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Why is perturbative QCD difficult? 

1. Too many Feynman diagrams 
•  # diagrams grows factorially with # legs and # loops 

 

2. Loop integrals are difficult 
•  Numerical approach foiled by IR divergences 

3. Phase space complicated 
•  Fixed-order perturbative QCD of limited practical use 
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IV-3: The spinor-helicity formalism

1 Introduction

Matrix element and cross section calculations in QCD increase in complexity extremely fast. For
example, consider the process gg → gg. At tree-level gg → gg gets contributions from Feynman
diagrams with gluons being exchanged in the s, t and u channels, and from diagrams with the 4-
point vertex. The s channel diagram gives (in Feynman gauge)

iMs(p1p2→ p3p4) =
↗ p3p1 ↘

p2 ↗ ↘ p4

q →

ε3; cε1; a

ε2; b ε4; d

(1)

=−i
gs
2

s
fabef cde[(ε1 · ε2)(p1− p2)µ + ε2

µ(p2 + q) · ε1 + ε1
µ(−q − p1) · ε2]

× [(ε4
! · ε3!)(p4− p3)µ + ε3

!µ(p3 + q) · ε4! + ε4
!µ(−q − p4) · ε3!] (2)

where q = p1 + p2 = p3 + p4. We can simplify this a little, using transversality of the gluons, pi ·
εi = 0, but not much. The answer is still a mess

Ms(p1p2→ p3p4)=
gs
2

s
fabefcde (3)

×{− 4 ε1 · ε3! ε2 · p1 p3 · ε4! +2 ε1 · ε2 ε3! · p1 ε4
! · p3− 2 ε1 · p4 ε2 · p1 ε3

! · ε4! + ε1 · ε2 p4 · p1 ε3
! · ε4!

+4 ε1 · ε4! ε2 · p1 ε3
! · p4− 2ε1 · ε2 ε3! · p4 ε4

! · p1− 2 ε1 · p2 ε2 · p3 ε3
! · ε4! + ε1 · ε2 ε3! · ε4! p2 · p3

+4 ε1 · p2 ε2 · ε3! ε4! · p3− 2 ε1 · ε2 ε2 · p2 ε4
! · p3 + 2 ε1 · p2 ε2 · p4 ε3

! · ε4!− ε1 · ε2 ε3! · ε4! p4 · p2

−4ε1 · p2 ε2 · ε4! ε3! · p4 + 2ε1 · ε2 ε3! · p4 ε4
! · p2 + 2ε1 · p3 ε2 · p1 ε3

! · ε4!− ε1 · ε2 ε3! · ε4! p1 · p3 }

To get the cross section, you would also need to compute the crossed diagrams, add the 4-point
vertex, square the amplitude, sum over polarizations and simplify the color factor. If you man-
aged to do all that, adding all 1,000 or so terms, summing over final states and averaging over
initial states you would find

1
256

∑

polarizations
colors

|M|2 = gs
49
2

(

3− tu

s2 − su

t2
− st

u2

)

(4)

which is remarkably simple.
Why are the matrix elements for gluon scattering such a mess and the final answer so

simple? The root of the problem is our insistence on manifest locality. In fact, the entire for-
malism of quantum field theory that we have developed so far is based on describing interactions
among particles in terms of local Lagrangians. In a local Lagrangian, interactions involve non-
negative powers of derivatives, such as ∂kφi1(x) φin

(x). While the local Lagrangian description
has its advantages, like manifest Lorentz invariance, it also has disadvantages. In Lecture II-1,
we encountered subtleties in trying to write a Lagrangian for a massless spin-1 particle that
would only propagate the two physical degrees of freedom. We needed to have a redundancy of
description, called gauge invariance, which established an equivalance among different compo-
nents of the vector field Aµ(x) in which these two polarizations were embedded. We also saw

1

with N set to 3 on the right side of these equations.

4 gg → gg

Now let’s work out the cross section for gg→gg. We know already that only the MHV ampli-
tudes are non-vanishing. We will actually only have to compute one MHV amplitude, M(1−, 2−,
3+, 4+), with the others related by crossings.

As a reminder, in this lecture we take all momenta incoming and order the momenta clock-
wise. For the uncrossed diagram to be the t-channel, we take t = (p1 + p4)2 and u = (p1 + p3)2,
along with s = (p1 + p2)2, which is different from our usual conventions, although we still have
s + t + u = 0. Since all momenta are incoming, the physical process gg → gg with all − helicities
is described by M(1−2−3+4+).

We’ll start by working out M(1−2−3+4+). We will choose the reference momentum for ε1
and ε2 to be r = p4 and the reference momentum for ε3 and ε4 to be p1. Then the only polariza-
tion contraction which does not vanish is ε2 · ε3. Also, we now have ε1 · p4 = ε2 · p4 = ε3 · p1 = ε4 ·
p1 = 0 as well as εi · pi = 0. All of these constraints vastly simplify the answer.

First of all, consider the diagram with the 4-point vertex. There are no momentum factors in
the vertex, so the diagram can only give products of contractions of polarizations, like (ε2 ·
ε3)(ε1 · ε4). But since only one contraction, ε2 · ε3, is non-zero, this diagram cannot contribute.
Indeed, it is not hard to see that diagrams involving the 4-point vertex can never contribute to
MHV amplitudes.

Next, we look at the s-channel diagram. Assuming only that εi · pi =0, it is

iMs =

ε3; cε2; b

ε1; a ε4; d

=
−igs

2

s
fabef cde [(ε1 · ε2)(p1− p2)µ + 2ε2

µ(p2 · ε1)− 2ε1
µ(p1 · ε2)]

× [(ε3 · ε4)(p3− p4)µ +2ε4
µ(p4 · ε3)− 2ε3

µ(p3 · ε4)]
(47)

For the (−, −, +, +) helicity choice, only the term contracting ε2 with ε3 can survive, so
there is only one term:

Ms(1−2−3+4+) =
4gs

2

s
fabef cde(ε2

− · ε3+)(p2 · ε1−)(p3 · ε4+) (48)

Now we plug in the spinor products, including s = 〈12〉[21] to get

Ms(1−2−3+4+)=−2gs
2fabef cde 1

〈12〉[21]

(

〈21〉[34]
[24]〈13〉

)(

〈12〉[24]
[14]

)(

[43]〈31〉
〈14〉

)

(49)

=−2gs
2fabef cde 〈21〉[34]2

[21][14]〈14〉 (50)

Now let’s get it all in terms of 〈〉 by using various relations. For example, momentum conserva-
tion, Eq. (24), implies 〈12〉[23] = −〈14〉[43], (p1 + p2)2 = (p3 + p4)2 implies [34]〈43〉 = 〈12〉[21].
and (p1 + p4)2 = (p2 + p3)2 implies [14]〈41〉= [23]〈32〉. Then we can simplify the result as:

Ms(1−2−3+4+)= 2gs
2fabef cde 〈21〉[34]2

[21][14]〈41〉

(

[14]〈41〉
[23]〈32〉

)(

〈12〉[21]
〈43〉[34]

)(

−〈12〉[23]
〈14〉[43]

)

(51)

=2gs
2fabef cde 〈12〉4

〈12〉〈23〉〈34〉〈41〉 (52)

which is a remarkably simple answer. It is a special case of a Parke-Taylor amplitude, as we will
discuss shortly.

As a check, we can look at the little group scaling. There are two more spinors for each of
the negative helicity gluons (1 and 2) in the numerator than in the denominator, and two more
spinors for each of the positive helicity gluons in the denominator than in the numerator.

gg→ gg 9
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•  Tree-level gg -> gg 

1. Too many Feynman diagrams 

Simple! 



1. Too many Feynman diagrams 
•  Tree-level gg -> ggg 

from Z. Bern 



1. Too many Feynman diagrams 
Much progress in recent years 

Again Mt(1−3−2+4+) vanishes, and we computed Mu(1−2−3+4+) in Eq. (59). So we have

M(1−2+3−4+) =Mu(1−3−2+4+)=
〈13〉4

〈12〉〈23〉〈34〉〈41〉 (82)

which is remarkably similar to M(1−2−3+4+). In fact, an amazing feature of gluon scattering is
that the color-ordered MHV amplitude for any number of gluons is

M(1+2+ j− k− n+) =
〈jk〉4

〈12〉〈23〉〈34〉 〈n1〉 (83)

where j and k are the two − helicity gluons. This is known as the Parke-Taylor formula. It’s
an amazing result that shows that scattering amplitudes in QCD have a lot more symmetry to
them than you might guess from looking at the Feynman rules. You are encouraged to verify
that the Parke-Taylor formula reproduces the full gg → gg scattering amplitude at tree level in
Problem 3.

As a highly nontrivial example, it is now quite easy to calculate the 5-gluon scattering cross
section (Problem 5). For 5 gluons, everything but the MHV amplitudes vanish, so as with 4
gluons there is only one independent amplitude to compute, and it is given by the Parke-Taylor
formula. If you tried to do 5 gluon scattering with polarization vectors and momenta, it would
have 20,000 terms. Using spinor helicities, the calculation can be done by hand.

6 Complex momenta and on-shell recursion

We have seen that spinor helicities can be used to simplify Feynman diagrams. But so far, we
have only used spinor helicities for the external momenta and polarizations. We still have to
compute the Feynman diagrams using the vertices from the Lagrangian. Of course, spinor helici-
ties are still an enormous help, but it would be nice to be able to apply the helicity formalism to
internal lines too. This is not so simple, since we needed p2 = 0 to write the polarization in
terms of helicities, but p2 0 in general on an internal line. In fact, there is a procedure, not
using Feynman diagrams, which uses only on-shell internal states for which the helicities are also
+ or −. For this to work, we need to consider complex momenta. With complex momenta, the
3-point vertex will not identically vanish if the 3 momenta are on-shell. As we will see, the 4-
point and higher order amplitudes can be built up from the 3-point amplitude, and then the
limit of real momenta can be taken.

6.1 3-point amplitude

Rather than compute the 3-point amplitude from the Feynman rules, let’s just figure out what
the most general possible amplitude could be.

=? (84)

It must depend on the 3 polarization vectors εi and the three momenta pi, or equivalently on the
spinors [1, [2, [3 and 〈1, 〈2, 〈3. Momentum conservation is

1〉[1+ 2〉[2 + 3〉[3= 0 (85)

Contracting this on the left with 〈1 or 〈2 gives the two equations

〈12〉[2 =−〈13〉[3, 〈21〉[1=−〈23〉[3 (86)

Complex momenta and on-shell recursion 13

Parke-Taylor formula 
(tree-level gluon scattering) 

BCFW recursion relations 

To be more specific, focus on a single pole associated with a nearly on-shell intermediate

gluon with momentum P̂ . Order the gluons 1 n with gluons a b to the right of the P̂ gluon.
Let gluon i be on the left and gluon j be on the right. The picture looks like this

b

1

a

(108)

Then the momentum of the intermediate gluon is

P̂ (z)=
∑

k=a

b

k〉[k − zi〉[j (109)

So the pole at P̂ 2(za,b
! )= 0 implies

(pa + + pb)2− za,b
!
∑

k=a

b

〈ik〉[kj] + z2〈ii〉[jj] = 0 (110)

with the last term vanishing. Then,

za,b
! =

(pa + + pb)2

〈ia〉[aj ] + + 〈ib〉[bj ]
(111)

We will get one such za,b
! for each partition of the diagram by a, b. For each, we can use

− 1
za,b

! Res

(

M1(z)
1

(pa + + pb)2− za,b
!
∑

〈ik〉[kj]
M2(z)

)

=M1(za,b
! )

1
(pa + + pb)2

M2(za,b
! )

Finally, plugging in to Eq. (107) we find

M(1 n)=
∑

a,b,h

M(a + 1 b− 1→ P̂ h)
1

(pa + + pb)2
M(P̂ −h→ b a) (112)

where the matrix elements on the right side are to be evaluated with their momentum shifted by
z = za,b

! . This is the BCFW recursion formula (Britto-Cachazo-Feng-Witten). The matrix
elements on the left and right sides have fewer than n gluons. This formula lets us recursively
build up arbitrary tree-level matrix elements algebraically. The helicity h of the internal now
on-shell particle with momentum P µ must be summed over. Note that to be consistent with our
convention that momenta are always incoming, h must flip from the left to the right.

BCFW requires the z → ∞ limit to be well-behaved. This is almost always true, except for
some choices of i and j. It’s easiest to check if we already know the answer. For example, recall
the MHV color-ordered partial amplitude for gg→ gg:

M(1−2−3+4+) =
〈12〉3

〈23〉〈34〉〈41〉 (113)

let’s try i = 1 and j = 2. Then the only angle shift is 2〉 → 2〉 − z1〉. So, 〈12〉 → 〈12〉, 〈23〉 →
〈23〉 − z〈13〉 and 〈41〉 → 〈41〉 and at large z this amplitude vanishes as

1

z
as desired. For the

amplitude not to vanish as z →∞, 〈12〉 would have to shift, which we could only get with i = 3
or i = 4 and j = 1 or j = 2. For i = 3 and j = 2, we find 〈12〉 → 〈12〉 − z〈13〉, 〈23〉→ 〈23〉, 〈34〉→
〈34〉 and 〈41〉 → 〈41〉 so the amplitude blows up like z3. The general rule for 2 → 2 is that the
helicity combinations (i, j) = (+, +), (−,−) or (−, +) are good, while (+,−) is bad.

On-shell recursion 17

•  Generalized unitarity methods 
•  Twistor space 
•  Grassmannians 
•  Integrebality 
•   … 

•  Tree-level gluon scattering in QCD equal to 
        tree-level gluon scattering in N=4 SYM 

remains simple at all orders 

Is simplicity special to N=4 SYM? 

How general is the simplicity? 



Dual conformal invariance 
Symmetry of planar (large N) SYM theory 

Amplitudes invariant under  x
µ
i ! x

µ
i

x

2
i

x

µ
i = p

µ
i+1 � p

µ
i

(inversion) and other conformal syms. 

Conformal invariance of xi called dual conformal invariance 

Lagrangian description inadequate 

Are there other hidden symmetries in gauge theories?? 

Symmetry of S-matrix, not Lagrangian 



2. Loop integrals difficult 
: tensor reduction (Passarino-Veltman, 1979) 

All loops = sum of master integrals 

Loop = 

Problem 1: what are  ai, bi, ci, di? 

A, B, C, D are basis integrals: B(p2,m2
1,m

2
2) =

Z
ddk

[k2 �m2
1 + i✏][(k + p)2 �m2

2 + i✏]

Problem 2: how to evaluate A,B,C,D? 
•  Unitarity methods 
•  Essentially solved 

X

i

(aiA+ biB + ciC + diD) +R

One loop 

Two loop and higher 

•  Basis unknown 
•  Unitary methods challenging 
•  Infrared divergences complicated  

•  For m=0 infrared divergences 
•  Analytical results known (2007) 



3. Phase space complicated 
What is the differential 3-jet rate?  

d�

dp1dp2dp3

PP

p1 p2 

p3 

⇠ ↵s

✓
· · ·+ (p1 + p3)2

(p2 + p1)2
+ · · ·

◆

Can become very large 
even if αs is small 

~ 

•  Fixed order calculations only valid for inclusive quantities 
•  Total rate for 3 well-separated jets 

 
•  Exclusive distributions (with hadrons) are needed for experimental searches 

•  Tails of QCD distributions often need for new physics searches 

•  No natural choice for factorization and renormalization scales 

Resummation critical 

(p2 + p1)
2 ⇠ 0

Infrared divergent region 



Scale choices critical 
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Figure 6: Scale variations at next-to-leading order. The blue southeast stripes show the scale
variation of the NLO calculation (called NNLO in fewz) with µ = µf = µr = mW , as in the
atlas paper. The red northeast stripes show the prediction using µf = µr =

√
m2

W + p2T and
the black vertical stripes have µf and µr set to the scales in Eq. (29). Bands correspond to
varying µ = µf = µr by factors of two from these default scales.

leading-order PDF sets which have a larger value of αs, instead of the NNLO PDFs we use
throughout. The increase in the cross section from NLL to N2LL is mostly due to the one-loop
constants in the soft and hard functions, as can be seen from the right panel of Figure 3. We
have checked how much of a shift the known two-loop jet and soft function constants induce
and find that it is below a per cent.

4 Comparison with LHC data

We are now ready to compare to LHC data. We discuss separately the two processes we study,
direct photon and W production. For numerical work we use the NNLO MSTW 2008 PDF set
and its associated αs(mZ) = 0.1171 [45]. We also use mW = 80.399 GeV, αe.m. = 127.916−1,
sin2 θW = 0.2226, Vud = 0.97425, Vus = 0.22543, Vub = 0.00354, Vcd = 0.22529, Vcs = 0.97342
and Vcb = 0.04128.

4.1 Direct photon

For direct photon production, to be consistent with the comparison to Tevatron data in [18],
we use the scale choices from that paper

µh = pT ,

14

P

jet 

P

W boson 

Scale choices derail pQCD 
d�

dpT
=

X

ij

Z
fi(x1, µf )fj(x2, µf )�̂ij(pT , µR)

�̂ = ↵s(µR)f1(pT , µR) + ↵2
s(µR)f2(pT , µR) + · · ·

•  Formally independent of scales when µf = µR = µ 
•  Scale dependence induced by truncation to fixed order 
•  Scales chosen “intuitively” and varied by factors of 2 
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Figure 3: Scale sensitivities. These plots show the effect of adding part of the fixed-order NLO
calculation to the LO calculation. The left panel shows what happens if all the µ-dependent
terms at NLO are added together. There is a slow monotonic logarithmic µ dependence,
with no natural extremum. In contrast, when the hard, jet, or soft contributions are added
separately, there are natural extrema. These extrema indicate the average value of momenta
〈p〉 appearing in the logarithms. That there are different extrema for the different components
proves that multiple scales are relevant. The plots are for W+ bosons, but the qualitative
features are the same for all bosons.

these degrees of freedom, appearing in the large logarithms. After integrating over the PDFs,
the perturbative correction will then have the form

∆σ

σLO
= αs(µ)(c2L

2 + c1L+ c0) , (28)

with L = ln µ
〈p〉 . If µ is chosen either much lower or much higher than 〈p〉, the perturbative

corrections will become large. Since we do not have an analytic expression for the distribution,
due to the necessity of convoluting with PDFs, we determine 〈p〉 numerically by computing the
individual corrections to the cross section as a function of µ. The result is shown in the right
plot of Figure 3. It has the expected form (28) and we see that while the jet and soft scales
are concave upwards, the hard curve is concave downward. The extrema of the corresponding
curves indicate the scales 〈p〉 that dominate these contributions after integrating over the
PDF. It is then natural to define our default values for µ as the positions of the extrema.
That there are different extrema for the different components proves that multiple scales are
relevant. These scales are conflated in the fixed-order calculation. The left plot in Figure 3
shows the fixed-order scale dependence. In this case, there is monotonic µ dependence, with
no natural extremum.

To find the scales numerically we extract these extrema from the curves. Using a number of
different machine center-of-mass energies (we tried 2, 7, 14, and 100 TeV), pp and p̄p collisions,
and various boson masses, we determine a reasonable approximation to these points is given
by the following functional forms
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Monotonic dependence on scales 

 
 



NLO !Μf "Μr"
50 GeV

100 GeV
200 GeV

500 GeV

Fixed#order scale sensitivity
!LHC 7 TeV"

0.5 1.0 1.5 2.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Μ#pT

$
Σ
N
LO

Σ
LO

Soft

JET

HARD

50 GeV
500 GeV

50 GeV
500 GeV

50 GeV

100 GeV
200 GeV

500 GeV

Individual scale sensitivities
!LHC 7 TeV"

0.5 1.0 1.5 2.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Μ#pT

$
Σ
N
LO
#Σ
LO

Figure 3: Scale sensitivities. These plots show the effect of adding part of the fixed-order NLO
calculation to the LO calculation. The left panel shows what happens if all the µ-dependent
terms at NLO are added together. There is a slow monotonic logarithmic µ dependence,
with no natural extremum. In contrast, when the hard, jet, or soft contributions are added
separately, there are natural extrema. These extrema indicate the average value of momenta
〈p〉 appearing in the logarithms. That there are different extrema for the different components
proves that multiple scales are relevant. The plots are for W+ bosons, but the qualitative
features are the same for all bosons.

these degrees of freedom, appearing in the large logarithms. After integrating over the PDFs,
the perturbative correction will then have the form

∆σ

σLO
= αs(µ)(c2L

2 + c1L+ c0) , (28)

with L = ln µ
〈p〉 . If µ is chosen either much lower or much higher than 〈p〉, the perturbative

corrections will become large. Since we do not have an analytic expression for the distribution,
due to the necessity of convoluting with PDFs, we determine 〈p〉 numerically by computing the
individual corrections to the cross section as a function of µ. The result is shown in the right
plot of Figure 3. It has the expected form (28) and we see that while the jet and soft scales
are concave upwards, the hard curve is concave downward. The extrema of the corresponding
curves indicate the scales 〈p〉 that dominate these contributions after integrating over the
PDF. It is then natural to define our default values for µ as the positions of the extrema.
That there are different extrema for the different components proves that multiple scales are
relevant. These scales are conflated in the fixed-order calculation. The left plot in Figure 3
shows the fixed-order scale dependence. In this case, there is monotonic µ dependence, with
no natural extremum.

To find the scales numerically we extract these extrema from the curves. Using a number of
different machine center-of-mass energies (we tried 2, 7, 14, and 100 TeV), pp and p̄p collisions,
and various boson masses, we determine a reasonable approximation to these points is given
by the following functional forms
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Figure 6: Scale variations at next-to-leading order. The blue southeast stripes show the scale
variation of the NLO calculation (called NNLO in fewz) with µ = µf = µr = mW , as in the
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√
m2

W + p2T and
the black vertical stripes have µf and µr set to the scales in Eq. (29). Bands correspond to
varying µ = µf = µr by factors of two from these default scales.

leading-order PDF sets which have a larger value of αs, instead of the NNLO PDFs we use
throughout. The increase in the cross section from NLL to N2LL is mostly due to the one-loop
constants in the soft and hard functions, as can be seen from the right panel of Figure 3. We
have checked how much of a shift the known two-loop jet and soft function constants induce
and find that it is below a per cent.

4 Comparison with LHC data

We are now ready to compare to LHC data. We discuss separately the two processes we study,
direct photon and W production. For numerical work we use the NNLO MSTW 2008 PDF set
and its associated αs(mZ) = 0.1171 [45]. We also use mW = 80.399 GeV, αe.m. = 127.916−1,
sin2 θW = 0.2226, Vud = 0.97425, Vus = 0.22543, Vub = 0.00354, Vcd = 0.22529, Vcs = 0.97342
and Vcb = 0.04128.

4.1 Direct photon

For direct photon production, to be consistent with the comparison to Tevatron data in [18],
we use the scale choices from that paper

µh = pT ,
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Figure 10: Comparison of theory to atlas data for the W spectra. The red band is the NLO
prediction, using µf = µr = mW , as in [2]. The N3LLp + NLO prediction, in green, is in
excellent agreement with the data. Dashed blue lines indicate PDF uncertainties which are of
order the scale uncertainties at N3LLp + NLO order.

the data and the NLO scale uncertainties, but of the same order as the scale uncertainties of the
resummed distribution. This indicates that PDF fits could be improved using the W spectra,
but only if resummation is included (or perhaps if the NNLO result becomes available).

5 Conclusions

In this paper, we have compared theoretical predictions for the direct photon and W boson
spectra at high pT to measurements performed by the atlas collaboration using LHC data.
The predictions were performed using the exact cross section at next-to-leading order in αs

(the highest order known), supplemented with additional terms to all orders in αs coming
from a threshold expansion. These extra terms correspond to large logarithms associated with
infrared singularities of the recoiling jet. To isolate these terms, the resummed calculation is
performed near the partonic threshold, in which the pT of the vector boson is maximal for the
given value of the partonic center-of-mass energy. In this limit, the cross section factorizes
and the logarithmic terms can then included to all orders in perturbation theory. These
terms usually give the dominant contribution to the the cross section. In the photon case,
the fragmentation cross section and isolation corrections were added also, using the program
jetphox.

A main advantage of the resummed cross section, which was calculated using effective
theory in [18] and [19], is that it has well-defined scales associated with different phase space
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Figure 3: Scale sensitivities. These plots show the effect of adding part of the fixed-order NLO
calculation to the LO calculation. The left panel shows what happens if all the µ-dependent
terms at NLO are added together. There is a slow monotonic logarithmic µ dependence,
with no natural extremum. In contrast, when the hard, jet, or soft contributions are added
separately, there are natural extrema. These extrema indicate the average value of momenta
〈p〉 appearing in the logarithms. That there are different extrema for the different components
proves that multiple scales are relevant. The plots are for W+ bosons, but the qualitative
features are the same for all bosons.

these degrees of freedom, appearing in the large logarithms. After integrating over the PDFs,
the perturbative correction will then have the form

∆σ

σLO
= αs(µ)(c2L

2 + c1L+ c0) , (28)

with L = ln µ
〈p〉 . If µ is chosen either much lower or much higher than 〈p〉, the perturbative

corrections will become large. Since we do not have an analytic expression for the distribution,
due to the necessity of convoluting with PDFs, we determine 〈p〉 numerically by computing the
individual corrections to the cross section as a function of µ. The result is shown in the right
plot of Figure 3. It has the expected form (28) and we see that while the jet and soft scales
are concave upwards, the hard curve is concave downward. The extrema of the corresponding
curves indicate the scales 〈p〉 that dominate these contributions after integrating over the
PDF. It is then natural to define our default values for µ as the positions of the extrema.
That there are different extrema for the different components proves that multiple scales are
relevant. These scales are conflated in the fixed-order calculation. The left plot in Figure 3
shows the fixed-order scale dependence. In this case, there is monotonic µ dependence, with
no natural extremum.

To find the scales numerically we extract these extrema from the curves. Using a number of
different machine center-of-mass energies (we tried 2, 7, 14, and 100 TeV), pp and p̄p collisions,
and various boson masses, we determine a reasonable approximation to these points is given
by the following functional forms
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Resummation can be essential 
Suppose we want to know the distribution of jet masses. 

•  Blows up as  
•  QCD perturbation theory 
          breaks down 

m/E ! 0

 In QCD, for very jet-like jets 

ates gluons, and gluons in the radiation field split into quark-antiquark pairs. When the collec-
tion is spread out over length scales of order ΛQCD

−1 , the quarks and gluons hadronize into color-
neutral objects. These hadrons then decay into stable or meta-stable particles (mostly pions,
kaons, protons, neutrons, electrons, muons and photons) which can be detected by the experi-
ments. Since the radiation is dominantly in the direction of the original hard parton, it can be
added together to form a jet 4-momentum pJ

µ =
∑

i∈jet pi
µ which, to a first approximation,

matches the 4-momentum of the hard parton originally produced. For example, if the two jets
produced from the decay of a W boson (W → q̄q at parton level), the dijet invariant mass should
be close to the W -boson mass (pJ1

+ pJ2
)2 ≈ mW

2 . Thus, jets provide a window into short dis-
tance physics and are useful in both standard model studies and searches for physics beyond-
the-standard model.

The distribution of jets is described quite accurately by pertubative QCD. For example, the
gg → gg cross section (computed in Lecture IV-3), when convoluted with PDFs (discussed in
Lecture IV-9), gives a contribution to the distributoin of dijet events at hadron colliders.
Including other partonic channels and 1-loop amplitudes, the theoretical calculations are in
excellent agreement with data over a wide range of energies and production angles.

!

!

!

!

!

!

!

!
!
!
!
! ! ! ! ! ! ! ! ! ! ! ! ! ! !

"

"

"

"

"

"

"

"

"
"

#

#

#

#

#

#

#

#
#
#
#
#

#
# # # #

$

$

$

$

$

$
$ $

$

$ L3

# DELPHI

" OPAL

! ALEPH

NNLO

NLO

LO

0.00 0.05 0.10 0.15 0.20 0.25
0

5

10

15

20

25

30

1!T

d
Σ

d
T

Figure 2. Comparison of thrust data from four experiments at LEP to the calculation in perturbative

QCD. The fixed order calculation has good agreement for 1 − T ! 0.15, but fails to describe the peak

region even qualitatively.

On the other hand, some properties of jets, such as their mass, are not described well and
any fixed order in αs. For example, Figure 2 shows the distribution of thrust, T , at LEP com-
pared to the pertubative calculation at order αs, αs

2, and αs
3. Thrust, which is discussed in detail

in Section 14, is one way of characterizing how jet-like an event is convenient both experimen-
tally and theoretically. Events which produce values of thrust near 1 (the left side of the figure),

appear to have two very collimated jets. In fact, near T = 1, one can show 1 − T ≈ 1

Q2
(mJ1

2 +
mJ2

2 ) where mJ1
and mJ2

are the masses of the two jets and Q the center-of-msas energy.
Clearly the thrust distribution near T ∼ 1 is not described well in perturbation theory. The
problem is that at any order in pertubation theory, the distribution is singular at T = 1. For
example, in terms τ ≡ 1−T , the leading-order distribution is (see Section 14)

1
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Suppose we want to know the distribution of jet masses. 

We can sum the series: 
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two loops

Ŝ(κin, µ) = · · ·+
(αs

4π

)2
ΓNGL ln2

κin
µ

, (7.4)

where ΓNGL might be −4π2

3 CFCA, but is yet unknown. Since this term has µ-dependence,

it will contribute to the anomalous dimension of Ŝ. Moreover, it will contribute a term

with lnµ in the anomalous dimension. This is unusual since, for a global observable, one

normally expects that all of the lnµ dependence in the anomalous dimension is proportional

to γcusp. We therefore expect similar non-cusp lnµ dependence in the anomalous dimension

of the regional soft function for the jet mass distribution as well.

With this educated guess, we expect that the two-loop regional soft function anomalous

dimension for the annihilation channel has the form

γŜ =
(αs

4π

)2
[

(

2CAΓ1 + ΓNGL
)

ln

(

1 + β2

β

κin
µ

)

+ CAγ
s + γNGL

]

(7.5)

and similarly for the Compton channel, with CF → CA by Casimir scaling. Here, Γ1 is the

two-loop cusp anomalous dimension:

Γ1 = 4

(

67

9
−

π2

3

)

CA −
20

9
nfTF , (7.6)

and ΓNGL and γNGL are unknown. By RG invariance, this implies that the anomalous

dimension of the residual soft function must be

γSr =
(αs

4π

)2
[

−4CFΓ1 ln

(

1 + β2

β

κout
µ

)

− ΓNGL ln

(

1 + β2

β

κin
µ

)

− 2CF γ
s − γNGL

]

(7.7)

where γs is the two-loop direct-photon soft function anomalous dimension from [27]:

γs =

(

28ζ3 −
808

27
+

11π2

3

)

CA +

(

224

27
−

4π2

9

)

nfTF . (7.8)

The terms proportional to Γ1 and γs in Eq. (7.5) and Eq. (7.7), and also a known term

proportional to the 3-loop cusp anomalous dimension, account for the global logarithms at
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•  UV divergences known exactly for QCD (renormalizability) 

•  IR divergences known only up to 2-loops 
•  Conjectures for 3-loops and up 

•  Structure of IR divergences needed for subtractions in numerical loop integrals 

•  Infrared singular regions dominate cross sections 

Soft-collinear singularity             Sudakov double logs 



QCD factorizes in the infrared 
Introduction to scattering amplitudes 6

Figure 1. Factorization of soft and collinear singularities.

of bosonic and fermionic states the same, and preserve Ward identities for ordinary

supersymmetry.

The general structure of the infrared divergences is well understood from decades
of work in QED as well as QCD [37]. It has been worked out in the most detail in the

context of dimensional regularization [38, 39, 40]. The basic picture is shown in fig. 1.

Soft divergences and collinear divergences associated with the amplitude M each have a

universal form. They can be factorized from each other and from a hard, short-distance

part of the amplitude. Soft divergences, denoted by the blob marked S, come from

exchange of long-wavelength gluons. These gluons do not have the resolving power to
probe the internal structure of the “jets” J of virtual collinear particles which capture

the collinear divergences. Soft gluons can only see the overall color charges of the jets.

An individual jet function Ji depends on the type of particle i, but not on the full

amplitude kinematics. The soft function S does not depend on the particle types, but

only on their momenta and color quantum numbers. In general these quantum numbers

can be mixed by gluon exchange, so S is a matrix in color space. The hard function h
has no infrared singularities, but generically depends on the particle types, colors and

kinematics.

In the planar or large-Nc limit, the picture simplifies considerably, to that shown

in fig. 2. Now M represents the coefficient of a particular color structure, such as

Tr(T a1T a2 · · ·T an) (assuming that all external states are in the adjoint representation;

see section 2). In the planar limit, individual soft gluons can only connect color-adjacent
external partons. There is no mixing of different color structures at large Nc. One can

absorb the entire soft function S into jet functions, which corresponds to breaking up

the right-hand side of fig. 2 into n wedges. Each wedge is bounded by two hard lines,

and is composed of “half” of each of the two jet functions, as well as the soft gluons

exchanged between them. Up to nonsingular terms, the wedge controlling the infrared

divergences represents the square root of the Sudakov form factor, which is defined as
the amplitude for a color-singlet state to decay into a pair of (adjoint) gluons.

In dimensional regularization, the Sudakov form factor obeys a particular differ-

d� = H ⇥ J ⌦ · · ·⌦ J ⌦ S

Soft function 
Hard function 

Jet functions 
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Precise statement of factorization 
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collinear-emissions expansion is of the form
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Looking at some general piece of this amplitude, say, the emission in the `-direction, o↵ the
1-leg, with the 1-electron further emitting photons with a net momentum k

rest

, we get
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The denominator here is only small when k
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and k

rest

are all in the p
1

-direction. That is, this
term seems to be enhanced only if all of the emissions after and including the k

`

emission
are collinear to p

1

. Putting in the polarization vector in spinor-helicity language,
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we see that this is almost always true. That is, if we take the reference vector, r
`

, to not be
collinear to any of the m directions, namely,

choose r
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such that: [r
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i ⇠ Q for all j (24)

then the leading contributions to (17) are really those with all emissions collinear to the line
from which they came (in the above above diagrams this corresponds to k
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and k
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). Diagrammatically, this means
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where
P

means a sum over all diagrams with only self-collinear emissions (as shown) and
. . . means lower order in the collinear limit. We will call the gauge in which all of the photon
reference vectors are not collinear to any of the m directions the generic-r gauge. Note that,
though the matrix element on the left-hand side is gauge invariant, the sum of only the

7

enhanced diagrams on the right is not; indeed the right hand side above must be evaluated
in the generic-r gauge and does not satisfy Ward identities on its own.

Therefore, in this generic-r gauge we have the result
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where the double-primed fields on the right-hand side with di↵erent collinear labels do not
interact and only have overlap with their own collinear-sector states. The Lagrangian
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is just m copies of the scalar QED Lagrangian made of only the collinear fields.

Collinear gauge

What if we took some other gauge? The only other gauge choices would be to take the
reference vectors for some set of collinear sectors to be self-collinear. We will call this
collinear gauge for the relevant sectors. For example, we could take
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Then this diagram, which is the most-enhanced diagram in generic-r gauge, vanishes in this
collinear gauge So, in this gauge, what happens with all the emissions in the p direction?
They must come from the other diagrams that were previously power suppressed, namely,
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is gauge invariant, which means that the whole matrix element in (39) is
as well. Furthermore, in generic-r gauge this Wilson line gives contributions of the form
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Since we are ignoring these terms in favour of collinearly enhanced terms, we have

W
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= 1 in generic-r gauge (47)

We have thus demonstrated that the matrix element in (39) is gauge invariant and reduces
to that on the right-hand side of (37) in generic-r gauge. We have therefore shown that, up
to power corrections in �
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where now both sides are gauge invariant. Note that the Wilson lines will only give enhanced
contributions in a collinear gauge.

Example calculation of collinear decoupling

(This is too complicated. Do a single emission as an example!)
We will now do a simple example calculation to show the result of (48) in any gauge at

order e2/�2

c

. First, when the two emissions are from separate lines, the result is simple:
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Figure 1. Factorization of soft and collinear singularities.

of bosonic and fermionic states the same, and preserve Ward identities for ordinary

supersymmetry.

The general structure of the infrared divergences is well understood from decades
of work in QED as well as QCD [37]. It has been worked out in the most detail in the

context of dimensional regularization [38, 39, 40]. The basic picture is shown in fig. 1.

Soft divergences and collinear divergences associated with the amplitude M each have a

universal form. They can be factorized from each other and from a hard, short-distance

part of the amplitude. Soft divergences, denoted by the blob marked S, come from

exchange of long-wavelength gluons. These gluons do not have the resolving power to
probe the internal structure of the “jets” J of virtual collinear particles which capture

the collinear divergences. Soft gluons can only see the overall color charges of the jets.

An individual jet function Ji depends on the type of particle i, but not on the full

amplitude kinematics. The soft function S does not depend on the particle types, but

only on their momenta and color quantum numbers. In general these quantum numbers

can be mixed by gluon exchange, so S is a matrix in color space. The hard function h
has no infrared singularities, but generically depends on the particle types, colors and

kinematics.

In the planar or large-Nc limit, the picture simplifies considerably, to that shown

in fig. 2. Now M represents the coefficient of a particular color structure, such as

Tr(T a1T a2 · · ·T an) (assuming that all external states are in the adjoint representation;

see section 2). In the planar limit, individual soft gluons can only connect color-adjacent
external partons. There is no mixing of different color structures at large Nc. One can

absorb the entire soft function S into jet functions, which corresponds to breaking up

the right-hand side of fig. 2 into n wedges. Each wedge is bounded by two hard lines,

and is composed of “half” of each of the two jet functions, as well as the soft gluons

exchanged between them. Up to nonsingular terms, the wedge controlling the infrared

divergences represents the square root of the Sudakov form factor, which is defined as
the amplitude for a color-singlet state to decay into a pair of (adjoint) gluons.

In dimensional regularization, the Sudakov form factor obeys a particular differ-

J =
X

Xc

|h0| ̄W |Xci|2
S =

X

Xs

|h0|Y1 · · ·Yn|Xsi|2



Soft-collinear effective theory (SCET) 
h0| ̄ · · · |Xi ⇠ h0| ̄W1|X1i · · · h0|W †

n |Xnih0|Y1 · · ·Y †
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•  Derivation using on-shell spinor-helicity methods  
 

•  Equivalent to conventional SCET at leading power,  
           but much simpler 
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Why is SCET efficient? 
Loops involving fields in one sector are scaleless 

4

p1

p2

FIG. 2: One-loop vertex correction to the electromagnetic
current in QCD.

ΛQCD, and is described by an ultrasoft field. The outgo-
ing quark has momentum components p+

X ∼ λΛQCD/Q,
p−X ∼ Q2/ΛQCD, p⊥X ∼ Qλ. The outgoing quark turns
into a jet moving in the n direction, and so the outgoing
particle can be described by a n-collinear field.

IV. MATCHING THE CURRENT AT Q2 FROM
QCD TO SCET

The electromagnetic current in QCD is matched onto
the SCET current at the scale Q. The QCD current is the
operator ψ̄γµψ, and the SCET current is ξ̄nWnγµW †

n̄ξn̄
in the Breit frame, and ξ̄nWnγµψ in the target rest frame.
Here Wn,n̄ are collinear Wilson lines which are required
by collinear gauge invariance. The matching condition
will be computed in (a) pure dimensional regularization,
i.e. using dimensional regularization to regulate both the
ultraviolet and infrared divergences, and (b) by using di-
mensional regularization for the ultraviolet divergences
and off-shellness for the infrared divergences.

The one-loop vertex graph for the electromagnetic cur-
rent in QCD is shown in Fig. 2, where p1 is the incoming
quark momentum, and p2 = p1 + q is the outgoing quark
momentum. The QCD one-loop graph gives

V = −ig2CF µ2ε

∫

ddk

(2π)d
γα p/2 − k/

(k − p2)2
γµ p/1 − k/

(k − p1)2
γα

1

k2
,

(16)

where CF = 4/3 is the Casimir of the fundamental rep-
resentation.

We first consider the computation in pure dimensional
regularization, which greatly simplifies the computation
of matching conditions in effective field theories. In pure
dimensional regularization, the matching coefficient is
obtained by computing the finite parts of on-shell di-
agrams and dropping all the 1/ε terms, regardless of
whether they arise from ultraviolet or infrared diver-
gences [9]. The reason this procedure works is that the
ultraviolet divergences in the full and effective theories
are canceled by the counterterms in the respective theo-
ries. The remaining 1/ε terms are infrared divergences,
which must agree between the full and effective theory.
The 1/ε terms cancel in the matching condition, which is
the difference between the full and effective theory. Thus
the matching condition is the difference of the finite parts
of the full and effective theory computation. There is one

additional simplification — on-shell graphs in the effec-
tive theory are usually scaleless integrals, which vanish
in pure dimensional regularization, and so have no finite
part [9]. This eliminates the need to compute the effec-
tive theory graphs to determine the matching condition,
which is given by the finite part of the full theory graphs.

We will compute Eq. (16) keeping the 1/ε terms to
compare with the matching computation using an in-
frared regulator. The incoming and outgoing quarks in
Fig. 2 have invariant masses that vanish in the limit
λ → 0, so the matching coefficient is obtained by evalu-
ating the graph on-shell with p2

1 = p2
2 = 0. Evaluating

the integral in d = 4 − 2ε dimensions gives

V =
αs

4π
CFγ

µ

[

1

εUV
−

2

ε2IR
−

2 ln µ2

Q2 + 4

εIR

− ln2 µ2

Q2
− 3 ln

µ2

Q2
− 8 +

π2

6

]

, (17)

where we have distinguished the infrared and ultraviolet
divergences by the subscript on ε. However, it is impor-
tant to keep in mind that all ε’s are equal. The integral
has a 1/ε2IR infrared divergence arising from a combina-
tion of soft and collinear divergences. It is this double
divergence that leads to the Sudakov double-logarithmic
behavior in the endpoint region. In pure dimensional
regularization, the wavefunction graphs are scaleless,

Iw =
αs

4π
CF ip/

[

1

εUV
−

1

εIR

]

, (18)

and vanish. The net on-shell matrix element of the elec-
tromagnetic current in the full theory is the difference of
Eqs. (17,18) plus the counterterms, which gives (includ-
ing the tree-graph)

〈p2| jµ |p1〉 = γµ

[

1 +
αs

4π
CF

(

−
2

ε2IR
−

2 ln µ2

Q2 + 3

εIR

− ln2 µ2

Q2
− 3 ln

µ2

Q2
− 8 +

π2

6

)]

+ c.t. .

(19)

The 1/εUV terms cancel, so there is no counterterm. This
cancellation is required, since the electromagnetic current
is a conserved current and has no anomalous dimension in
QCD. The graphs in the effective theory are all scaleless,
and vanish in dimensional regularization. The matching
coefficient of the current in the effective theory is the
finite part of Eq. (19),

C(µ) = 1 +
αs(µ)

4π
CF

[

− ln2 µ2

Q2
− 3 ln

µ2

Q2
− 8 +

π2

6

]

.

(20)

The 1/εIR terms in Eq. (19), which are the negative of the
1/εUV terms in the effective theory, give the anomalous
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Double poles in the UV 
•  impossible in a local theory Double poles in the IR 

(IR physics matches QCD) 

IR singularities of QCD extracted from UV divergences in SCET 

•  Anomalous dimensions give coefficients of IR poles 
•  Use renormalization group to resum Sudakov logarithms 



FIG. 2: A coordinate change maps Minkowski space to R × AdS. In this figure the outgoing

Wilson lines become static charges in AdS, and their tree level energy in AdS is equal to the

original one-loop anomalous dimension for the lines.

forbidden were suggested in Ref. [41]. Very recently it was argued that these terms
are forbidden by considerations from the Regge limit in Refs. [42, 43].

Most of these results have been shown only through direct, and sometimes laborious calcu-
lations. Even a simple result, such as Abelian exponentiation, requires the use of eikonal
identities and monitoring of combinatoric factors. In this paper, we will show how some of
these results can be understood in a simple way using a mapping inspired by the approximate
conformal invariance of QCD.

At the classical level, QCD is conformally invariant. This symmetry is broken by quantum
effects, but for high energy scattering it continues to have implications for the structure of
perturbative results. Examples of the implications of conformal symmetry for QCD can be
found in Refs. [32, 44–48]. Our main focus here will be on exploiting conformal invariance to
understand properties of the anomalous dimensions of Wilson lines relevant for jet physics.

A Wilson line emanating from the origin in the direction nµ comprises the points xµ =
snµ, for s > 0. A scale transformation is simply a change in s. Scale invariance is made
more manifest by defining a new time coordinate τ ≡ ln |x| where |x| is the (Lorentzian)
distance from the origin. This makes the Wilson lines parallel, as shown in Figure 2. In
terms of τ , rescaling becomes simply time translation, and conformal symmetry becomes
the statement that the physics is time translation invariant in τ . The Wilson lines become
static charges whose energy is the anomalous dimension. Spatial slices in these coordinates
are copies of Euclidean Anti-deSitter space (AdS). In this paper, we describe how many of
the features of Wilson lines enumerated above can be understood in AdS coordinates. For
example, that the Coulomb potential is one-loop exact in QED automatically implies that
the anomalous dimension of multiple Wilson line operators are one-loop exact in QED.

In addition to providing a pleasing physical picture, radial coordinates make a number of
calculations much easier. One of the reasons that the classical conformal invariance of QCD
rarely simplifies diagrammatic computations is that it is broken by standard gauge choices,
such as Feynman gauge. Feynman gauge in flat space leads to kinetic mixing between the
time-like components Aτ and space-like components Ai of the gauge field in R×AdS. Here
we introduce a new gauge, which we call conformal gauge, in which there is no such mixing.
One consequence is that in this gauge, since only Aτ is sourced by the Wilson lines, and
there is no A3

τ or A4
τ vertex in Yang-Mills theory, many of the non-planar graphs at 2 and

3-loops automatically vanish. This automatically implies that the only graphs at 2-loops

6
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Wilson lines become static charges in AdS, and their tree level energy in AdS is equal to the

original one-loop anomalous dimension for the lines.
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lations. Even a simple result, such as Abelian exponentiation, requires the use of eikonal
identities and monitoring of combinatoric factors. In this paper, we will show how some of
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conformal invariance of QCD.

At the classical level, QCD is conformally invariant. This symmetry is broken by quantum
effects, but for high energy scattering it continues to have implications for the structure of
perturbative results. Examples of the implications of conformal symmetry for QCD can be
found in Refs. [32, 44–48]. Our main focus here will be on exploiting conformal invariance to
understand properties of the anomalous dimensions of Wilson lines relevant for jet physics.

A Wilson line emanating from the origin in the direction nµ comprises the points xµ =
snµ, for s > 0. A scale transformation is simply a change in s. Scale invariance is made
more manifest by defining a new time coordinate τ ≡ ln |x| where |x| is the (Lorentzian)
distance from the origin. This makes the Wilson lines parallel, as shown in Figure 2. In
terms of τ , rescaling becomes simply time translation, and conformal symmetry becomes
the statement that the physics is time translation invariant in τ . The Wilson lines become
static charges whose energy is the anomalous dimension. Spatial slices in these coordinates
are copies of Euclidean Anti-deSitter space (AdS). In this paper, we describe how many of
the features of Wilson lines enumerated above can be understood in AdS coordinates. For
example, that the Coulomb potential is one-loop exact in QED automatically implies that
the anomalous dimension of multiple Wilson line operators are one-loop exact in QED.

In addition to providing a pleasing physical picture, radial coordinates make a number of
calculations much easier. One of the reasons that the classical conformal invariance of QCD
rarely simplifies diagrammatic computations is that it is broken by standard gauge choices,
such as Feynman gauge. Feynman gauge in flat space leads to kinetic mixing between the
time-like components Aτ and space-like components Ai of the gauge field in R×AdS. Here
we introduce a new gauge, which we call conformal gauge, in which there is no such mixing.
One consequence is that in this gauge, since only Aτ is sourced by the Wilson lines, and
there is no A3

τ or A4
τ vertex in Yang-Mills theory, many of the non-planar graphs at 2 and

3-loops automatically vanish. This automatically implies that the only graphs at 2-loops
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forbidden were suggested in Ref. [41]. Very recently it was argued that these terms
are forbidden by considerations from the Regge limit in Refs. [42, 43].

Most of these results have been shown only through direct, and sometimes laborious calcu-
lations. Even a simple result, such as Abelian exponentiation, requires the use of eikonal
identities and monitoring of combinatoric factors. In this paper, we will show how some of
these results can be understood in a simple way using a mapping inspired by the approximate
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At the classical level, QCD is conformally invariant. This symmetry is broken by quantum
effects, but for high energy scattering it continues to have implications for the structure of
perturbative results. Examples of the implications of conformal symmetry for QCD can be
found in Refs. [32, 44–48]. Our main focus here will be on exploiting conformal invariance to
understand properties of the anomalous dimensions of Wilson lines relevant for jet physics.

A Wilson line emanating from the origin in the direction nµ comprises the points xµ =
snµ, for s > 0. A scale transformation is simply a change in s. Scale invariance is made
more manifest by defining a new time coordinate τ ≡ ln |x| where |x| is the (Lorentzian)
distance from the origin. This makes the Wilson lines parallel, as shown in Figure 2. In
terms of τ , rescaling becomes simply time translation, and conformal symmetry becomes
the statement that the physics is time translation invariant in τ . The Wilson lines become
static charges whose energy is the anomalous dimension. Spatial slices in these coordinates
are copies of Euclidean Anti-deSitter space (AdS). In this paper, we describe how many of
the features of Wilson lines enumerated above can be understood in AdS coordinates. For
example, that the Coulomb potential is one-loop exact in QED automatically implies that
the anomalous dimension of multiple Wilson line operators are one-loop exact in QED.

In addition to providing a pleasing physical picture, radial coordinates make a number of
calculations much easier. One of the reasons that the classical conformal invariance of QCD
rarely simplifies diagrammatic computations is that it is broken by standard gauge choices,
such as Feynman gauge. Feynman gauge in flat space leads to kinetic mixing between the
time-like components Aτ and space-like components Ai of the gauge field in R×AdS. Here
we introduce a new gauge, which we call conformal gauge, in which there is no such mixing.
One consequence is that in this gauge, since only Aτ is sourced by the Wilson lines, and
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Mapping to AdS 
Consider a Wilson line in the direction nµ. We can write nµ = (cosh β, sinh β n̂), with n̂

a unit vector in R3, and xµ = eτnµ. The path of the Wilson line is then described by

t = eτ cosh β, r = eτ sinh β, β, θ,φ fixed, (14)

with τ running from −∞ to ∞. Wilson lines in different directions will correspond to
different values of β, θ and φ. In these coordinates, the Minkowski metric becomes

ds2
R1,3 = dt2 − dr2 − r2dΩ2

2

= e2τ
[

dτ 2 − (dβ2 + sinh2 β dΩ2
2)
]

. (15)

Strictly speaking, this metric describes only a patch of R1,3 — namely the interior of the
future light-cone. We will return to this point shortly.

The idea of radial quantization is to interpret τ as a new time coordinate. A näıve
complication in this picture is that the metric Eq. (15) is now time-dependent. However, in
a conformal theory, the dynamics is independent of the local scale, and we can equivalently
consider our theory with any metric related via ds2 → e2ω(x)ds2. Thus, let us drop the
overall e2τ to obtain a simple time translation-invariant product space,

ds2
R×AdS = dτ 2 − (dβ2 + sinh2 β dΩ2

2). (16)

The spatial part of this metric is the 3D hyperboloid, or Euclidean Anti-deSitter space.
With a slight abuse of nomenclature, we call it simply AdS.

In radial coordinates, the origin maps to τ = −∞ and motion along a Wilson line
corresponds to shifts in τ . So to the extent that our theory was scale invariant in Minkowski
space, it is now time-translation invariant in R×AdS. Each Wilson line sits at fixed (β, θ,φ)
and extends from −∞ to ∞ in the time coordinate τ . That is, each Wilson line becomes a
static charge in AdS. For perturbative computations in QCD (where conformal invariance is
broken by the scale anomaly) we may simply adopt the change of coordinates in Eq. (14) as
a method to carry out computations. If the computation involves ingredients satisfying the
conformal invariance then the factors of eτ will cancel out, and the result will be constrained
by properties of the AdS space.

For the sake of doing calculations, a key point is that the dilatation operator in Minkowski
space maps to the Hamiltonian in AdS in radial quantization,

DR1,3
= xµ∂µ = ∂τ = iHR×AdS. (17)

Consequently, the eigenvalue of dilatation — the dimension (or when acting on classically
scale invariant Wilson lines, the anomalous dimension) — is just i times the energy in AdS.
So we can calculate anomalous dimensions by calculating energies and apply our intuition
from electrodynamics to understand anomalous dimensions of Wilson lines.

What can the energy of two static charges in AdS depend on? Since the space is homo-
geneous, it can depend only on the geodesic distance between the charges. For example,
suppose we have two time-like Wilson lines, pointing in the directions nµ

1 and nµ
2 , normalized

so that n2
1 = n2

2 = 1. We may first go to the rest frame of one, nµ
1 = (1, 0, 0, 0), and then
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FIG. 2: A coordinate change maps Minkowski space to R × AdS. In this figure the outgoing

Wilson lines become static charges in AdS, and their tree level energy in AdS is equal to the

original one-loop anomalous dimension for the lines.

forbidden were suggested in Ref. [41]. Very recently it was argued that these terms
are forbidden by considerations from the Regge limit in Refs. [42, 43].

Most of these results have been shown only through direct, and sometimes laborious calcu-
lations. Even a simple result, such as Abelian exponentiation, requires the use of eikonal
identities and monitoring of combinatoric factors. In this paper, we will show how some of
these results can be understood in a simple way using a mapping inspired by the approximate
conformal invariance of QCD.

At the classical level, QCD is conformally invariant. This symmetry is broken by quantum
effects, but for high energy scattering it continues to have implications for the structure of
perturbative results. Examples of the implications of conformal symmetry for QCD can be
found in Refs. [32, 44–48]. Our main focus here will be on exploiting conformal invariance to
understand properties of the anomalous dimensions of Wilson lines relevant for jet physics.

A Wilson line emanating from the origin in the direction nµ comprises the points xµ =
snµ, for s > 0. A scale transformation is simply a change in s. Scale invariance is made
more manifest by defining a new time coordinate τ ≡ ln |x| where |x| is the (Lorentzian)
distance from the origin. This makes the Wilson lines parallel, as shown in Figure 2. In
terms of τ , rescaling becomes simply time translation, and conformal symmetry becomes
the statement that the physics is time translation invariant in τ . The Wilson lines become
static charges whose energy is the anomalous dimension. Spatial slices in these coordinates
are copies of Euclidean Anti-deSitter space (AdS). In this paper, we describe how many of
the features of Wilson lines enumerated above can be understood in AdS coordinates. For
example, that the Coulomb potential is one-loop exact in QED automatically implies that
the anomalous dimension of multiple Wilson line operators are one-loop exact in QED.

In addition to providing a pleasing physical picture, radial coordinates make a number of
calculations much easier. One of the reasons that the classical conformal invariance of QCD
rarely simplifies diagrammatic computations is that it is broken by standard gauge choices,
such as Feynman gauge. Feynman gauge in flat space leads to kinetic mixing between the
time-like components Aτ and space-like components Ai of the gauge field in R×AdS. Here
we introduce a new gauge, which we call conformal gauge, in which there is no such mixing.
One consequence is that in this gauge, since only Aτ is sourced by the Wilson lines, and
there is no A3

τ or A4
τ vertex in Yang-Mills theory, many of the non-planar graphs at 2 and

3-loops automatically vanish. This automatically implies that the only graphs at 2-loops
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Euclidean AdS3 

Consider a Wilson line in the direction nµ. We can write nµ = (cosh β, sinh β n̂), with n̂

a unit vector in R3, and xµ = eτnµ. The path of the Wilson line is then described by

t = eτ cosh β, r = eτ sinh β, β, θ,φ fixed, (14)

with τ running from −∞ to ∞. Wilson lines in different directions will correspond to
different values of β, θ and φ. In these coordinates, the Minkowski metric becomes

ds2
R1,3 = dt2 − dr2 − r2dΩ2

2

= e2τ
[

dτ 2 − (dβ2 + sinh2 β dΩ2
2)
]

. (15)

Strictly speaking, this metric describes only a patch of R1,3 — namely the interior of the
future light-cone. We will return to this point shortly.

The idea of radial quantization is to interpret τ as a new time coordinate. A näıve
complication in this picture is that the metric Eq. (15) is now time-dependent. However, in
a conformal theory, the dynamics is independent of the local scale, and we can equivalently
consider our theory with any metric related via ds2 → e2ω(x)ds2. Thus, let us drop the
overall e2τ to obtain a simple time translation-invariant product space,

ds2
R×AdS = dτ 2 − (dβ2 + sinh2 β dΩ2

2). (16)

The spatial part of this metric is the 3D hyperboloid, or Euclidean Anti-deSitter space.
With a slight abuse of nomenclature, we call it simply AdS.

In radial coordinates, the origin maps to τ = −∞ and motion along a Wilson line
corresponds to shifts in τ . So to the extent that our theory was scale invariant in Minkowski
space, it is now time-translation invariant in R×AdS. Each Wilson line sits at fixed (β, θ,φ)
and extends from −∞ to ∞ in the time coordinate τ . That is, each Wilson line becomes a
static charge in AdS. For perturbative computations in QCD (where conformal invariance is
broken by the scale anomaly) we may simply adopt the change of coordinates in Eq. (14) as
a method to carry out computations. If the computation involves ingredients satisfying the
conformal invariance then the factors of eτ will cancel out, and the result will be constrained
by properties of the AdS space.

For the sake of doing calculations, a key point is that the dilatation operator in Minkowski
space maps to the Hamiltonian in AdS in radial quantization,

DR1,3
= xµ∂µ = ∂τ = iHR×AdS. (17)

Consequently, the eigenvalue of dilatation — the dimension (or when acting on classically
scale invariant Wilson lines, the anomalous dimension) — is just i times the energy in AdS.
So we can calculate anomalous dimensions by calculating energies and apply our intuition
from electrodynamics to understand anomalous dimensions of Wilson lines.

What can the energy of two static charges in AdS depend on? Since the space is homo-
geneous, it can depend only on the geodesic distance between the charges. For example,
suppose we have two time-like Wilson lines, pointing in the directions nµ

1 and nµ
2 , normalized

so that n2
1 = n2

2 = 1. We may first go to the rest frame of one, nµ
1 = (1, 0, 0, 0), and then
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corresponds to shifts in τ . So to the extent that our theory was scale invariant in Minkowski
space, it is now time-translation invariant in R×AdS. Each Wilson line sits at fixed (β, θ,φ)
and extends from −∞ to ∞ in the time coordinate τ . That is, each Wilson line becomes a
static charge in AdS. For perturbative computations in QCD (where conformal invariance is
broken by the scale anomaly) we may simply adopt the change of coordinates in Eq. (14) as
a method to carry out computations. If the computation involves ingredients satisfying the
conformal invariance then the factors of eτ will cancel out, and the result will be constrained
by properties of the AdS space.

For the sake of doing calculations, a key point is that the dilatation operator in Minkowski
space maps to the Hamiltonian in AdS in radial quantization,

DR1,3
= xµ∂µ = ∂τ = iHR×AdS. (17)

Consequently, the eigenvalue of dilatation — the dimension (or when acting on classically
scale invariant Wilson lines, the anomalous dimension) — is just i times the energy in AdS.
So we can calculate anomalous dimensions by calculating energies and apply our intuition
from electrodynamics to understand anomalous dimensions of Wilson lines.

What can the energy of two static charges in AdS depend on? Since the space is homo-
geneous, it can depend only on the geodesic distance between the charges. For example,
suppose we have two time-like Wilson lines, pointing in the directions nµ

1 and nµ
2 , normalized

so that n2
1 = n2

2 = 1. We may first go to the rest frame of one, nµ
1 = (1, 0, 0, 0), and then
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rotate so the other is at nµ
2 = (cosh β12, sinh β12, 0, 0). Then the geodesic distance between

them, using the spatial part of the metric Eq. (16), is just

∆s = β12 . (18)

Considering also that n1·n2

|n1||n2|
= cosh β12, we see that the geodesic distance in AdS is the

cusp angle. Thus, the energy of the two charges, and hence the anomalous dimension
in Minkowski space, can depend only on the cusp angle. This was feature 1 from the
introduction. More succinctly, the original Lorentz symmetry of Minkowski space becomes
the isometry group of AdS in radial coordinates. Just as Lorentz invariance dictates that
the anomalous dimension can depend only on the cusp angle, the isometries of AdS dictate
that the energy can depend only on the geodesic distance.

We can also consider initial state Wilson lines. For example, in deep inelastic scattering
as Bjorken x → 1, the initial state contains an energetic proton in the Breit frame, the
final state contains a jet, and the Wilson line description applies. In our convention, the
spatial vectors for these lines still point out from the origin, and the lines extend to negative
Minkowski times. Instead of Eq. (14), the path of an initial state line is then described by

t = −eτ cosh γ, r = −eτ sinh γ, (19)

for fixed real γ. In radial quantization, initial state lines map to static charges in a different
copy of R × AdS comprising points in the interior of the past light-cone (Figure 3). It is
useful to think of this second copy of AdS as being related by analytic continuation to the
first. Since from Eq. (9) we have cosh γ = − cosh β, we can write β = γ+ iπ. Both copies of
AdS (along with a copy of deSitter space describing points at spacelike separation from the
origin) are related by analytic continuation to the three-sphere S3 that one would obtain by
repeating the exercise of radial quantization starting from Euclidean space, R4. This will be
a useful tool in the following section.

For most of the remainder of the paper, we will focus on time-like Wilson lines whose
directions are normalized to n2 = 1. Since all the energies and dimensions are independent
of rescaling of the n’s, the dependence on |n| can be put back by dimensional analysis:

nµ
i → nµ

i
|ni|

. We will also have occasion to consider the light-like limit n2 → 0, which is
phenomenologically relevant for the majority of processes at colliders. Many of the properties
of the light-like case can be derived as a limiting case of the general time-like results. In the
light-like limit n2

i → 0, and the charges move towards the boundary of AdS with β → ∞.
Some results simplify for n2 = 0, and when appropriate we will consider this case separately.

3. CLASSICAL ADS ENERGIES

In radial coordinates, we have seen that the anomalous dimension of a collection of Wilson
lines intersecting at a point is proportional to the energy of a collection of static charges in
AdS. This energy can only depend on the geodesic distance between the charges, which is
the same as the cusp angle βij = cosh−1 ni · nj. Now let us calculate that energy.
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The spatial part of this metric is the 3D hyperboloid, or Euclidean Anti-deSitter space.
With a slight abuse of nomenclature, we call it simply AdS.

In radial coordinates, the origin maps to τ = −∞ and motion along a Wilson line
corresponds to shifts in τ . So to the extent that our theory was scale invariant in Minkowski
space, it is now time-translation invariant in R×AdS. Each Wilson line sits at fixed (β, θ,φ)
and extends from −∞ to ∞ in the time coordinate τ . That is, each Wilson line becomes a
static charge in AdS. For perturbative computations in QCD (where conformal invariance is
broken by the scale anomaly) we may simply adopt the change of coordinates in Eq. (14) as
a method to carry out computations. If the computation involves ingredients satisfying the
conformal invariance then the factors of eτ will cancel out, and the result will be constrained
by properties of the AdS space.

For the sake of doing calculations, a key point is that the dilatation operator in Minkowski
space maps to the Hamiltonian in AdS in radial quantization,

DR1,3
= xµ∂µ = ∂τ = iHR×AdS. (17)

Consequently, the eigenvalue of dilatation — the dimension (or when acting on classically
scale invariant Wilson lines, the anomalous dimension) — is just i times the energy in AdS.
So we can calculate anomalous dimensions by calculating energies and apply our intuition
from electrodynamics to understand anomalous dimensions of Wilson lines.

What can the energy of two static charges in AdS depend on? Since the space is homo-
geneous, it can depend only on the geodesic distance between the charges. For example,
suppose we have two time-like Wilson lines, pointing in the directions nµ
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introduction. More succinctly, the original Lorentz symmetry of Minkowski space becomes
the isometry group of AdS in radial coordinates. Just as Lorentz invariance dictates that
the anomalous dimension can depend only on the cusp angle, the isometries of AdS dictate
that the energy can depend only on the geodesic distance.

We can also consider initial state Wilson lines. For example, in deep inelastic scattering
as Bjorken x → 1, the initial state contains an energetic proton in the Breit frame, the
final state contains a jet, and the Wilson line description applies. In our convention, the
spatial vectors for these lines still point out from the origin, and the lines extend to negative
Minkowski times. Instead of Eq. (14), the path of an initial state line is then described by

t = −eτ cosh γ, r = −eτ sinh γ, (19)

for fixed real γ. In radial quantization, initial state lines map to static charges in a different
copy of R × AdS comprising points in the interior of the past light-cone (Figure 3). It is
useful to think of this second copy of AdS as being related by analytic continuation to the
first. Since from Eq. (9) we have cosh γ = − cosh β, we can write β = γ+ iπ. Both copies of
AdS (along with a copy of deSitter space describing points at spacelike separation from the
origin) are related by analytic continuation to the three-sphere S3 that one would obtain by
repeating the exercise of radial quantization starting from Euclidean space, R4. This will be
a useful tool in the following section.

For most of the remainder of the paper, we will focus on time-like Wilson lines whose
directions are normalized to n2 = 1. Since all the energies and dimensions are independent
of rescaling of the n’s, the dependence on |n| can be put back by dimensional analysis:
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. We will also have occasion to consider the light-like limit n2 → 0, which is
phenomenologically relevant for the majority of processes at colliders. Many of the properties
of the light-like case can be derived as a limiting case of the general time-like results. In the
light-like limit n2

i → 0, and the charges move towards the boundary of AdS with β → ∞.
Some results simplify for n2 = 0, and when appropriate we will consider this case separately.

3. CLASSICAL ADS ENERGIES

In radial coordinates, we have seen that the anomalous dimension of a collection of Wilson
lines intersecting at a point is proportional to the energy of a collection of static charges in
AdS. This energy can only depend on the geodesic distance between the charges, which is
the same as the cusp angle βij = cosh−1 ni · nj. Now let us calculate that energy.
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FIG. 3: In radial quantization, final state lines map to a copy of AdS3 at positive Minkowski times,

while initial state lines map to a second copy of AdS3 at negative Minkowski times. Points that

are spacelike separated from the origin map to dS3.

The energy of two charges in QCD at leading order is given, as in QED, by solving
Laplace’s equation for the scalar potential Aτ in the presence of point sources Jµ given by
Jτ = δ3(x) and "J = 0. The homogeneous solutions are

1

sinh2 β
∂β
(

sinh2 β (∂βAτ )
)

= 0 ⇒ Aτ (β) = C1 + C2 coth β (20)

Unfortunately, neither of these is the physically correct answer. This can be seen most
easily by looking at the large β limit, where we expect Aτ (β) to be linear in β. In this limit
Eq. (20) behaves as a constant.

The problem with this potential is that it has the wrong boundary conditions. This is
easiest to understand by analytically continuing to Euclidean space. Defining β = iα, the
metric becomes

ds2 = dτ 2 + dα2 + sin2(α)dΩ2
2 = dτ 2 + dΩ2

3, (21)

which describes a Euclidean cylinder R × S3. The Wilson lines are now static charges at
points on a three-sphere. The general homogeneous solution to Laplace’s equation on R×S3

is the analytic continuation of Eq. (20),

Aτ (α) = C1 + C2 cotα. (22)

Since cotα has a pole at both α = 0 and α = π, Eq. (22) actually describes a configuration
with two charges: a (+) charge at the north pole and a phantom (−) charge at the south
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Boundary condition: no cusp (forward scattering), conserved current, Γ=0 

just
EEucl.

pair (α12) = q1q2Aτ (α12) + C. (25)

Here C is an undetermined constant setting the zero of energy, which must be fixed by other
considerations. Already, the reader may recognize EEucl.

pair (α) as the α-dependent part of the
cusp anomalous dimension in Euclidean space.

The equivalent of this calculation in AdS gives

Epair(β12) =
q1q2
4π2

[

(π + iβ12) coth β12 + C
]

. (26)

When both Wilson lines are outgoing, as in the process e+e− → qq, β12 is real and positive.
At small β, the charges become closer than the curvature scale, and the energy reduces to

Epair(β12) →
q1q2
4π

1

β12
+ C. (27)

This is the correct behavior of the energy of two charges as a function of geodesic separation.
Unfortunately, setting β = 0 is singular, so this limit cannot be used to determine the
constant C.

When one Wilson line is outgoing and one is incoming, as in DIS, there is a smooth limit
to zero separation which can be used to fix C. In this configuration, the quantity γ = β− iπ
is real. Expressing the energy in terms of γ12, we obtain

Epair(γ12) = i
q1q2
4π2

(γ12 coth γ12 + C). (28)

In this case, the limit γ12 = 0 is physical: it corresponds to our two Wilson lines reducing
to a single straight line going from t = −∞ to t = +∞ through the origin. This contour
has no cusp and is in fact a conserved current (occurring in the Isgur-Wise function [49]), so
its anomalous dimension must vanish. This determines the boundary condition Epair(γ12 =
0) = 0, which sets C = −1.

In summary, restoring the color factors, charges, and coupling constant for QCD, and
summing over pairs of charges to compute the total energy, we have found

Etot =
iαs

π

∑

i<j

Ti · Tj

[

(βij − iπ) cothβij − 1
]

. (29)

Taking into account the factor of i in going from the energy to the anomalous dimension,
Eq. (17), this implies

Γ = −αs

π

∑

i<j

Ti · Tj ((βij − iπ) coth βij − 1) (30)

which agrees exactly with the anomalous dimension extracted from the one-loop calculation,
Eq (8). Thus, we have reproduced feature 2 in the introduction with a simple classical calcu-
lation. Note that with nontrivial color factors, the energy of the state in AdS corresponding
to the Wilson line operators becomes a matrix on the space of Wilson lines W described
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its anomalous dimension must vanish. This determines the boundary condition Epair(γ12 =
0) = 0, which sets C = −1.
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Taking into account the factor of i in going from the energy to the anomalous dimension,
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which agrees exactly with the anomalous dimension extracted from the one-loop calculation,
Eq (8). Thus, we have reproduced feature 2 in the introduction with a simple classical calcu-
lation. Note that with nontrivial color factors, the energy of the state in AdS corresponding
to the Wilson line operators becomes a matrix on the space of Wilson lines W described
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FIG. 5: On the left is the electric field lines for two charges in flat space. The middle shows the

imaginary part of the electric field for two charges in AdS, after projecting to rectangular coordi-

nates with x = β sin θ and y = β cos θ. The right (from [58]), shows the distribution of radiation

from a color singlet scalar decaying to two jets at the LHC. The axes in this case are psuedorapidity

and azimuthal angle, and the contours correspond to factors of two in the accumulated energy dis-

tribution. The rightmost plot is included to remind the reader that a color dipole radiates between

the color charges, which roughly corresponds to the region where the energy density has support

in the AdS picture. The sharp drop-off of the radiation pattern in the effect of color coherence. In

a qualitative sense only, this corresponds to the exponential decay of the radiation away from the

dipole axis in the AdS picture.

contrast the electric field of a normal pair of charges, in flat space, with the imaginary part
of the electric field for two charges in AdS. As the total energy grows with separation, the
electric field approaches a constant between the charges. Notice that in the presence of two
opposite Abelian charges, Im(E) is always negative, as should be the case for the energy of
an unstable state. Back in Minkowski space, this corresponds to a roughly constant density
of radiation between the two charges. The third panel of Figure 5, shows this behavior in a
Monte Carlo simulation [59]. To generate this distribution, a 200 GeV dijet event produced
at 7 TeV center of mass energy at the LHC was simulated. The figure shows the accumulated
energy distribution. Note that the radiation is concentrated between the two charges, and
suppressed away from the dipole axis, just as the energy distribution is in AdS.

Linear growth of energy with separation is normally an indication of confining behavior.
In this case, since the energy is imaginary, it is not confinement in the usual sense, but can
still be interpreted as a type of confinement. In a sense, this linear growth of the (imaginary)
energy with separation is related to the fact that high energy quarks always appear with
an accompanying jet, whose dynamics are described with Sudakov factors. Although this
“Sudakov confinement” of quarks inside jets has little in common with confinement in QCD,
it is not an unreasonable phrase for the linearly growing energy in AdS.

To be specific, consider the case of one incoming and one outgoing Wilson line, as in
deep-inelastic scattering (DIS). In DIS, an electron is scattered off of a proton, with Bjorken
x defined in terms of the momentum transfer qµ and the proton momentum P µ as x =
−q2/2P · q. In the x → 1 limit of DIS at large Q2 = −q2, the outgoing radiation becomes
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contrast the electric field of a normal pair of charges, in flat space, with the imaginary part
of the electric field for two charges in AdS. As the total energy grows with separation, the
electric field approaches a constant between the charges. Notice that in the presence of two
opposite Abelian charges, Im(E) is always negative, as should be the case for the energy of
an unstable state. Back in Minkowski space, this corresponds to a roughly constant density
of radiation between the two charges. The third panel of Figure 5, shows this behavior in a
Monte Carlo simulation [59]. To generate this distribution, a 200 GeV dijet event produced
at 7 TeV center of mass energy at the LHC was simulated. The figure shows the accumulated
energy distribution. Note that the radiation is concentrated between the two charges, and
suppressed away from the dipole axis, just as the energy distribution is in AdS.

Linear growth of energy with separation is normally an indication of confining behavior.
In this case, since the energy is imaginary, it is not confinement in the usual sense, but can
still be interpreted as a type of confinement. In a sense, this linear growth of the (imaginary)
energy with separation is related to the fact that high energy quarks always appear with
an accompanying jet, whose dynamics are described with Sudakov factors. Although this
“Sudakov confinement” of quarks inside jets has little in common with confinement in QCD,
it is not an unreasonable phrase for the linearly growing energy in AdS.

To be specific, consider the case of one incoming and one outgoing Wilson line, as in
deep-inelastic scattering (DIS). In DIS, an electron is scattered off of a proton, with Bjorken
x defined in terms of the momentum transfer qµ and the proton momentum P µ as x =
−q2/2P · q. In the x → 1 limit of DIS at large Q2 = −q2, the outgoing radiation becomes
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contrast the electric field of a normal pair of charges, in flat space, with the imaginary part
of the electric field for two charges in AdS. As the total energy grows with separation, the
electric field approaches a constant between the charges. Notice that in the presence of two
opposite Abelian charges, Im(E) is always negative, as should be the case for the energy of
an unstable state. Back in Minkowski space, this corresponds to a roughly constant density
of radiation between the two charges. The third panel of Figure 5, shows this behavior in a
Monte Carlo simulation [59]. To generate this distribution, a 200 GeV dijet event produced
at 7 TeV center of mass energy at the LHC was simulated. The figure shows the accumulated
energy distribution. Note that the radiation is concentrated between the two charges, and
suppressed away from the dipole axis, just as the energy distribution is in AdS.

Linear growth of energy with separation is normally an indication of confining behavior.
In this case, since the energy is imaginary, it is not confinement in the usual sense, but can
still be interpreted as a type of confinement. In a sense, this linear growth of the (imaginary)
energy with separation is related to the fact that high energy quarks always appear with
an accompanying jet, whose dynamics are described with Sudakov factors. Although this
“Sudakov confinement” of quarks inside jets has little in common with confinement in QCD,
it is not an unreasonable phrase for the linearly growing energy in AdS.

To be specific, consider the case of one incoming and one outgoing Wilson line, as in
deep-inelastic scattering (DIS). In DIS, an electron is scattered off of a proton, with Bjorken
x defined in terms of the momentum transfer qµ and the proton momentum P µ as x =
−q2/2P · q. In the x → 1 limit of DIS at large Q2 = −q2, the outgoing radiation becomes
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contrast the electric field of a normal pair of charges, in flat space, with the imaginary part
of the electric field for two charges in AdS. As the total energy grows with separation, the
electric field approaches a constant between the charges. Notice that in the presence of two
opposite Abelian charges, Im(E) is always negative, as should be the case for the energy of
an unstable state. Back in Minkowski space, this corresponds to a roughly constant density
of radiation between the two charges. The third panel of Figure 5, shows this behavior in a
Monte Carlo simulation [59]. To generate this distribution, a 200 GeV dijet event produced
at 7 TeV center of mass energy at the LHC was simulated. The figure shows the accumulated
energy distribution. Note that the radiation is concentrated between the two charges, and
suppressed away from the dipole axis, just as the energy distribution is in AdS.

Linear growth of energy with separation is normally an indication of confining behavior.
In this case, since the energy is imaginary, it is not confinement in the usual sense, but can
still be interpreted as a type of confinement. In a sense, this linear growth of the (imaginary)
energy with separation is related to the fact that high energy quarks always appear with
an accompanying jet, whose dynamics are described with Sudakov factors. Although this
“Sudakov confinement” of quarks inside jets has little in common with confinement in QCD,
it is not an unreasonable phrase for the linearly growing energy in AdS.

To be specific, consider the case of one incoming and one outgoing Wilson line, as in
deep-inelastic scattering (DIS). In DIS, an electron is scattered off of a proton, with Bjorken
x defined in terms of the momentum transfer qµ and the proton momentum P µ as x =
−q2/2P · q. In the x → 1 limit of DIS at large Q2 = −q2, the outgoing radiation becomes
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Figure 2. Soft-collinear factorization in the planar limit.

ential equation [38], whose source term is called the cusp anomalous dimension γK [41].

There is an additional constant of integration, called G0. These two functions (along

with the β function in a non-conformal theory) control the infrared divergences to all

orders for any amplitude in a planar massless gauge theory. In planar N = 4 sYM,
the cusp anomalous dimension has been determined to all orders in the coupling using

integrability [42]. The BDS ansatz [43] was built up from this description of the infrared

singularities of planar amplitudes, plus the observation for the two- and three-loop four-

point amplitudes that the hard function h essentially reduces to a constant, independent

of the kinematics.

Besides the cusp anomalous dimension, another place that integrability certainly
enters multi-loop scattering amplitudes is in multi-Regge-kinematics, a particular class

of high-energy or small-angle limits of 2 → (n−2) particle scatterings. These kinematics

gave the first indication that the BDS ansatz for MHV amplitudes has to be corrected

beginning at the six-point level [44]. (It was previously argued [45] using the properties

of Wilson loops, that the ansatz should be corrected at two loops for a large value

of n, unless the correspondence between MHV amplitudes and Wilson loops were to
break down. The hexagon Wilson loop was then computed and found to differ from

the ansatz prediction [46].) The dynamics of gluons in the transverse plane is given, in

the leading-logarithmic approximation, by the Hamiltonian for a integrable open spin

chain, as reviewed here by Bartels, Lipatov and Prygarin [47].

In planar N = 4 sYM, another infrared regulator is more convenient for many

purposes, in particular for exploring the loop-level consequences of dual conformal
symmetry, which is not preserved by dimensional regularization. The features of a

recently-developed “Higgs regulator” [48] are reviewed in this issue by Henn [49]. For

this regulator, vacuum expectation values are given to some of the adjoint scalar fields

in the theory, breaking the gauge symmetry in such a way that (in the planar limit)

the amplitudes are regulated by massive particles circulating around the outside of the

loop diagrams. Dual conformal symmetry remains exact in a certain sense. When
the particle masses mi are taken to be much less than the momentum-invariants for the

scattering process, logarithmic divergences develop, the analogs of the 1/ε infrared poles

Introduction to scattering amplitudes 6

Figure 1. Factorization of soft and collinear singularities.

of bosonic and fermionic states the same, and preserve Ward identities for ordinary

supersymmetry.

The general structure of the infrared divergences is well understood from decades
of work in QED as well as QCD [37]. It has been worked out in the most detail in the

context of dimensional regularization [38, 39, 40]. The basic picture is shown in fig. 1.

Soft divergences and collinear divergences associated with the amplitude M each have a

universal form. They can be factorized from each other and from a hard, short-distance

part of the amplitude. Soft divergences, denoted by the blob marked S, come from

exchange of long-wavelength gluons. These gluons do not have the resolving power to
probe the internal structure of the “jets” J of virtual collinear particles which capture

the collinear divergences. Soft gluons can only see the overall color charges of the jets.

An individual jet function Ji depends on the type of particle i, but not on the full

amplitude kinematics. The soft function S does not depend on the particle types, but

only on their momenta and color quantum numbers. In general these quantum numbers

can be mixed by gluon exchange, so S is a matrix in color space. The hard function h
has no infrared singularities, but generically depends on the particle types, colors and

kinematics.

In the planar or large-Nc limit, the picture simplifies considerably, to that shown

in fig. 2. Now M represents the coefficient of a particular color structure, such as

Tr(T a1T a2 · · ·T an) (assuming that all external states are in the adjoint representation;

see section 2). In the planar limit, individual soft gluons can only connect color-adjacent
external partons. There is no mixing of different color structures at large Nc. One can

absorb the entire soft function S into jet functions, which corresponds to breaking up

the right-hand side of fig. 2 into n wedges. Each wedge is bounded by two hard lines,

and is composed of “half” of each of the two jet functions, as well as the soft gluons

exchanged between them. Up to nonsingular terms, the wedge controlling the infrared

divergences represents the square root of the Sudakov form factor, which is defined as
the amplitude for a color-singlet state to decay into a pair of (adjoint) gluons.

In dimensional regularization, the Sudakov form factor obeys a particular differ-

•  Holds in planar limit 
•  Cusp anomalous dimension known exactly in planar N=4 SYM  
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When the number N of jet directions is three or more, the anomalous dimension Γcusp(ni)
can in principle depend on arbitrary combinations of the cusp angles γij. Nontrivial combina-
tions involving three γij’s can appear first at two loops in the coefficient F of the “maximally
non-Abelian” color structure fabc
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k ,
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cusp (ni) =
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i T
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j f(γij) +
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ifabc
T

a
i T

b
j T

c
k F (γij, γjk, γki)

)

, (56)

due to the presence of diagrams depicted in Figure (6). In particular the non-planar di-
agram 6(a) could näıvely contribute a complicated function of all three cusp angles. The
expression for this graph in Feynman gauge was discussed in the lightlike limit in [37] and
[62], and analyzed numerically in [63]. It was finally computed for general cusp-angles in
[64] in a somewhat technical computation using Mellin-Barnes representations. After all
this, the final result turns out to be remarkably simple,

F (a)
Feyn. = −1

2
(γij coth γij)γ

2
jk + antisym. (57)

where “antisym.” stands for signed permutations of i, j, k. This is a sum of terms each of
which only depends on two of the cusp angles.

It is less surprising that the planar and counterterm graphs also have a pairwise form.
For the antisymmetric color structure, the result is [64]

F (b)
Feyn. + F (c)

Feyn. =
1

2
(γij coth γij)× coth γjk

(

γ2
jk + 2γjk log(1− e−2γjk)− Li2(e

−2γjk) +
π2

6

)

+ antisym., (58)

When all the Wilson lines are lightlike, the sum of graphs actually vanishes in Feynman
gauge, a result which is not immediately obvious. At large γ, the −1

2γijγ
2
jk asymptotic

behavior of the non-planar amplitude in Eq. (57) is exactly canceled by contributions from
Eq. (58).

Returning to the difficult non-planar graph, the simplicity of the final result F (a)
Feyn is

easily understood from the AdS picture. In R × AdS, each Wilson line points in the time
direction, and thus sources only the τ component of the gauge field. In conformal gauge
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due to the presence of diagrams depicted in Figure (6). In particular the non-planar di-
agram 6(a) could näıvely contribute a complicated function of all three cusp angles. The
expression for this graph in Feynman gauge was discussed in the lightlike limit in [37] and
[62], and analyzed numerically in [63]. It was finally computed for general cusp-angles in
[64] in a somewhat technical computation using Mellin-Barnes representations. After all
this, the final result turns out to be remarkably simple,
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where “antisym.” stands for signed permutations of i, j, k. This is a sum of terms each of
which only depends on two of the cusp angles.

It is less surprising that the planar and counterterm graphs also have a pairwise form.
For the antisymmetric color structure, the result is [64]
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When all the Wilson lines are lightlike, the sum of graphs actually vanishes in Feynman
gauge, a result which is not immediately obvious. At large γ, the −1

2γijγ
2
jk asymptotic

behavior of the non-planar amplitude in Eq. (57) is exactly canceled by contributions from
Eq. (58).

Returning to the difficult non-planar graph, the simplicity of the final result F (a)
Feyn is

easily understood from the AdS picture. In R × AdS, each Wilson line points in the time
direction, and thus sources only the τ component of the gauge field. In conformal gauge
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•  Sum over pairs for space-like case (Ferroglia et al) 

Here E(0)
F = Aτ (γij) from Eq. (37) is just the scalar potential from a Wilson line in 4

dimensions:
E(0)

F (γ) = γ coth γ (61)

E(1)
F is the next term in the ε expansion of this potential in Feynman gauge, also coming

from the first term in the integral. It is

E(1)
F (γ) = coth γ

(

γ2 + 2γ log(1− e−2γ)− Li2(e
−2γ) +

π2

6

)

(62)

Finally, E(1)
C is the new piece present in conformal gauge and not in Feynman gauge, from

the second term in the integral in Eq. (60). It gives

E(1)
C (γij) =

∫ ∞

0

ds

s
log

χ(s, 1)2

(nis− nj)2
(63)

=

∫ ∞

−∞

dτ log
( cosh τ

cosh τ + cosh γij

)

+

∫ ∞

0

ds

s
log

χ(s, 1)2

1 + s2

= −γ2
ij −

π2

4
+ cχ .

The constant cχ is a gauge-dependent but γ-independent number which will cancel from
the final result (and is exactly zero for χ(|x|, |y|) =

√

x2 + y2). Note that the asymptotic

expansion of E(1)
C at large γ is −γ2, which cancels the asymptotic expansion of E(1)

F , leaving
zero contribution to the antisymmetric color structure in the anomalous dimension for the
light-like limit. Two loop graphs involving only two lines do contribute in the light-like limit,
and give an energy which grows linearly with the cusp angle.

With O(ε) parts of the scalar potential calculated, it is now easy to extract the antisym-
metric part of the two-loop anomalous dimension. The counterterm and planar graphs can
be combined into

I(b) + I(c) =

∫ ∞

0

dt1
t1−2ε
1

[

E(0)
F (γij) + εE(1)

F (γij) + εE(1)
C (γij)

]

(64)

×
{

−1

ε
E(0)

F (γjk) +

∫ t1

0

dt2
t1−2ε
2

[

E(0)
F (γjk) + εE(1)

F (γjk) + εE(1)
C (γjk)

]

}

+ antisym.

After antisymmetrizing, everything vanishes except for the cross term between the coun-
terterm and the ε terms on the first line. Replacing the scaleless t1 integral on the first line
with 1
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structure in Γcusp(vi) (Eq. 56).

When the number N of jet directions is three or more, the anomalous dimension Γcusp(ni)
can in principle depend on arbitrary combinations of the cusp angles γij. Nontrivial combina-
tions involving three γij’s can appear first at two loops in the coefficient F of the “maximally
non-Abelian” color structure fabc
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due to the presence of diagrams depicted in Figure (6). In particular the non-planar di-
agram 6(a) could näıvely contribute a complicated function of all three cusp angles. The
expression for this graph in Feynman gauge was discussed in the lightlike limit in [37] and
[62], and analyzed numerically in [63]. It was finally computed for general cusp-angles in
[64] in a somewhat technical computation using Mellin-Barnes representations. After all
this, the final result turns out to be remarkably simple,

F (a)
Feyn. = −1

2
(γij coth γij)γ

2
jk + antisym. (57)

where “antisym.” stands for signed permutations of i, j, k. This is a sum of terms each of
which only depends on two of the cusp angles.

It is less surprising that the planar and counterterm graphs also have a pairwise form.
For the antisymmetric color structure, the result is [64]
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6
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When all the Wilson lines are lightlike, the sum of graphs actually vanishes in Feynman
gauge, a result which is not immediately obvious. At large γ, the −1

2γijγ
2
jk asymptotic

behavior of the non-planar amplitude in Eq. (57) is exactly canceled by contributions from
Eq. (58).

Returning to the difficult non-planar graph, the simplicity of the final result F (a)
Feyn is

easily understood from the AdS picture. In R × AdS, each Wilson line points in the time
direction, and thus sources only the τ component of the gauge field. In conformal gauge
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[64] in a somewhat technical computation using Mellin-Barnes representations. After all
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2
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behavior of the non-planar amplitude in Eq. (57) is exactly canceled by contributions from
Eq. (58).

Returning to the difficult non-planar graph, the simplicity of the final result F (a)
Feyn is

easily understood from the AdS picture. In R × AdS, each Wilson line points in the time
direction, and thus sources only the τ component of the gauge field. In conformal gauge
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Figure 2. Soft-collinear factorization in the planar limit.

ential equation [38], whose source term is called the cusp anomalous dimension γK [41].

There is an additional constant of integration, called G0. These two functions (along

with the β function in a non-conformal theory) control the infrared divergences to all

orders for any amplitude in a planar massless gauge theory. In planar N = 4 sYM,
the cusp anomalous dimension has been determined to all orders in the coupling using

integrability [42]. The BDS ansatz [43] was built up from this description of the infrared

singularities of planar amplitudes, plus the observation for the two- and three-loop four-

point amplitudes that the hard function h essentially reduces to a constant, independent

of the kinematics.

Besides the cusp anomalous dimension, another place that integrability certainly
enters multi-loop scattering amplitudes is in multi-Regge-kinematics, a particular class

of high-energy or small-angle limits of 2 → (n−2) particle scatterings. These kinematics

gave the first indication that the BDS ansatz for MHV amplitudes has to be corrected

beginning at the six-point level [44]. (It was previously argued [45] using the properties

of Wilson loops, that the ansatz should be corrected at two loops for a large value

of n, unless the correspondence between MHV amplitudes and Wilson loops were to
break down. The hexagon Wilson loop was then computed and found to differ from

the ansatz prediction [46].) The dynamics of gluons in the transverse plane is given, in

the leading-logarithmic approximation, by the Hamiltonian for a integrable open spin

chain, as reviewed here by Bartels, Lipatov and Prygarin [47].

In planar N = 4 sYM, another infrared regulator is more convenient for many

purposes, in particular for exploring the loop-level consequences of dual conformal
symmetry, which is not preserved by dimensional regularization. The features of a

recently-developed “Higgs regulator” [48] are reviewed in this issue by Henn [49]. For

this regulator, vacuum expectation values are given to some of the adjoint scalar fields

in the theory, breaking the gauge symmetry in such a way that (in the planar limit)

the amplitudes are regulated by massive particles circulating around the outside of the

loop diagrams. Dual conformal symmetry remains exact in a certain sense. When
the particle masses mi are taken to be much less than the momentum-invariants for the

scattering process, logarithmic divergences develop, the analogs of the 1/ε infrared poles
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FIG. 6: 2-loop graphs contributing to the coefficient F (γij , γjk, γki) of the antisymmetric color

structure in Γcusp(vi) (Eq. 56).

When the number N of jet directions is three or more, the anomalous dimension Γcusp(ni)
can in principle depend on arbitrary combinations of the cusp angles γij. Nontrivial combina-
tions involving three γij’s can appear first at two loops in the coefficient F of the “maximally
non-Abelian” color structure fabc
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due to the presence of diagrams depicted in Figure (6). In particular the non-planar di-
agram 6(a) could näıvely contribute a complicated function of all three cusp angles. The
expression for this graph in Feynman gauge was discussed in the lightlike limit in [37] and
[62], and analyzed numerically in [63]. It was finally computed for general cusp-angles in
[64] in a somewhat technical computation using Mellin-Barnes representations. After all
this, the final result turns out to be remarkably simple,
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2
(γij coth γij)γ

2
jk + antisym. (57)

where “antisym.” stands for signed permutations of i, j, k. This is a sum of terms each of
which only depends on two of the cusp angles.

It is less surprising that the planar and counterterm graphs also have a pairwise form.
For the antisymmetric color structure, the result is [64]
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When all the Wilson lines are lightlike, the sum of graphs actually vanishes in Feynman
gauge, a result which is not immediately obvious. At large γ, the −1

2γijγ
2
jk asymptotic

behavior of the non-planar amplitude in Eq. (57) is exactly canceled by contributions from
Eq. (58).

Returning to the difficult non-planar graph, the simplicity of the final result F (a)
Feyn is

easily understood from the AdS picture. In R × AdS, each Wilson line points in the time
direction, and thus sources only the τ component of the gauge field. In conformal gauge
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easily understood from the AdS picture. In R × AdS, each Wilson line points in the time
direction, and thus sources only the τ component of the gauge field. In conformal gauge
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gauge up to order ε 

•  Cross term from counterterm graph and O(ε) piece gives 

Here E(0)
F = Aτ (γij) from Eq. (37) is just the scalar potential from a Wilson line in 4

dimensions:
E(0)

F (γ) = γ coth γ (61)

E(1)
F is the next term in the ε expansion of this potential in Feynman gauge, also coming

from the first term in the integral. It is
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F (γ) = coth γ

(
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(62)

Finally, E(1)
C is the new piece present in conformal gauge and not in Feynman gauge, from

the second term in the integral in Eq. (60). It gives
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The constant cχ is a gauge-dependent but γ-independent number which will cancel from
the final result (and is exactly zero for χ(|x|, |y|) =

√

x2 + y2). Note that the asymptotic

expansion of E(1)
C at large γ is −γ2, which cancels the asymptotic expansion of E(1)

F , leaving
zero contribution to the antisymmetric color structure in the anomalous dimension for the
light-like limit. Two loop graphs involving only two lines do contribute in the light-like limit,
and give an energy which grows linearly with the cusp angle.

With O(ε) parts of the scalar potential calculated, it is now easy to extract the antisym-
metric part of the two-loop anomalous dimension. The counterterm and planar graphs can
be combined into
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∫ ∞

0

dt1
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E(0)
F (γij) + εE(1)

F (γij) + εE(1)
C (γij)

]

(64)

×
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−1

ε
E(0)

F (γjk) +

∫ t1

0

dt2
t1−2ε
2

[

E(0)
F (γjk) + εE(1)

F (γjk) + εE(1)
C (γjk)

]
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+ antisym.

After antisymmetrizing, everything vanishes except for the cross term between the coun-
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with 1
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F (b) + F (c) =
1

2
E(0)

F (γij)
(

E(1)
F (γjk) + E(1)

C (γjk)
)
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=
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γ2
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π2

6

)

− 1

2
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2
jk + antisym. (65)
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Here E(0)
F = Aτ (γij) from Eq. (37) is just the scalar potential from a Wilson line in 4

dimensions:
E(0)

F (γ) = γ coth γ (61)

E(1)
F is the next term in the ε expansion of this potential in Feynman gauge, also coming

from the first term in the integral. It is

E(1)
F (γ) = coth γ

(

γ2 + 2γ log(1− e−2γ)− Li2(e
−2γ) +

π2

6

)

(62)

Finally, E(1)
C is the new piece present in conformal gauge and not in Feynman gauge, from
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∫ ∞
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ds

s
log

χ(s, 1)2
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=
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−∞
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∫ ∞

0

ds

s
log

χ(s, 1)2

1 + s2

= −γ2
ij −

π2

4
+ cχ .
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Full result agrees exactly with Ferroglia et al. 
•  They needed integral reduction with Mellin-Barnes! 
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Figure 2. Soft-collinear factorization in the planar limit.

ential equation [38], whose source term is called the cusp anomalous dimension γK [41].

There is an additional constant of integration, called G0. These two functions (along

with the β function in a non-conformal theory) control the infrared divergences to all

orders for any amplitude in a planar massless gauge theory. In planar N = 4 sYM,
the cusp anomalous dimension has been determined to all orders in the coupling using

integrability [42]. The BDS ansatz [43] was built up from this description of the infrared

singularities of planar amplitudes, plus the observation for the two- and three-loop four-

point amplitudes that the hard function h essentially reduces to a constant, independent

of the kinematics.

Besides the cusp anomalous dimension, another place that integrability certainly
enters multi-loop scattering amplitudes is in multi-Regge-kinematics, a particular class

of high-energy or small-angle limits of 2 → (n−2) particle scatterings. These kinematics

gave the first indication that the BDS ansatz for MHV amplitudes has to be corrected

beginning at the six-point level [44]. (It was previously argued [45] using the properties

of Wilson loops, that the ansatz should be corrected at two loops for a large value

of n, unless the correspondence between MHV amplitudes and Wilson loops were to
break down. The hexagon Wilson loop was then computed and found to differ from

the ansatz prediction [46].) The dynamics of gluons in the transverse plane is given, in

the leading-logarithmic approximation, by the Hamiltonian for a integrable open spin

chain, as reviewed here by Bartels, Lipatov and Prygarin [47].

In planar N = 4 sYM, another infrared regulator is more convenient for many

purposes, in particular for exploring the loop-level consequences of dual conformal
symmetry, which is not preserved by dimensional regularization. The features of a

recently-developed “Higgs regulator” [48] are reviewed in this issue by Henn [49]. For

this regulator, vacuum expectation values are given to some of the adjoint scalar fields

in the theory, breaking the gauge symmetry in such a way that (in the planar limit)

the amplitudes are regulated by massive particles circulating around the outside of the

loop diagrams. Dual conformal symmetry remains exact in a certain sense. When
the particle masses mi are taken to be much less than the momentum-invariants for the

scattering process, logarithmic divergences develop, the analogs of the 1/ε infrared poles
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R×AdS

AdS

n2
i → 0

FIG. 7: After doing all the τ -integrals, the computation of certain diagrams dimensionally reduces

from R × AdS to AdS. In the limit where the charges approach the boundary n2
i → 0, we obtain

a Witten diagram.

which precisely matches F (a) + F (b) + F (c) in Feynman gauge. The difficult non-planar
graph was reproduced with a far simpler calculation involving the O(ε) parts of the con-
formal gauge propagator. Note that the gauge-dependent constant cχ drops out due to the
antisymmetrization.

For three light-like Wilson lines the calculation of the diagrams in Fig. 6 can also be
considered directly using a conformal gauge. To do this we should use the conformal gauge
from Eq. (A8), rather than the one in Eq. (55). This conformal gauge has no Dτ i or Diτ

mixing terms and is identical to Feynman gauge for Dττ in d-dimensions. The lack of mixing
terms immediately implies that Fig. 6a is zero, a result that is only seen in Feynman gauge
by direct computation [37]. For the remaining diagrams, Fig. 6b and Fig. 6c, the calculation
is identical to the one in Feynman gauge, so the sum of these diagrams is zero just as it is
there [37, 62].

8. RELATION TO WITTEN DIAGRAMS IN THE LIGHTLIKE LIMIT

Finally, let us comment on an interesting formal similarity between the perturbation
expansion for Γcusp(ni) in the lightlike limit and the Witten diagram expansion for AdS
scattering amplitudes, which has been well studied in the AdS/CFT literature [65–70].
Recall from the previous section that diagrams with at most one gluon attached to each
line involve only τ -independent modes of the gauge field. After performing integrals in the
τ -direction, they become AdS scattering amplitudes in a gauge theory containing an adjoint
scalar, which is sourced by each charge. As the parton directions become lightlike n2

i → 0,
the corresponding charges move off to the boundary of AdS. We are left, at least formally,
with a boundary-to-boundary scattering amplitude — a Witten diagram (Figure 7).

We could have anticipated some relation to Witten diagrams simply from the geometry.
Our realization of AdS3 as a hyperboloid inside R1,3 is known in the AdS/CFT literature as
the embedding space (or sometimes covering space) formalism [71–76]. Its utility is that the
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No conformal cross ratios? 
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FIG. 7: After doing all the τ -integrals, the computation of certain diagrams dimensionally reduces

from R × AdS to AdS. In the limit where the charges approach the boundary n2
i → 0, we obtain

a Witten diagram.

which precisely matches F (a) + F (b) + F (c) in Feynman gauge. The difficult non-planar
graph was reproduced with a far simpler calculation involving the O(ε) parts of the con-
formal gauge propagator. Note that the gauge-dependent constant cχ drops out due to the
antisymmetrization.

For three light-like Wilson lines the calculation of the diagrams in Fig. 6 can also be
considered directly using a conformal gauge. To do this we should use the conformal gauge
from Eq. (A8), rather than the one in Eq. (55). This conformal gauge has no Dτ i or Diτ

mixing terms and is identical to Feynman gauge for Dττ in d-dimensions. The lack of mixing
terms immediately implies that Fig. 6a is zero, a result that is only seen in Feynman gauge
by direct computation [37]. For the remaining diagrams, Fig. 6b and Fig. 6c, the calculation
is identical to the one in Feynman gauge, so the sum of these diagrams is zero just as it is
there [37, 62].

8. RELATION TO WITTEN DIAGRAMS IN THE LIGHTLIKE LIMIT

Finally, let us comment on an interesting formal similarity between the perturbation
expansion for Γcusp(ni) in the lightlike limit and the Witten diagram expansion for AdS
scattering amplitudes, which has been well studied in the AdS/CFT literature [65–70].
Recall from the previous section that diagrams with at most one gluon attached to each
line involve only τ -independent modes of the gauge field. After performing integrals in the
τ -direction, they become AdS scattering amplitudes in a gauge theory containing an adjoint
scalar, which is sourced by each charge. As the parton directions become lightlike n2

i → 0,
the corresponding charges move off to the boundary of AdS. We are left, at least formally,
with a boundary-to-boundary scattering amplitude — a Witten diagram (Figure 7).

We could have anticipated some relation to Witten diagrams simply from the geometry.
Our realization of AdS3 as a hyperboloid inside R1,3 is known in the AdS/CFT literature as
the embedding space (or sometimes covering space) formalism [71–76]. Its utility is that the
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Light-like limit 
relates Wilson line loops to Witten diagrams 

E.g.  

where Hd�1

d � 1-dimensional hyperbolic space, in other words Euclidean AdSd�1
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integration measure becomes ⌧d�1d⌧dHd�1
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where X = x/⌧ is a point on the Hyperboloid of unit ⌧ . The remaining integral has been
extensively studied in the AdS/CFT literature, because it is essentially a Witten diagram
(AdS scattering amplitude) of scalars interacting by a 4-point vertex in AdSd�1

.
In general, consider a Witten diagram of scalars interacting by a 4-point vertex. As

we have seen, AdSd�1

can be embedded Md. In this case, the conformal boundary of AdS
becomes the d� 2-sphere of null directions in Md. If we label a boundary point by a null
vector n, and a point in AdS by a vector on the hyperboloid X, then the boundary to bulk
propagator for a scalar of mass m is just (�2X · ni)��, where � is the dimension of the
CFT operator dual to the scalar, related to m by

� =
1
2
(p +

p
p2 + 4m2) (8)

where p = d�1 is the dimension of AdS. The Witten diagram for four scalars of dimensions
�

1

, . . .�
4

is then the product of bulk to boundary propagators, integrated over AdS. This
is called a D-function (see Appendix B of 0903.4437v1)
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where we’ve defined the convenient variables z and z in terms of the cross ratios u, v. In
our case, we’re interested in
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Figure 6: One-loop (a), two-loop (b), and three-loop (c) connected webs contributing to the

soft anomalous-dimension matrix. The dots represent color generators, which appear when

the gluons are attached to Wilson lines. In each set, only the first web gives rise to a new

color structure.
6.1 One-loop analysis
In this case the relevant web consists of a single gluon, as shown in Figure 6(a). If it is attached

to two different Wilson lines i and j, then the resulting color structure is Ti · Tj . In this case

non-trivial momentum dependence can arise, which can lead to a factor βij . Recall that only

linear dependence on the cusp angle is allowed. For terms without momentum dependence,

the sum over parton legs reduces the color structure to a diagonal one, since relation (11) can

be applied in this case. Likewise, if the ends of the exchanged gluon are attached to a single

Wilson line i, then the color structure is T 2
i = Ci. It follows that at one-loop order the soft

anomalous-dimension matrix is indeed of the form (53).

6.2 Two-loop analysis

In this case two webs need to be considered, which are depicted in Figure 6(b). The connected

web containing the gluon self-energy has the same color structure as a single gluon exchange,

and hence it does not lead to any new structures in the result (53). The color structure of

the three-gluon web is proportional to −if abc times three color generators, one for each leg.

There are thus three possibilities, which we consider separately.

If all gluons are attached to a single Wilson line, then the resulting color structure is

−if abc
T a
i T b

i T c
i = CACi

2 .

(65)

In this case no momentum dependence can arise. If the gluons are attached to two different

Wilson lines i and j, then the resulting color structure is (recall that generators belonging to

different partons commute)

−if abc
T a
i T b

i T c
j = CA

2 Ti · Tj .

(66)
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Casimir scaling 

Figure 7: Four-loop connected webs involving higher Casimir invariants.

planar N = 4 SYM was proposed, which is given by the solution of a certain integral equation.
This conjecture has been checked by four-loop calculations in the weak-coupling limit [76] and
to second order in the strong-coupling expansion using AdS/CFT and a two-loop superstring
calculation [77].

Higher Casimir invariants can be constructed by considering symmetrized traces

da1a2...anR = tr
[
(T a1

R T
a2
R . . . T an

R )+
]

(83)

of generators in a representation R. Any such trace contracted with n generators defines a
Casimir invariant, since

Cn(R,R′) = da1a2...anR T
a1
R′ T

a2
R′ . . . T an

R′ (84)

commutes with all generators in the representation R of the group. If R is irreducible, then
Schur’s lemma implies that Cn(R,R′) is proportional to the unit matrix. These Casimir
invariants are, however, not all independent. To obtain an independent set of Casimir oper-
ators it is sufficient to consider symmetric traces in the fundamental representation to define
the d-symbols, since da1a2...anR = In(R) da1a2...anF with a representation-dependent index In(R).
Furthermore, the invariants can be redefined, da1...an → da1...an⊥ , such that they fulfill the or-
thogonality conditions da1...al...an⊥ da1...al⊥ = 0 [78, 79]. For SU(N) groups, N − 1 independent
invariants can be constructed in this way. More details on the evaluation of group-theory
factors appearing in Feynman diagrams can be found in [80].

Let us now consider possible contributions of these new color structures to the cusp part
of the soft anomalous-dimension matrix. The case n = 3 is irrelevant. The corresponding
connected web, depicted in the middle graph in Figure 6(c), consists of three gluons attached
to a gluon or fermion loop. These contributions have antisymmetric color structure fabc. Sym-
metric traces of four color generators do arise, however, from the diagrams shown in Figure 7.
The corresponding single connected webs can contribute to the soft anomalous-dimension ma-
trix starting at four-loop order. Our goal is to study the most general contributions of these
webs proportional to a cusp logarithm. A complete classification of potential new color and
momentum structures that could arise at four-loop order is left for future work.

Using the notation

Dijkl = dabcdF T
a
i T

b
j T

c
k T

d
l = dabcdF

(
T

a
i T

b
j T

c
k T

d
l

)
+
, (85)

the possible contributions to the soft anomalous-dimension matrix linear in cusp angles have
the following structures: βij Diijj and βij Diiij (gluon attachments to two different Wilson
lines), βjk Diijk and (βij + βik)Diijk (attachments to three different Wilson lines), or βij Dijkl
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First violation could occur at 4-loops…. 

Figure 7: Four-loop connected webs involving higher Casimir invariants.
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Energy interpretation 

and everything is fine, at leading-order.
At next-to-leading order, we must include the vacuum polarization graphs, which gives some-

thing proportional to δ3 with the associated αsln
−p2

µ2
factor. Renormalizing the potential at one

scale and evaluating at another would imply that (with nf =0)

p1
2Ṽ (p1

2)− p2
2Ṽ (p2

2)=

[

10
3

CA +(1− ξ)CA

]

gs
4

32π2 ln
p1
2

p2
2 (112)

which is not gauge invariant! The origin of the problem is that Jµ
a is not conserved, only covariantly

conserved, DµJµ
a=0. So ∂µJµ

a=−gsf
abcAµ

b Jµ
c 0. This was shown in Lecture IV-1. In other words,

while a current of electrons makes a well-defined source for photons, a current of quarks does not
make a well-defined source of gluons.

Another way to understand the problem is to recall that the β-function calculation required
not just the vacuum polarization graphs but the vertex renormalization, and the quark self-energy.
These last two diagrams would be absent for a classical current Jµ

a not associated with propagating
fields.

There are a few ways around the absence of classical currents. One way is just to be careful
about renormalization and computing physical quantities. This is what led to the β-function
calculation above. For S-matrix elements, this rather formal approach is the most practical – one
does not need a classical interpretation of the QCD charge in terms of a potential to get physical
predictions for colliders. On the other hand, being able to define a potential and evaluate it at
large distances and strong coupling might give us insights into confinement. This led Wilson to
propose a definition of a potential in terms of a Wilson loop, which we now discuss.

7.2 Potential from Wilson loops

We saw that 〈Ω|T {Jµ
a(r)Jν

b(0)}|Ω〉 is not gauge invariant and therefore does not provide a useful
definition of a potential in QCD. We will now argue that a better definition can be made through
the expectation value of a Wilson loop

V (r)= lim
T→∞

1
iT

ln〈Ω|tr{Wloop
P }|Ω〉 (113)

where the trace is a color trace (projecting out the color singlet contribution) and

Wloop
P =P

{

exp

[

igs

∮

P

Aµ
aTij

adxµ

]}

(114)

where P denotes path-ordering and P denotes the path of the loop, which we take to be a large
rectangle in the t-z plane going from (t, z)= (−T , 0) to (T , 0) to (T ,R) to (−T ,R) and then back
to (−T , 0), as shown in Figure 2. This definition is manifestly gauge invariant.

T

r
(a) (b)

Figure 2. The expectation value of a rectangular Wilson loop (a) in the limit T !r can be used as a gauge-
invariant definition of the QCD potential. On the lattice, this expectation value grows as the area of the
loop not its perimeter, since the leading contribution comes from tiling the loop with plaquettes (b).

18 Section 7

V (R) = lim
T!1

1

iT
lnhW

loop

i

W
loop

= CF
↵s

r
+O(↵2

s)

•  Casimir scaling violated at 3-loops (Sumino et al, 2010) 
•  Calculation done in Coulomb gauge. 
•  Equivalent calculation in conformal gauge would indicate 
          Casimir-scaling violation for Γcusp 



Conclusions 

•  Mapping to AdS helps understand infrared structure 

FIG. 2: A coordinate change maps Minkowski space to R × AdS. In this figure the outgoing

Wilson lines become static charges in AdS, and their tree level energy in AdS is equal to the

original one-loop anomalous dimension for the lines.

forbidden were suggested in Ref. [41]. Very recently it was argued that these terms
are forbidden by considerations from the Regge limit in Refs. [42, 43].

Most of these results have been shown only through direct, and sometimes laborious calcu-
lations. Even a simple result, such as Abelian exponentiation, requires the use of eikonal
identities and monitoring of combinatoric factors. In this paper, we will show how some of
these results can be understood in a simple way using a mapping inspired by the approximate
conformal invariance of QCD.

At the classical level, QCD is conformally invariant. This symmetry is broken by quantum
effects, but for high energy scattering it continues to have implications for the structure of
perturbative results. Examples of the implications of conformal symmetry for QCD can be
found in Refs. [32, 44–48]. Our main focus here will be on exploiting conformal invariance to
understand properties of the anomalous dimensions of Wilson lines relevant for jet physics.

A Wilson line emanating from the origin in the direction nµ comprises the points xµ =
snµ, for s > 0. A scale transformation is simply a change in s. Scale invariance is made
more manifest by defining a new time coordinate τ ≡ ln |x| where |x| is the (Lorentzian)
distance from the origin. This makes the Wilson lines parallel, as shown in Figure 2. In
terms of τ , rescaling becomes simply time translation, and conformal symmetry becomes
the statement that the physics is time translation invariant in τ . The Wilson lines become
static charges whose energy is the anomalous dimension. Spatial slices in these coordinates
are copies of Euclidean Anti-deSitter space (AdS). In this paper, we describe how many of
the features of Wilson lines enumerated above can be understood in AdS coordinates. For
example, that the Coulomb potential is one-loop exact in QED automatically implies that
the anomalous dimension of multiple Wilson line operators are one-loop exact in QED.

In addition to providing a pleasing physical picture, radial coordinates make a number of
calculations much easier. One of the reasons that the classical conformal invariance of QCD
rarely simplifies diagrammatic computations is that it is broken by standard gauge choices,
such as Feynman gauge. Feynman gauge in flat space leads to kinetic mixing between the
time-like components Aτ and space-like components Ai of the gauge field in R×AdS. Here
we introduce a new gauge, which we call conformal gauge, in which there is no such mixing.
One consequence is that in this gauge, since only Aτ is sourced by the Wilson lines, and
there is no A3

τ or A4
τ vertex in Yang-Mills theory, many of the non-planar graphs at 2 and

3-loops automatically vanish. This automatically implies that the only graphs at 2-loops
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Figure 1. Factorization of soft and collinear singularities.

of bosonic and fermionic states the same, and preserve Ward identities for ordinary

supersymmetry.

The general structure of the infrared divergences is well understood from decades
of work in QED as well as QCD [37]. It has been worked out in the most detail in the

context of dimensional regularization [38, 39, 40]. The basic picture is shown in fig. 1.

Soft divergences and collinear divergences associated with the amplitude M each have a

universal form. They can be factorized from each other and from a hard, short-distance

part of the amplitude. Soft divergences, denoted by the blob marked S, come from

exchange of long-wavelength gluons. These gluons do not have the resolving power to
probe the internal structure of the “jets” J of virtual collinear particles which capture

the collinear divergences. Soft gluons can only see the overall color charges of the jets.

An individual jet function Ji depends on the type of particle i, but not on the full

amplitude kinematics. The soft function S does not depend on the particle types, but

only on their momenta and color quantum numbers. In general these quantum numbers

can be mixed by gluon exchange, so S is a matrix in color space. The hard function h
has no infrared singularities, but generically depends on the particle types, colors and

kinematics.

In the planar or large-Nc limit, the picture simplifies considerably, to that shown

in fig. 2. Now M represents the coefficient of a particular color structure, such as

Tr(T a1T a2 · · ·T an) (assuming that all external states are in the adjoint representation;

see section 2). In the planar limit, individual soft gluons can only connect color-adjacent
external partons. There is no mixing of different color structures at large Nc. One can

absorb the entire soft function S into jet functions, which corresponds to breaking up

the right-hand side of fig. 2 into n wedges. Each wedge is bounded by two hard lines,

and is composed of “half” of each of the two jet functions, as well as the soft gluons

exchanged between them. Up to nonsingular terms, the wedge controlling the infrared

divergences represents the square root of the Sudakov form factor, which is defined as
the amplitude for a color-singlet state to decay into a pair of (adjoint) gluons.

In dimensional regularization, the Sudakov form factor obeys a particular differ-
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