FV** contour?

**Yes**, at least for this toy integral

$$Z = \int_C dx e^{-S(x)}$$

**No**

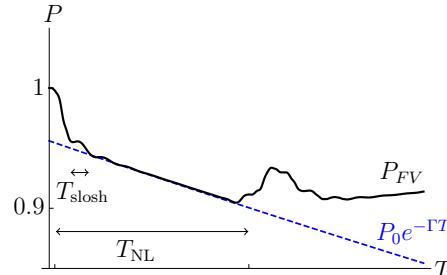
- Not clear what “fixing to a contour” means for a path integral
- Saddle point approximation **loses the imaginary part**
  - Expanding around the saddle gives a **real integral**
  - Imaginary part comes from region far away
- Saddle point approximation **does work** for the discontinuity



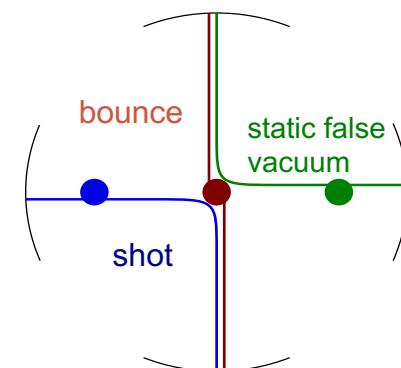
$$1/2 \left[ \left( \text{Diagram 1} \right) - \left( \text{Diagram 2} \right) \right] = 1/2 \left( \text{Diagram 3} \right)$$

Diagrams 1 and 2 show a path (green line with arrows) starting at a blue dot, passing through a green dot, and ending at a red dot. Diagram 1 has a vertical red line above the path. Diagram 2 has a vertical red line below the path. Diagram 3 shows a vertical red line with two red arrows pointing downwards, representing a discontinuity.

# Summary of tunneling rates


Precise definition of decay rate involves **two limits**  $\Gamma = -\lim_{\frac{T}{T_{\text{sho}}} \rightarrow \infty} \lim_{\frac{T}{T_{\text{NL}}} \rightarrow 0} \frac{1}{P_{\text{FV}}} \frac{d}{dT} P_{\text{FV}}$

$T \ll T_{\text{NL}}$  (no return flux)


$T \gg T_{\text{sho}}$  (remove transients)

Three methods to compute  $\Gamma$

1. **Solve Schrodinger's equation**
- Impractical for QFT



2. **Deform potential** to stabilize false vacuum
- Take  $T \rightarrow \infty$  limit
- Deform back and compute imaginary part



Is the result the decay rate?

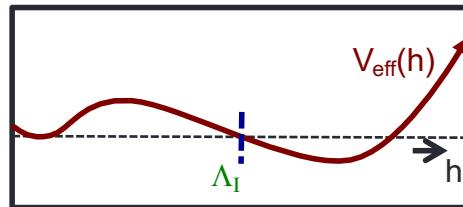
3. **Direct approach** using Minkowski space causal propagators
- Does not rely on saddle-point approximation
- Does not rely on deforming potential
- QFT derivation is simple – no bold leap of faith
- Non-perturbative formula

$$\Gamma_R = 2\text{Im} \lim_{T \rightarrow \infty} \left( \frac{\int_{x(-\mathcal{T})=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]} \delta(\tau_b[x])}{\int_{x(-\mathcal{T})=a}^{x(\mathcal{T})=a} \mathcal{D}x e^{-S_E[x]}} \right)_{\mathcal{T} \rightarrow iT}$$



# Summary of potential deformation method

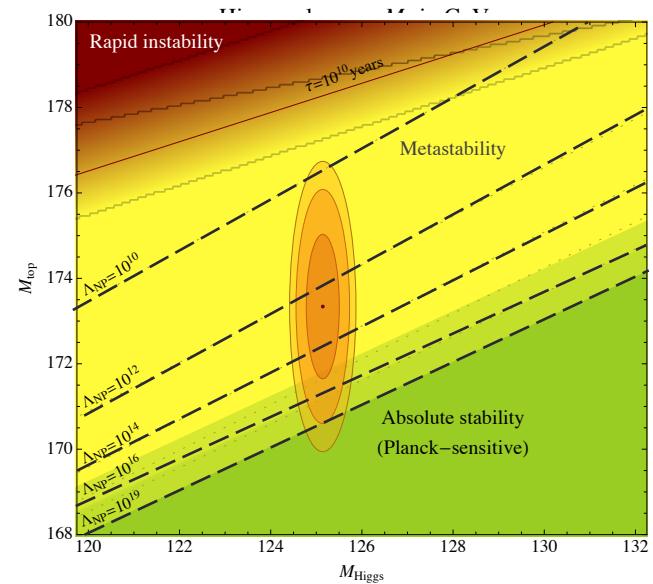
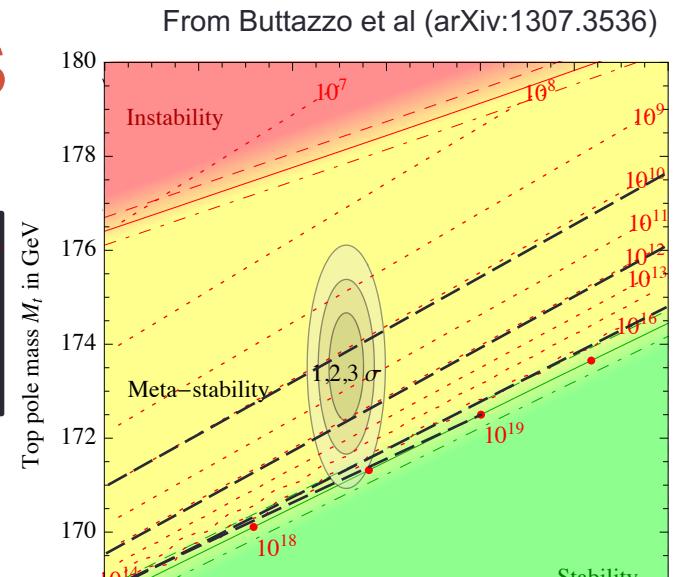
1. Deform the potential so FV is true ground state  $T \ll T_{NL}$  (no return flux)
2. Take  $T \rightarrow \infty$ 
  - Picks out  $E_{FV}(g)$   $T \gg T_{slosh}$  (only metastable FV decay)
  - Fixes integration contour to be the steepest descent contour passing through the static FV saddle point
3. Deform back


OR

- Compute  $Z$  by integrating along the steepest descent contour passing through the static FV saddle point
- OR
- Compute  $\Gamma$  by integrating along the steepest descent contour passing through the bounce, taking the imaginary part, and multiply by 1/2
- Mathematically consistent procedure to get imaginary part out of an analytic real function  $Z$
- Has the right ingredients associated with the necessary limits

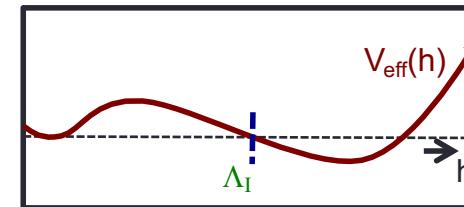
Does this procedure give  
the decay rate?

# Sensitivity to new physics



Old way:  
when is  $\Lambda_I = \Lambda_{NP}$ ?



- gauge dependent, since  $\Lambda_I$  is gauge-dependent

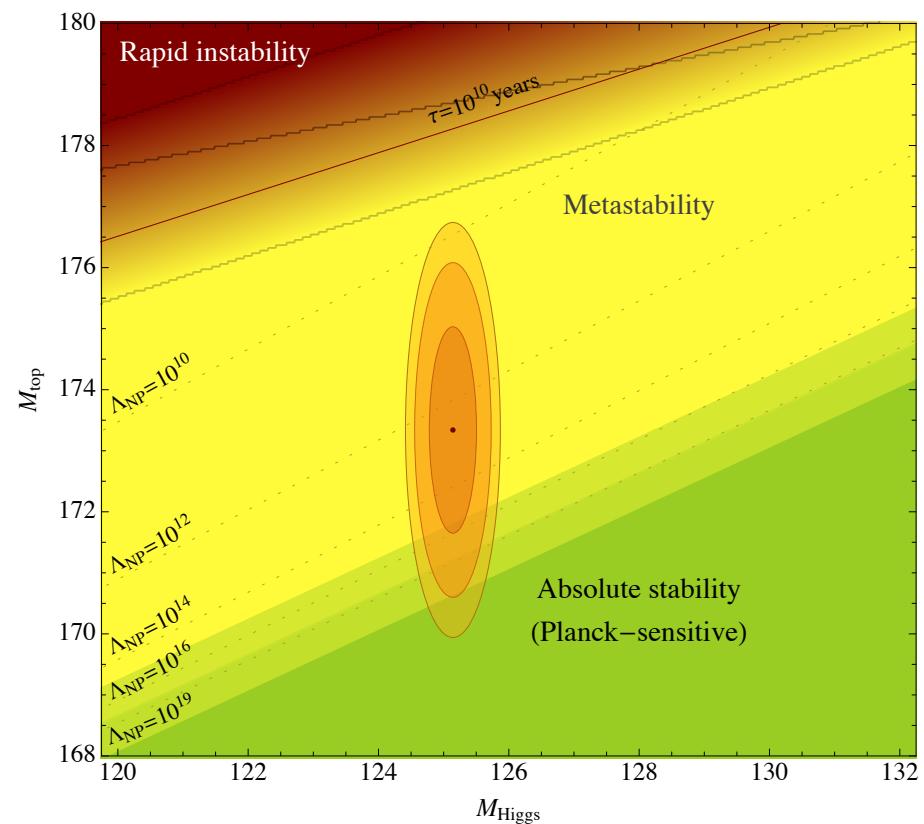

New gauge-invariant way

- Add  $\mathcal{O}_6 = \frac{1}{\Lambda_{NP}^2} |H|^6$  to the SM Lagrangian
- See how big  $\Lambda_{NP}$  must be so that  $V_{min} = 0$

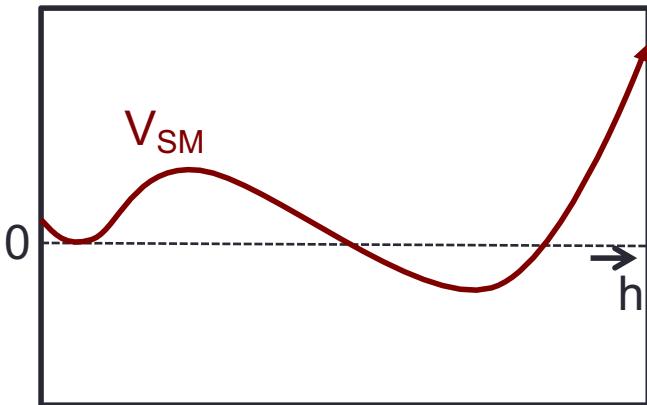


# Planck-sensitivity

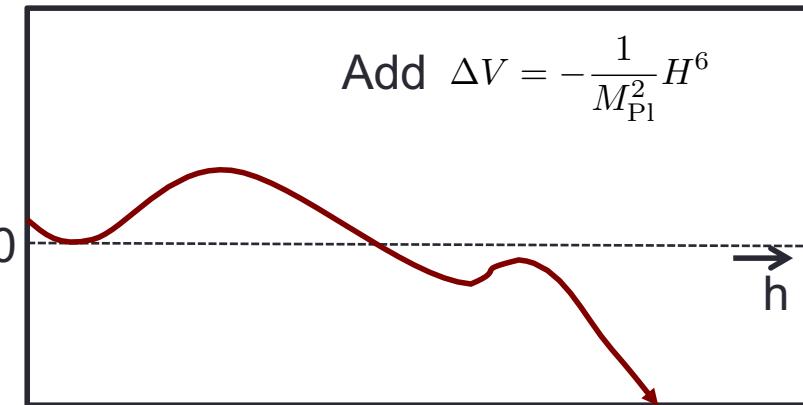
Does the tunneling rate depend on quantum gravity?



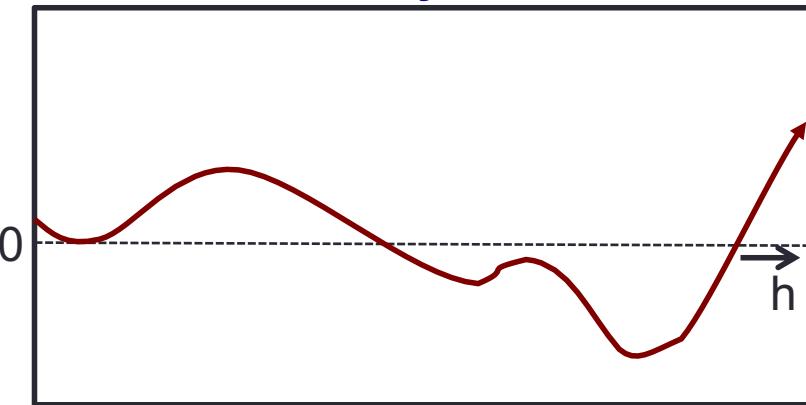

- Guidice, Strumia et al (arXiv:1307.3536):
  - Instability scale below  $M_{\text{Pl}}$ , so **no**.


$$\beta_\lambda = 0 \text{ at } \mu = 10^{17} \text{ GeV} < M_{\text{Pl}}$$

- Sher, Brandina et al (arXiv:1408.5302):
  - field at center of bubble is greater than  $M_{\text{Pl}}$ , so **yes**


$$\phi_B(r=0) = 10^{19} \text{ GeV} \sim M_{\text{Pl}}$$




# $M_{Pl}$ corrections:



Standard Model potential  
**Lifetime =  $10^{600}$  years**



- **Lifetime = 0 sec**
- Arbitrarily small bubbles form and grow



$$\text{Add } \Delta V = -\alpha \frac{1}{M_{Pl}^2} H^6 + \beta \frac{1}{M_{Pl}^2} H^8$$

- **Lifetime can be anything!**

- Planck sensitivity not due to coincidence that  $\beta_\lambda = 0$  at  $\mu \sim M_{Pl}$
- Tunneling is **non-perturbative** and **always** UV sensitive.