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B
Why is perturbative QCD difficult?

1. Too many Feynman diagrams
« # diagrams grows factorially with # legs and # loops

2. Loop integrals are difficult
« Numerical approach foiled by IR divergences

3. Phase space complicated
« Fixed-order perturbative QCD of limited practical use



1. Too many Feynman diagrams

 Tree-level gg -> gg
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Tree-level gg -> ggg

Result of a brute force calculation:
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1. Too many Feynman diagrams

from Z. Bern
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B
1. Too many Feynman diagrams

Much progress in recent years

BCFW recursion relations \ Parke-Taylor formula

(tree-level gluon scattering)

_ o B (jk)*
M(1+2+“'] ok n+)_<12><23§7<34><n1>

How general is the simplicity?

* Generalized unitarity methods .« Tree-level gluon scattering in QCD equal to

* Twistor space tree-level gluon scattering in N=4 SYM
« Grassmannians l/

* Integrebality

. remains simple at all orders

Is simplicity special to N=4 SYM?



e
Dual conformal invariance

Symmetry of planar (large N) SYM theory

P3 . , D2 ¢
\\ y
. EEPERP
P o T =
/ \\
4N
Pn-1 7 3 Pn
zH
Amplitudes invariant under :ijf — —7“2 (inversion) and other conformal syms.
T

Conformal invariance of x; called dual conformal invariance

/\ Symmetry of S-matrix, not Lagrangian

{ — | Lagrangian description inadequate

Are there other hidden symmetries in gauge theories??
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2. Loop integrals difficult

: tensor reduction (Passarino-Veltman, 1979)

All loops = sum of master integrals

Loop = Z(aiA +b;B+c¢,C+d;D)+R

i dk
A, B, C, D are basis integrals: B(p®,mi,m;) = / (k2 — m2 +ie][(k + p)2 — m2 + i€

Problem 1: what area;, bz-, Ci, d;? Problem 2: how to evaluate A,B,C,D?
« Unitarity methods * For m=0 infrared divergences
« Essentially solved * Analytical results known (2007)

Two loop and higher

« Basis unknown
» Unitary methods challenging
 Infrared divergences complicated



3. Phase space complicated
do

dp1dp2dps

What is the differential 3-jet rate?

Can become very large
even if ag is small

o P2

N
. 2
P N i ) )
o ( " (p2 + p1)? "

(p2+p1)>~0
P3 Infrared divergent region

» Fixed order calculations only valid for inclusive quantities
« Total rate for 3 well-separated jets

« Exclusive distributions (with hadrons) are needed for experimental searches

« Tails of QCD distributions often need for new physics searches

* No natural choice for factorization and renormalization scales/_\
Resummation critical




L
Scale choices derail pQCD "

=Ne"

« Formally independent of scales when ;=

de Z/fz L1, Hf fj(

s(ug) f1(pr, ig) + o2 (pr) f2(pr, iR)

o, uf )05 (DT, KR )
v W/

o ¥ o

§ Wboson
Ur = U

« Scale dependence induced by truncation to fixed order
Scales chosen “intuitively” and varied by factors of 2
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More scales are present
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Resummation can be essential #

Suppose we want to know the distribution of jet masses.

In QCD, for very jet-like jets

5 do

m-——s~1—a,'In

dm?

25

N

Blowsupasm/E —0 s

* QCD perturbation theory

breaks down 1or
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Suppose we want to know the distribution of jet masses.

In QCD, for very jet-like jets -
do m? 1 m? 2
2 N 2 2
m le—asrln —E2—|—§<OZSFIH _EQ) -+ ..

We can sum the series:
Sudakov double logs

2
m2 do ze—asI‘ln o

5
dm?

« Now convergentas m/E — 0



v + jet at the LHC




INFRARED
DIVERGNCES
AND WILSON LINES
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Infrared divergences

UV divergences known exactly for QCD (renormalizability)

IR divergences known only up to 2-loops
» Conjectures for 3-loops and up

Structure of IR divergences needed for subtractions in numerical loop integrals

Infrared singular regions dominate cross sections

P
‘ /)7@ (p—l—q) = FE,E, sin? Q
4 .
1 ya ‘\
(p+q)?

_ collinear singularity
.smgularlty

.'Ilinear singularity |:> Sudakov double logs




QCD factorizes in the infrared




PreC|se statement of factorization

Describe radiation from moving charges

0
W, ="P {exp (igs/ dst -A(st’;))}
Wilson lines o
f {eXp (igs/ dsn; - A(sn?))}




Soft-collinear effective theory (SCET)

(O - 9| X)

or equivalently

<O|¢ le Lqcp ™ O|¢.. '.¢|X1 XmX LscET

LscuT .g

Identical copies of Lqcp

 Derivation using on-shell spinor-helicity methods _

« Equivalent to conventional SCET at leading power,
but much simpler



Why is SCET efficient?

Loops involving fields in one sector are scaleless

b 5 4—d/ dk ny - No 1

=gS
" 4 & b e k(g k) 2
a6 B 1 1
_E%R_EIQJV =0

\ Double poles in the UV

Double poles in the IR « impossible in a local theory
(IR physics matches QCD)

IR singularities of QCD extracted from UV divergences in SCET

* Anomalous dimensions give coefficients of IR poles
* Use renormalization group to resum Sudakov logarithms
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Renormalization Group

forr o
g
[
/
v
%

1. Approximate jets
with Wilson lines

2. Calculate anomalous d
dimensions of Wilson lines ,U_W =1 W

3. Resum Sudakov logs with renormalization group

2
m2 do ~ e—ozsI‘ln2 7] —as [Tln &

dm?

|
®



ANOMALOUS DIMENSIONS
OF WILSON LINES
FROM ADS




Wilson line anomalous dimensions

Known results
1. I only depends on the angles between the lines

2. One loop resultfs: I'=——>_ Ti-T;((8; — i) coth B; — 1)
1<J

3. Abelian Exponentiation
4. In lightlike limit, anomalous dimension linearly on angles

Conjectures

A. Pairwise Properties
B. Casimir Scaling

C. Absence of Conformal Cross-Ratios



Known results
1. I only depends on the angles between the lines

(5] %) N * N
P12 cosh 8;; = LY

Known as “cusp angle”

Multiple directions
Multiple cusp angles




Known results
2. loop result is:

Positive and real for
outgoing/outgoing or

incoming/incoming jets
(e.g.eTe” — jets )




Known results
3. Abelian Expnentiation

In QED, anomalous dimension is exact at 1-loop



e
Known results

4, At large angle, anomalous dimension depends linearly on cusp angles
['=-) TY()Bi

1<J

True to all orders in perturbation theory

« For n?=0, anomalous dimension is linearly divergent

n'L . n .
cosh 3;; = /

\
O
nilln;]

* In dimension regularization, this results in a linear dependence on log u

== TV(ay) log(M5Y)

i< 2 Sudakov
double logs

/ 2

2 m
—a] In° 2B
S E

ni-nj

5 do
m‘——= e
dm?



Wilson line anomalous dimensions

Known results
1. I only depends on the angles between the lines

2. One loop resultfs: I'=——>_ Ti-T;((8; — i) coth B; — 1)
1<J

3. Abelian Expnentiation
4. In lightlike limit, anomalous dimension linearly on angles

Conjectures

A. Pairwise Properties
B. Casimir Scaling

C. Absence of Conformal Cross-Ratios



Is there a simpler way to
understand these results?

Change coordinates




L
Mapping to AdS New coordinates

t =e€" cosh 8
r = e’ sinh

Dilatation maps to time translation

Dilatation operator

D = a#8, = td, — 0,

PWE L+ O 9 oo oro
Anomalous H_/ 3_ = a—a — 3_8_
dimension dimension T T T Or
— t@t — r@r =D
dimension energy
DRV 210, = 0. = 3 RxAdS
~ Y

dszis = dt* — dr* — r*dQ3
= e”7 [dr* — (df* + sinh® Bd23)]

Euclidean AdS,



Energies in AdS

What can energy depend on?

Homogeneous sSpace

dimension energy

1,3 )
DY = utd, = 0, = iHTA

Energy can only depend
j‘> on geodesic distance

between charges

Minkowski space AdS

4 t =¢€" coshf
Two charges, (t7 r, 0, gb) r = e’ sinh 3 (1,8,0,9)
in restframe_< n‘f — (1’()7()70) > (0,0,0,0)
of charge 1

ny = (cosh B2, sinh 31,0, 0) > (0, B12,0,0)
= n?=n3=1
1 — N
milina] — €0Sh fr2 ds?, nas = A7 — (d* + sinh? 3 dO3)

Definition of cusp angle ! !

Geodesic distance between charges is -
exactly the cusp angle /1\;: As = 612
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Wilson line anomalous dimensions

Known results
v/ 1. T only depends on the angles between the lines

2. One loop resultfs: I'=——>_ Ti-T;((8; — i) coth B; — 1)
1<J

3. Abelian Expnentiation
4. In lightlike limit, anomalous dimension linearly on angles

Conjectures

A. Pairwise Properties
B. Casimir Scaling

C. Absence of Conformal Cross-Ratios
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What is the energy?

At leading order, just classical electrodynamics. .
We can just solve Laplace’s equation with J, = 6°(z) and J =0

L S0s(sink? B(23.,) = .

sinh

and add the solutions linearly. j‘> Eoir(B12) = % [(w +4812) coth S5 + C

Boundary condition: no cusp (forward scattering), conserved current, I'=0

100

AdSresult | Buow = Y Ti - Ty| (B — i) coth B — 1]

i<j

70

Agrees exactly with 1-loop result
(Korchemsky & Radyushkin)

i<
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Wilson line anomalous dimensions

Known results
v 1. T only depends on the angles between the lines

/ 2. One loop result ls: T'=—~" > Ti - T;((8; — im) coth y; — 1)
1<J

3. Abelian Expnentiation
4. In lightlike limit, anomalous dimension linearly on angles

Conjectures

A. Pairwise Properties
B. Casimir Scaling

C. Absence of Conformal Cross-Ratios



Abelian exponentiation

3. In QED (without dynamical matter),
anomalous dimension is 1-loop exact

This is trivial in AdS since there are no loops.
» Energy of classical currents is exact at leading-order in QED
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Wilson line anomalous dimensions

Known results
v/ 1. T only depends on the angles between the lines

/ 2. One loop resultls: T'=—~" > Ti - T;((8; — im) coth y; — 1)
1<J

v 3. Abelian Expnentiation
4. In lightlike limit, anomalous dimension linearly on angles

Conjectures

A. Pairwise Properties
B. Casimir Scaling

C. Absence of Conformal Cross-Ratios
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Linearity

Electric field lines

AdS Flat Space
3 - ; ; ; 3 . - : - -
—~ WVt 20
o = N7 N\W1s
e, 7AW/
W e U NN\ N\ 77722
N — ) R
W7 S R N TR
R AN
e ——— ATINNSEZIN
> NS/
& NN/ 111
_3_3 -2 1 0 1 ? 3 _33 -2 -1 0 1 2 3
Linear at large Vanishes at large
separations separations

Energy is imaginary: Decay!
« Charges decay into radiation -- parton shower
* No free charges — confinement of parton within jet

Sudakov confinment




Ll nea rlty Radiation pattern from dipole

Similar to distribution of energy density

AdS
3 r . . . . ; e vy 3
2} ] N
1 /7//’;::::‘ \/\/ ) N
I // \\l 1,/ 4;/ [
> 0 \«_4\ ) o __
W(/“\“ = :
-1 A
Hizi::::i:::; 1
) 8 — q
-2 -
-3 " -
_3 -2 0 1 2 3 7 [P P OOUY T O COee,

Linear at large
separations
Energy is imaginary: Decay!
« Charges decay into radiation -- parton shower
* No free charges — confinement of parton within jet

Sudakov confinment
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Wilson line anomalous dimensions

Known results
v 1. T only depends on the angles between the lines

o2 loop result is: ~ 75D (B — i) coth By — 1)
v 3. Abelian Expnentiation
V= 4, In lightlike limit, anomalous dimension linearly on angles

Conjectures

A. Pairwise Properties
B. Casimir Scaling

C. Absence of Conformal Cross-Ratios



Conjectures

A. Pairwise Properties
' (o) = I (a,)T; - T

* Holds in planar limit

* Cusp anomalous dimension known exactly in planar N=4 SYM




Conjectures

A. Pairwise Properties

3 graphs at 2 loops %/ w

Sums of pairs

Should involve compllcated color structures

oops Os 2 arqa - rabcrpa c
L2 () = () (Zi} Ty f(yi) + ) if T T T F(vij,vjk,m) ,

m - ik
1<J 1<J ¢

* Vanishes in the light-like case (Aybat, Dixon, Sterman)
« Sum over pairs for space-like case (Ferroglia et al)

2
\% _ 2 T
——%'j_z
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Conjectures

B. Casimir Scaling

' (o) = I (a,)T; - T

19 cus
' (as) = TP (as)
* Holds at 3 loops, by direct calculation (Vogt, Moch, Vermaseren)

» General arguments prove at 3 loops and almost at 4 loops
(Becher, Neubert, Gardi, Magnea, ...)

« Violated in N=4 SYM at strong coupling (Amoni)
« May still hold in perturbation theory



S
Conjectures

C. Absence of conformal cross ratios

« Can first appear with 4 wilson lines at 3 loops

* General arguments forbid almost all possible forms
« Constrained by soft-collinear factorization ~ (Becher, Neubert
* Must vanish in collinear limits Dixon, Gardi, Magnea)
« Some possible forms found (Dixon et al)
« Constraints from Regge limit (Gardi et al.)
» Still an open question

« Would imply some symmetries that we are missing... very exciting!
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Wilson line anomalous dimensions

Known results
v 1. T only depends on the angles between the lines

o2 loop result is: ~ 75D (B — i) coth By — 1)
v 3. Abelian Expnentiation
V= 4, In lightlike limit, anomalous dimension linearly on angles

Conjectures

A. Pairwise Properties
B. Casimir Scaling

C. Absence of Conformal Cross-Ratios



Pairwise properties

A A,
AdS
= |

Currents in the time direction
only source scalar A,

- No scalar vertexinQCD  f¢ A% A9 A¢ = j‘>

conformal gauge = Feynman gauge in AdS

« complicated non-local gauge in Minkowski space



Pairwise properties

W

Vanishes in conformal gauge

J

Already sums of pairs

For these graphs, conformal gauge gives the same result as Feynman
gauge up to order ¢
« Cross term from counterterm graph and O(e) piece gives

7T2

oo . coshr __p2_ T
dr log ( ) =
/_ 7796 \ cosh 7 + cosh Yij K 4

O

Full result agrees exactly with Ferroglia et al.
* They needed integral reduction with Mellin-Barnes!



* No reason it should be pairwise
« Pairwise structure accident at 2-loops



Known results
v 1. T only depends on the angles between the directions

1omalous dimension depends linearly on cusp

v/ 3. One loop result is: F———ZT - T;((Bij — i) coth B;; — 1)
1<
v 4, Abelian Expnentiation

and conjectures

v A. Pairwise Properties
B. Casimir Scaling

C. Absence of Conformal Cross-Ratios
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No conformal cross ratios?

o _—
-\ ............ >\/\< _____ [ ............ \
P - Al —
{ ........... R = / AdS
J ...........
R x AdS
Light-like limit
relates Wilson line loops to Witten diagrams
Eg. [T—
J 9

1 .

= 8I'(3—4d/2) Di111(u, v)

n13124

1 2z 11—z
= 8I'(3—d/2 211 — 2Lia(Z) + log(27)1
TJQ (3= d/2) -~ |2Lin(2) — 2Lis(2) + log(+3) log T —
3




Known results
v 1. T only depends on the angles between the directions

1omalous dimension depends linearly on cusp

and conjectures

v A. Pairwise Properties
B. Casimir Scaling

? C. Absence of Conformal Cross-Ratios



Casimir scaling

First violation could occur at 4-loops....



Energy interpretation

| ,
V(R) = lim — In(Wiep) T

T—o0 1

g ;

« Casimir scaling violated at 3-loops (Sumino et al, 2010)
« Calculation done in Coulomb gauge.
« Equivalent calculation in conformal gauge would indicate

Casimir-scaling violation for 'y,



Conclusions

Perturbative QCD is no longer about computing Feynman diagrams!

Amplitudes are simpler l On-shell methods providing
than individual diagrams practical results

Resummed results
(all orders in o) critical
for the LHC

Soft and collinear regions
dominate cross sections




