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Why will EFTs be useful at 100 TeV? 
April 24, 2014 Matthew Schwartz 

1.  Resummation of large logarithms 
•  Critical for precision jet substructure (e.g. jet mass) 

2.  They clarify scale setting issues 
•  Inclusive cross sections (e.g. Z boson pT distribution) 
•  Phase space cuts (e.g. pT vetos) 
 

3.  Factorization 
•  Parameterization of non-perturbative effects 
•  Lets us exploit universality (e.g. PDFs) 

4.  They reveal hidden symmetries 

5.  …. 

6.  EFTs always useful, in ways that are hard to predict ahead 
of time 

Reasons EFTs 
have been useful 
at other energies 



1. RESUMMATION 



Jet mass at the LHC 

Chien, Kelley, MDS, Zhu  arXiv:1208.0010 

April 24, 2014 Matthew Schwartz 

•  See also 
  Dasgupta et. al (arXiv:1207.1640) 
 Jottenus et al (arXiv: 1302.0846) 

•  Fixed order calculations cannot even qualitatively describe most jet shapes 

•  Resummed distributions using EFT look great 

•  Resummation using EFT methods is 
systematically improvable. 

•  Much progress 
•  More complicated jet shapes 
•  Jet algorithm dependence 
•  Non-global structure 
•  Automation 
•  … 



Resummation improves convergence 

Fixed Order Effective Field Theory 

April 24, 2014 Matthew Schwartz 

Thrust distribution in e+e- è jets  

Resummation useful even if logarithms are not that large  



Resummation beyond NLL may be critical at 100 TeV 

April 24, 2014 Matthew Schwartz 
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Figure 12: Comparison between theoretical predictions in effective field theory at first order
and fourth order, as defined in table 1, and pythia at the parton and hadron level. aleph

data is included in the first panel.

matching the perturbative soft and non-perturbative shape functions were discussed recently
in [58].

Since neither Monte-Carlo hadronization corrections nor a simple non-perturbative shift
model are satisfactory, we conclude that the best option at this point is to fit the parton-
level distribution. To estimate the hadronization uncertainties, we simply lift the errors from
previous studies of the aleph and opal data. Numerically this is essentially equivalent to
using ariadne to calculate the hadronization and quark-mass corrections and the difference
to pythia as an estimate of the resulting uncertainty, as can be seen in Tables 2 and 3. With
the increased perturbative precision of our result, it would be important to get better control
over hadronization effects and to have a more reliable way to assess the associated uncertainty.
As we discussed above, this can be achieved with a dedicated shape-function analysis involving
also lower energy data.

6 Conclusions

We have resummed the leading logarithmic corrections to the thrust distribution to N3LL.
Our calculation is based on an all-order factorization theorem for the thrust distribution in
the two-jet region T → 1. The traditional method for resummation of event shapes is limited
to NLL. The present paper goes beyond this not only by one but by two orders in logarithmic
accuracy.

The factorization theorem, obtained using Soft-Collinear Effective Theory, separates the
contributions associated with different energy scales in a transparent way. Those associated
with higher energy scales are absorbed into Wilson coefficients. Solving the renormalization-
group equations resums large perturbative logarithms of scale ratios. An advantage of the
effective theory treatment is that the factorization theorem is derived at the operator level. The
different building blocks in the factorization theorem are given by operator matrix elements
and appear in a variety of other processes. With the exception of the two-loop constant in the
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pT = 10 TeV  
     ??? 

Pythia (NLL), EFT (NNNLL+NNLO) & data 
all consistent for 91 GeV e+e- 

Pythia (NLL) and EFT (NNNLL+NNLO) 
Inconsistent at 1 TeV e+ e- 

Pythia (NLL), EFT (NNLL+NLO) & data 
all consistent for 500 GeV jets (LHC 7) 

Pythia (NLL) vs EFT (NNNLL+NNLO) vs data 
at 100 TeV?? 

Thrust 
e+e- 

Jet mass 
    pp 



2. SCALE SETTING 



Scale setting 
September 19, 2013 Matthew Schwartz 

•  Fixed order calculations have one scale µ to choose 
•  Choice only clear for completely inclusive cross sections 
•  pT vetos, jet energy cuts, triggers, etc. introduce new scales 

Many reasonable 
scale choices:  µ =

q
p2T +m2

W

µ = HT

µ = max{mW , Ejet}
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Figure 6: Scale variations at next-to-leading order. The blue southeast stripes show the scale
variation of the NLO calculation (called NNLO in fewz) with µ = µf = µr = MW , as in the
atlas paper. The red northeast stripes show the prediction using µf = µr =

√
M2

W + p2T and
the black vertical stripes have µf and µr set to the scales in Eq. (29). Bands correspond to
varying µ = µf = µr by factors of two from these default scales.

leading-order PDF sets which have a larger value of αs, instead of the NNLO PDFs we use
throughout. The increase in the cross section from NLL to N2LL is mostly due to the one-loop
constants in the soft and hard functions, as can be seen from the right panel of Figure 3. We
have checked how much of a shift the known two-loop jet and soft function constants induce
and find that it is below a per cent.

4 Comparison with LHC data

We are now ready to compare to LHC data. We discuss separately the two processes we study,
direct photon and W production. For numerical work we use the NNLO MSTW 2008 PDF set
and its associated αs(MZ) = 0.1171 [45]. We also use MW = 80.399 GeV, αe.m. = 127.916−1,
sin2 θW = 0.2226, Vud = 0.97425, Vus = 0.22543, Vub = 0.00354, Vcd = 0.22529, Vcs = 0.97342
and Vcb = 0.04128.

4.1 Direct photon

For direct photon production, to be consistent with the comparison to Tevatron data in [18],
we use the scale choices from that paper

µh = pT ,

14

Pick one and vary by a factor of 2 or 4 or 100 

Differences between 
parameterizations 
are larger than the 
individual variations 

Example: Inclusive W production, differential in pT of the W 



Jet scale 

Hard 
scale 
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Figure 3: Scale sensitivities. These plots show the effect of adding part of the fixed-order NLO
calculation to the LO calculation. The left panel shows what happens if all the µ-dependent
terms at NLO are added together. There is a slow monotonic logarithmic µ dependence,
with no natural extremum. In contrast, when the hard, jet, or soft contributions are added
separately, there are natural extrema. These extrema indicate the average value of momenta
〈p〉 appearing in the logarithms. That there are different extrema for the different components
proves that multiple scales are relevant. The plots are for W+ bosons, but the qualitative
features are the same for all bosons.

these degrees of freedom, appearing in the large logarithms. After integrating over the PDFs,
the perturbative correction will then have the form

∆σ

σLO
= αs(µ)(c2L

2 + c1L+ c0) , (28)

with L = ln µ
〈p〉 . If µ is chosen either much lower or much higher than 〈p〉, the perturbative

corrections will become large. Since we do not have an analytic expression for the distribution,
due to the necessity of convoluting with PDFs, we determine 〈p〉 numerically by computing the
individual corrections to the cross section as a function of µ. The result is shown in the right
plot of Figure 3. It has the expected form (28) and we see that while the jet and soft scales
are concave upwards, the hard curve is concave downward. The extrema of the corresponding
curves indicate the scales 〈p〉 that dominate these contributions after integrating over the
PDF. It is then natural to define our default values for µ as the positions of the extrema.
That there are different extrema for the different components proves that multiple scales are
relevant. These scales are conflated in the fixed-order calculation. The left plot in Figure 3
shows the fixed-order scale dependence. In this case, there is monotonic µ dependence, with
no natural extremum.

To find the scales numerically we extract these extrema from the curves. Using a number of
different machine center-of-mass energies (we tried 2, 7, 14, and 100 TeV), pp and p̄p collisions,
and various boson masses, we determine a reasonable approximation to these points is given
by the following functional forms
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Figure 3: Scale sensitivities. These plots show the effect of adding part of the fixed-order NLO
calculation to the LO calculation. The left panel shows what happens if all the µ-dependent
terms at NLO are added together. There is a slow monotonic logarithmic µ dependence,
with no natural extremum. In contrast, when the hard, jet, or soft contributions are added
separately, there are natural extrema. These extrema indicate the average value of momenta
〈p〉 appearing in the logarithms. That there are different extrema for the different components
proves that multiple scales are relevant. The plots are for W+ bosons, but the qualitative
features are the same for all bosons.
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PDF. It is then natural to define our default values for µ as the positions of the extrema.
That there are different extrema for the different components proves that multiple scales are
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shows the fixed-order scale dependence. In this case, there is monotonic µ dependence, with
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To find the scales numerically we extract these extrema from the curves. Using a number of
different machine center-of-mass energies (we tried 2, 7, 14, and 100 TeV), pp and p̄p collisions,
and various boson masses, we determine a reasonable approximation to these points is given
by the following functional forms
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P P

High pT  
W boson 

EFTs reveal the relevant scales: 

Soft scale 

Individual variation show extrema 
    (natural µhard, µjet, µsoft scales, like Q) 

When put together µhard=µjet=µsoft=µ  gives NLO 

No natural µ at NLO (or NnLO). Cannot set all scales equal.  

Becher, Lorentzen and MDS, Phys.Rev. D 86 (2012)  

~ jet mass 

~ out of jet energy 

~ pT 



W + JET at the LHC 

P

jet 

P

W boson 
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Theory vs. ATLAS dat a
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Figure 10: Comparison of theory to ATLAS data for the W spectra. The red band is the NLO
prediction, using µf = µr = mW , as in [cite atlas paper]. The N3LL + NLO prediction, in
green, is in excellent agreement with the data. Dahsed blue lines indicate PDF uncertainties
which are of order the scale uncertainties at N3LL + NLO order.
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 PeTeR: public code for high-pT W/Z/γ	


  

September 19, 2013 Matthew Schwartz 

http://peter.hepforge.org/ 

Becher, Lorentzen, and MDS, (2010, 2011, 2012, 2013 …) 



N3LLp+NNLO matched predictions
Becher, MN, Rothen ’13
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Figure 11: Resummed and matched results for the jet-veto cross section for Higgs production
at the LHC. The green bands show our best predictions at N3LLp+NNLO, while the red bands
show for comparison the results obtained at NNLL+NLO. The uncertainty band is obtained
by simultaneously varying pvetoT /2 < µ < 2pvetoT and the coefficient dveto3 (R) according to the
estimate (66).

formally of O(α3
s). Note that only the virtual part of the corrections cancel in the efficiency

ε(pvetoT ), since the real-emission corrections to the two cross sections are obviously quite dif-
ferent. The virtual corrections encoded in CS(−m2

H , µ) are indeed responsible for the bad
perturbative behavior of the cross section, and they can be avoided by choosing a time-like
value µ2 = −m2

H for the matching scale [23, 45], as we do in our analysis. By now the virtual
corrections to Higgs production are known to three-loop accuracy [46–48], and the result con-
firms that the higher-order corrections to |CS(−m2

H , µ)|2 are negligibly small for a time-like
scale choice. Even for the standard choice µ2 = +m2

H , the three-loop corrections are only
about 4%. The part which suffers from these large corrections is thus known very precisely,
with sub-percent accuracy. The uncertainty on the fixed-order total cross section is larger, of
order 10%, because the real-emission corrections are not as well known as the virtual part.
Dividing by the total cross section therefore increases the uncertainty on the prediction and
should better be avoided.

To compare our results to those of BMSZ, we have divided our prediction for σ(pvetoT ) by
the central value of the resummed total cross section σtot = 19.66+2.8%+7.8%

−0.8%−7.5% pb obtained in [49],
which is a state-of-the-art calculation using the same resummed expression for CS(−m2

H , µ)
as we do. The first uncertainty is due to scale variations, whereas the second one is the 90%
C.L. error due to the combined PDF and αs variations. For comparison, we note that the
LHC Higgs Cross Section Working Group adopts the value σtot = 19.52+7.2%+7.5%

−7.8%−6.9% pb [50]. Our
results are shown by the green bands in Figure 12. Note that we do not include an additional

31

• Lower bands show the pTveto/mH power corrections (small!) 

• Seizable uncertainty at very small R due to large lnnR terms 
(experiments use R~0.4)

M. Neubert (PRISMA Cluster) Higgs cross section with a jet veto

Higgs cross section with pT veto 
April 24, 2014 Matthew Schwartz 

Becher, Neubert, Rothen 

Banfi, Salam, Monni, Zanderighi 

Stewart, Tackmann, Walsh, Zuberi 
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FIG. 7: The 0-jet cross section for R = 0.4 and mH = 125GeV. On the left we show the NLLpT , NLL′
pT+NLO, and

NNLL′
pT+NNLO predictions. A good convergence and reduction of uncertainties at successively higher orders is observed. On

the right we compare our best prediction at NNLL′
pT+NNLO to the fixed NNLO prediction. The lower plots show the relative

uncertainty in percent for each prediction. On the lower left the lighter inside bands show the contribution from ∆resum only,
while the darker outer bands show the total uncertainty from adding ∆resum and ∆µ in quadrature.

ues for σ0(pcutT , R) with both theoretical uncertainties:

σ0(25GeV, 0.4) = 12.67± 1.22pert ± 0.46clust pb ,

σ0(30GeV, 0.5) = 13.85± 0.87pert ± 0.24clust pb . (74)

It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.

Fixed-order predictions

Smaller scale uncertainty than σtot, due to accidental cancellation:   

• large positive corrections to σtot from analytic continuation of scalar 
form factor  Ahrens, Becher, MN, Yang ’09


• large negative corrections from collinear logs 

Equivalent schemes give quite different predictions, hence scale-variation 
bands do not reflect true uncertainties!
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Figure 1: The jet-veto cross section σ(pvetoT ) and efficiency ε(pvetoT ) for Higgs production at
the LHC, at NLO (shaded light bands) and NNLO (dark bands) in fixed-order perturbation
theory. The first two panels compare the scale choices µ ∼ mH and µ ∼ pvetoT . The right
panels show predictions for the veto efficiency, defined either as a perturbative series in αs

(third plot), or as the ratio of the nth-order vetoed cross section to the nth-order total cross
section (last plot).

from a significant scheme ambiguity. The last plot in the figure shows the predictions for the
efficiency obtained when one expands the two cross sections σ(pvetoT ) and σtot to NLO or NNLO,
but then takes their ratio without performing a further expansion in powers of αs. Comparing
the last two panels, we observe that the scheme dependence remains uncomfortably large even
at NNLO.

The leading-logarithmic (LL) corrections to the jet-veto cross section were studied us-
ing parton showers [12, 13], but for a long time no systematic resummation of higher-order
logarithmic terms was available. To improve the accuracy of the numerical predictions, the
parton-shower results were re-weighted to the Higgs-boson qT spectrum obtained at next-
to-next-to-leading logarithmic (NNLL) order, as implemented in the code HqT [14]. As an
alternative, it was suggested to use the event-shape variable beam thrust instead of a jet veto
to discriminate against the background from top decays [15]. The NNLL resummed results for
this variable confirmed the picture that there are large corrections from collinear emissions.
It was found that a fixed-order computation is not reliable and that the scale variation un-
derestimates the perturbative uncertainties. While beam thrust is theoretically simpler than
the jet veto, it would be more difficult to use in experimental analyses, since this observable
is sensitive to underlying-event and pile-up effects. Based on the results for beam thrust,
an alternative way to estimate the scale uncertainties for Higgs searches using jet bins was
proposed in [16].

Very recently, however, it was pointed out that the resummation for the jet-veto cross
section defined with a standard sequential jet algorithm is indeed feasible, and numerical
results for the cross section at NLL order were presented [17]. These results were obtained
using the Caesar code [18], which performs automated NLL resummations for observables

2

sweet spot?

(see also: Stewart, Tackmann ’10)M. Neubert (PRISMA Cluster) Higgs cross section with a jet veto

From M. Nebuert 

•  NNLO has cancellation which underestimates uncertainty  (Anastasiou, Dissertori, Stockli) 
•  Resumming logs of mH/pTveto changes cross section by 10-20% vs NNLO. 
•  Resummed prediction has more reliable uncertainties 
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FIG. 2. Comparison of NNLO, NLL+NNLO and NNLL+NNLO results for jet-veto efficiencies for Higgs (left) and Z-boson
(right) production at the 8 TeV LHC. The Higgs plot includes the result from a POWHEG (revision 1683) [20, 40] plus Pythia
(6.426) [17, 41] simulation in which the Higgs-boson pt distribution was reweighted to match the NNLL+NNLO prediction
from HqT 2.0 [7] as in [21]. The lower panels show results normalised to the central NNLL+NNLO efficiencies.

Our central predictions have µR = µF = Q = M/2 and
scheme a matching, with MSTW2008NNLO PDFs [54].
We use the anti-kt [29] jet-algorithm with R = 0.5, as
implemented in FastJet [55]. For the Higgs case we use
the large mtop approximation and ignore bb̄ fusion and
b’s in the gg → H loops (corrections beyond this approx-
imation have a relevant impact [16, 56]). To determine
uncertainties we vary µR and µF by a factor of two in
either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintain-
ing central µR,F values, we also vary Q by a factor of
two and change to matching schemes b and c. Our final
uncertainty band is the envelope of these variations. In
the fixed-order results, the band is just the envelope of
µR,F variations.

The results for the jet-veto efficiency in Higgs and Z-
boson production are shown in Fig. 2 for 8 TeV LHC
collisions. Compared to pure NNLO results, the cen-
tral value is slightly higher and for Higgs production, the
uncertainties reduced, especially for lower pt,veto values.
Compared to NNLO+NLL results [21], the central values
are higher, sometimes close to edge of the NNLO+NLL
bands; since the NNLO+NLL results used the same ap-
proach for estimating the uncertainties, this suggests that
the approach is not unduly conservative. In the Higgs
case, the NNLO+NNLL uncertainty band is not particu-
larly smaller than the NNLO+NLL one. This should not
be a surprise, since [21] highlighted the existence of pos-
sible substantial corrections beyond NNLL and beyond
NNLO. For the Higgs case, we also show a prediction
from POWHEG [20, 40] interfaced to Pythia 6.4 [17] at
parton level (Perugia 2011 shower tune [41]), reweighted

to describe the NNLL+NNLO Higgs-boson pt distribu-
tion from HqT (v2.0) [7], as used by the LHC experi-
ments. Though reweighting fails to provide NNLO or
NNLL accuracy for the jet veto, for pt,veto scales of prac-
tical relevance, the result agrees well with our central
prediction. It is however harder to reliably estimate un-
certainties in reweighting approaches than in direct cal-
culations.
Finally, we provide central results and uncertainties

for the jet-veto efficiencies and 0-jet cross sections (in
pb) with cuts (in GeV) like those used by ATLAS and
CMS, and also for a larger R value:

R pt,veto ε(7 TeV) σ(7 TeV)
0-jet ε(8 TeV) σ(8 TeV)

0-jet

0.4 25 0.63+0.07
−0.05 9.6+1.3

−1.1 0.61+0.07
−0.06 12.0+1.6

−1.4

0.5 30 0.68+0.06
−0.05 10.4+1.2

−1.1 0.67+0.06
−0.05 13.0+1.5

−1.5

1.0 30 0.64+0.03
−0.05 9.8+0.8

−1.1 0.63+0.04
−0.05 12.2+1.1

−1.4

Interestingly, the R = 1 results have reduced upper un-
certainties, due perhaps to the smaller value of the NNLL
f(R) correction (a large f(R) introduces significant Q-
scale dependence). The above results are without a ra-
pidity cut on the jets; the rapidity cuts used by ATLAS
and CMS lead only to small, < 1%, differences [21].
For the 0-jet cross sections above, we used total

cross sections at 7 TeV and 8 TeV of 15.3+1.1
−1.2 pb and

19.5+1.4
−1.5 pb respectively [57, 58] (based on results in-

cluding [45–49]) and took their scale uncertainties to be
uncorrelated with those of the efficiencies. Symmetris-
ing uncertainties, we find correlation coefficients between

Fixed order (NNLO) Resummed (3 different groups) 
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What do we know about factorization? 

PDFs are universal Soft and collinear  
factorization 

Hadronization is 
suppresed by ΛQCD/Q 

Not always 

•  Factorization makes sense physically 
•  pp collisions are complicated; little has been proven 

e.g. double parton scattering 

σ vs. √s
• Evolution of NLO cross sections 

with √s from Snowmass QCD 
report [1] computed with MCFM.


• Excellent agreement with 
numbers on previous slide 
serve as sanity check.


• Note: the double parton 
scattering cross section is 15 
mb and independent of √s.


• At 100 TeV, bb production will 
accompany ~20% of events 
through DPS because 

Cross sections at 14 TeV and beyond - John Campbell -

Overview

Study using NLO results 

from MCFM and best 

Higgs predictions from 

European Strategy.

Worth remembering 

double parton scattering 

cross section:

Any cross section has 

approx. DPS bb contrib. 

of ~20% at 100 TeV

(c.f. 2% at 8 TeV).
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Made up formula 

Factorization violation 
may be critical at 100 TeV 

•  There is still a lot we do not know  
about factorization and the IR structure of gauge theories 



Jet charge in dijet events 
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Figure 11: The dependence of the dijet charge on the dijet mass for two di↵erent values of  in data and
MC for a dijet sample. The uncertainty band includes the systematic sources discussed in the text.
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27 Gluon scattering and the
spinor-helicity formalism

Matrix element and cross section calculations in QCD increase in complexity extremely
fast. For example, consider the process gg → gg. At tree-level gg → gg gets contributions
from Feynman diagrams with gluons being exchanged in the s, t and u channels, and from
diagrams with the 4-point vertex. The s channel diagram gives (in Feynman gauge)

iMs (p1p2 → p3p4) =
↗ p3p1 ↘

p2 ↗ ↘ p4

q →

ε3; cε1; a

ε2; b ε4; d

= −ig
2
s

s
fabef cde [(ε1 · ε2) (p1 − p2)

µ + εµ2 (p2 + q) · ε1 + εµ1 (−q − p1) · ε2]

×
[
(ε!4 · ε!3) (p4 − p3)

µ + ε!µ3 (p3 + q) · ε!4 + ε!µ4 (−q − p4) · ε!3
]
(27.1)

where q = p1 + p2 = p3 + p4. We can simplify this a little, using transversality of the
gluons, pi · εi = 0, but not much. The answer is still a mess

Ms (p1p2 → p3p4) = −
g2s
s
fabef cde

× { − 4ε1 · ε!3ε2 · p1p3 · ε!4 +2ε1 · ε2ε!3 · p1ε!4 · p3− 2ε1 · p4ε2 · p1ε!3 · ε!4 + ε1 · ε2p4 · p1ε!3 · ε!4
+ 4ε1 · ε!4ε2 · p1ε!3 · p4 − 2ε1 · ε2ε!3 · p4ε!4 · p1 − 2ε1 · p2ε2 · p3ε!3 · ε!4 + ε1 · ε2ε!3 · ε!4p2 · p3
+ 4ε1 · p2ε2 · ε!3ε!4 · p3 − 2ε1 · ε2ε3 · p2ε!4 · p3 + 2ε1 · p2ε2 · p4ε!3 · ε!4 − ε1 · ε2ε!3 · ε!4p4 · p2
− 4ε1 · p2ε2 · ε!4ε!3 · p4+2ε1 · ε2ε!3 · p4ε!4 · p2+2ε1 · p3ε2 · p1ε!3 · ε!4− ε1 · ε2ε!3 · ε!4p1 · p3 }

(27.2)

To get the cross section, you would also need to compute the crossed diagrams, add the
4-point vertex, square the amplitude, sum over polarizations and simplify the color factor.
If you managed to do all that, adding all 1,000 or so terms, summing over final states and
averaging over initial states you would find

1

256

∑

pols
cols

|M|2 = g4s
9

2

(
3− tu

s2
− su

t2
− st

u2

)
(27.3)

which is remarkably simple.
Why are the matrix elements for gluon scattering such a mess and the final answer so

simple? The root of the problem is our insistence on manifest locality. In fact, the entire
formalism of quantum field theory that we have developed so far is based on describing

534

pp è gg pp è ug 
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Evidence of valence quarks in PDFs! 
Quark charge measured without leptons -- in pure QCD (dijet) events. 

small x 
gluons dominate 

large x 
valence quarks dominate 

ATLAS measurement (2013) 

Theory paper  
[Krohn, Lin, MDS, Waalewijn, 2013] 



Scaling violation 
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FIG. 7. Comparison of theory prediction for the average jet
charge (bands) to pythia (squares and circles for d and u
quarks). Normalizing to 1 at E = 100 GeV and R = 0.5
removes the dependence on the nonperturbative input and
quark flavor.

Here Ji(E,R, µ) is a jet function and Jij(E,R, x, µ) a set
of calculable coefficients which depend on the jet defini-
tion and flavor i of the hard parton originating the jet.
The hard and soft contributions conveniently cancel in
this ratio. Therefore

〈Qq
κ〉 =

1

16π3

J̃qq(E,R,κ, µ)

Jq(E,R, µ)

∑

h

QhD̃
h
q (κ, µ) , (5)

with J̃ij related to Jij by a Mellin-transform as in

Eq. (2). By charge conjugation
∑

h QhD̃h
q (κ, µ) = 0,

so in particular 〈Qg
κ〉 = 0. We have checked that the

µ-dependence of Jij/Ji exactly compensates for the µ-
dependance of the fragmentation functions at order αs.
We have written both Ji(E,R, µ) and Jij(E,R, x, µ)

as if they depend on the energy E and size R of the
jet, however, these functions only give a valid description
to leading power of a single scale corresponding to the
transverse size of the jet. Here we use the e+e− version
of anti-kT jets of size R, for which the natural scale is
µj = 2E tan(R/2) [15]. We can therefore calculate the
average jet charge by evaluating the Mellin-moments of
fragmentation functions at the scale µj and multiplying
by the jet functions.
Since only one linear combination of fragmentation

functions appears in Eq.(5), the theoretical prediction
is not significantly limited by the large uncertainty on
Dh

j (κ, µ). One can simply measure Dh
j (κ, µ) by observ-

ing the average jet charge for each flavor at one value for
µ and then using the theoretical calculation to predict
it at other values. In the absence of data, we simulate
such a comparison using pythia. The result is shown in
Figure 7 for various values of κ and R, and normalized at
a reference point. Already we can see a clear agreement
between the theory and pythia.
To calculate other properties of the jet charge dis-

tribution requires correlations among hadrons. For ex-
ample, we can consider the width of the jet charge,
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FIG. 8. Comparison of theory prediction (bands) for the
width of the jet charge distribution to pythia (squares and
circles for d and u). We take pythia at E = 100 GeV and
R = 0.5 as input.
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σjet
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where the sum runs over all hadronic final states. After
integrating over most of the zi and including a factor of
1
2 for identical hadrons, this simplifies to

〈
(Qi
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∫
dz z2κ
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σjet
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(7)
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σjet
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The first term on the right hand side can be expressed
in terms of products of fragmentation functions and jet
functions as for

〈
Qi

κ

〉
. The second term can be expressed

in terms of something we call a dihadron fragmenting jet
function, Gh1h2

i . Its matching onto (dihadron) fragmen-
tation functions is given by

Gh1h2

i (E,R, z1, z2, µ) (8)

=
∑

j

∫
du

u2
Jij(E,R, u, µ)Dh1h2
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, µ

)

+
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j,k

∫
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u
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Jijk(E,R, u, v, µ)Dh1

j

(z1
u
, µ

)
Dh2

k

(z2
v
, µ

)
,

The second term is due to a perturbative parton splitting
before hadronization and only starts at 1-loop order,

J (1)
ijk (E,R, u, v, µ) = J (1)

ij (E,R, u, µ)δ(1−u−v)δk,a(ij) ,

(9)
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Here Ji(E,R, µ) is a jet function and Jij(E,R, x, µ) a set
of calculable coefficients which depend on the jet defini-
tion and flavor i of the hard parton originating the jet.
The hard and soft contributions conveniently cancel in
this ratio. Therefore

〈Qq
κ〉 =

1

16π3

J̃qq(E,R,κ, µ)

Jq(E,R, µ)

∑

h

QhD̃
h
q (κ, µ) , (5)

with J̃ij related to Jij by a Mellin-transform as in

Eq. (2). By charge conjugation
∑

h QhD̃h
q (κ, µ) = 0,

so in particular 〈Qg
κ〉 = 0. We have checked that the

µ-dependence of Jij/Ji exactly compensates for the µ-
dependance of the fragmentation functions at order αs.
We have written both Ji(E,R, µ) and Jij(E,R, x, µ)

as if they depend on the energy E and size R of the
jet, however, these functions only give a valid description
to leading power of a single scale corresponding to the
transverse size of the jet. Here we use the e+e− version
of anti-kT jets of size R, for which the natural scale is
µj = 2E tan(R/2) [15]. We can therefore calculate the
average jet charge by evaluating the Mellin-moments of
fragmentation functions at the scale µj and multiplying
by the jet functions.
Since only one linear combination of fragmentation

functions appears in Eq.(5), the theoretical prediction
is not significantly limited by the large uncertainty on
Dh

j (κ, µ). One can simply measure Dh
j (κ, µ) by observ-

ing the average jet charge for each flavor at one value for
µ and then using the theoretical calculation to predict
it at other values. In the absence of data, we simulate
such a comparison using pythia. The result is shown in
Figure 7 for various values of κ and R, and normalized at
a reference point. Already we can see a clear agreement
between the theory and pythia.
To calculate other properties of the jet charge dis-

tribution requires correlations among hadrons. For ex-
ample, we can consider the width of the jet charge,
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where the sum runs over all hadronic final states. After
integrating over most of the zi and including a factor of
1
2 for identical hadrons, this simplifies to
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The first term on the right hand side can be expressed
in terms of products of fragmentation functions and jet
functions as for

〈
Qi

κ

〉
. The second term can be expressed

in terms of something we call a dihadron fragmenting jet
function, Gh1h2

i . Its matching onto (dihadron) fragmen-
tation functions is given by

Gh1h2

i (E,R, z1, z2, µ) (8)

=
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∫
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Jij(E,R, u, µ)Dh1h2
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+
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,

The second term is due to a perturbative parton splitting
before hadronization and only starts at 1-loop order,

J (1)
ijk (E,R, u, v, µ) = J (1)

ij (E,R, u, µ)δ(1−u−v)δk,a(ij) ,

(9)

•  Charge distribution non-perturbative 
•  Scale dependence of mean and width calculable in QCD 
•  Can be observed for the first time at the LHC 

•  Better charge and momentum resolution 
•  More particles in the jets 
•  Larger range of energies accessible than before 
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Mean jet charge Width of jet charge 

Surely many similar 
opportunities at  

100 TeV 

Krohn, Lin, MDS, Waalewijn (2013) 
 Phys.Rev.Lett. 110 (2013) 212001  
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New energies, new symmetries 
April 24, 2014 Matthew Schwartz 

Heavy Quark Effective Theory 
Flavor symmetry 

Theory of pions: Chiral symmetry:  SU(2) x SU(2) 

Soft-Collinear Effective Theory 
one for each collinear sector soft sector 

SU(3) ×  ��� × SU(3) × SU(3)  

Spin symmetry 

E
ne

rg
y 

500 MeV 

5,000 MeV 

500,000 MeV 

100 TeV  ???? 



Other hidden symmetries 
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The formal solution to this equation can be written in the form

Z(ε, {p}, µ) = P exp

[∫ ∞

µ

dµ′

µ′ Γ({p}, µ′)

]
, (6)

where the path-ordering symbol P means that matrices are ordered from left to right according
to decreasing values of µ′. The upper integration value follows from asymptotic freedom and
the fact that Z = 1+O(αs).

In Section 4, we will discuss theoretical arguments supporting an all-order conjecture for
the anomalous-dimension matrix presented in [3], which states that it has the simple form

Γ({p}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs) , (7)

where sij ≡ 2σij pi · pj + i0, and the sign factor σij = +1 if the momenta pi and pj are
both incoming or outgoing, and σij = −1 otherwise. Here and below the sums run over
the n external partons. The notation (i1, ..., ik) refers to unordered tuples of distinct parton
indices. Our result features only pairwise correlations among the color charges and momenta
of different partons. These are the familiar color-dipole correlations arising already at one-
loop order from a single soft gluon exchange. The fact that higher-order quantum effects
do not induce more complicated structures and multi-particle correlations indicates a semi-
classical origin of IR singularities. Besides wave-function-renormalization-type subtractions
accomplished by the single-particle terms γi, the only quantum aspect appearing in (7) is
a universal anomalous-dimension function γcusp related to the cusp anomalous dimension of
Wilson loops with light-like segments [23, 24, 25]. The three anomalous-dimension functions
entering our result are defined by relation (7). They can be extracted from the known IR
divergences of the on-shell quark and gluon form factors, which have been calculated to three-
loop order [26, 27, 28]. The explicit three-loop expressions are given in Appendix A.

Concerning the form of (7), we note that a conjecture that an analogous expression for
the soft anomalous-dimension matrix (see Section 4.4 below) might hold to all orders was
mentioned in passing in the introduction of [12], without presenting any supporting arguments.
In a very recent paper, Gardi and Magnea have analyzed the soft anomalous-dimension matrix
in more detail and found that (7) is the simplest solution to a set of constraints they have
derived [29]. However, they concluded that the most general solution could be considerably
more complicated. Indeed, we emphasize that as a consequence of our result some amazing
cancellations must occur in multi-loop calculations of scattering amplitudes. At L-loop order
Feynman diagrams can involve up to 2L parton legs, while the most non-trivial graphs without
subdivergences can still connect (L+1) partons. We predict that these complicated diagrams
can be decomposed into two-particle terms, whose color and momentum structures resemble
that of one-loop diagrams. At two-loop order, these cancellations were found by explicit
calculation in [30, 31]. More recently, the analysis was extended to the subclass of three-
loop graphs containing fermion loops [33]. In Section 6.2 we will present a simple symmetry
argument explaining these results.

To derive the perturbative expansion of the Z-factor from the formal solution (6) we use

6

Universal pairwise structure? 
Becher, Neubert, Gardi, Magnea 2009 

Soft  limit of QCD 
described by Wilson lines 

za

zb
bµ

n̄µ

aµ

nµ

Figure 2: A stereographic projection of the jet directions onto the Poincaré disk reveals the
PSL(2,R) symmetry of the BMS equation.

6.2 Symmetries of the BMS equation

Having evaluated U
abj

exactly, the BMS equation, as in Eq. (73) now depends only on the g
ab

(L)
functions and an explicit integration measure. In this form it is simpler to explore its symmetries.
In the following discussion, we will first concentrate on the BMS equation when both a and b are
in the left hemisphere (as of course is the emission j). The case when b is in the left hemisphere
is similar, but the symmetry is less obvious. We present both results in the end.

It has been observed that the BMS equation is formally similar to the BK equation [48, 49],
a non-linear integro-di↵erential equation describing gluon saturation e↵ects. The BK equation
enjoys a conformal symmetry PSL(2,C) in its integral measure (see, e.g., [58]), which is violated
by initial conditions. It is therefore natural to look for a similar symmetry in the BMS equation.
Indeed, it has been observed that the integration measure of the BMS equation does indeed
respect PSL(2,C) [59, 60]. Moreover, unlike for the BK equation, this symmetry is not broken
by the initial condition of the BMS equation. However, it is broken by the restriction on the
integration region. As we will now explain, for the hemisphere mass case, the restriction that
radiation goes into the left hemisphere breaks the symmetry from PSL(2,C) to PSL(2,R).

To reveal the symmetry of the BMS equation, it’s useful to consider a change of variables by
stereographic projection [59,60],

z =
sin ✓

1 + cos ✓
ei� (76)

This projection is shown in Fig. 2. Under the stereographic projection transformation, the full
angle space (✓,�) coordinate is mapped to the full complex plane, while the left hemisphere,
cos ✓ > 0, is mapped to the unit disk.

17

Anomalous dimension has surprising features 

Non-global logarithms 

Much is not understood… 

Wilson lines may relate to iterative structures 
      in scattering amplitudes  
     (e.g. Bern, Dixon, Smirnov conjecture) 

•  Similarities to BFKL and BK equations 
•  Leading non-global logarithms have 

PSL(2,R) symmetry of Poincare disk 
Hatta, Ueda (2013), MDS, Zhu (2014) 
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Four Questions 
•  Is Standard Model physics interesting if there is 

    no experimentally accessible BSM physics? 

• Do we need new experiments if we already know the 
Lagrangian? 

• Will 100 TeV tell us something about the SM that we do 
not already know? 

• Can Standard Model physics motivate 100 TeV? 

April 24, 2014 Matthew Schwartz 



•  Is Standard Model physics interesting without BSM? 
•  Yes. 
•  Many mysteries: 

•  Do we need new experiments if we already know the Lagrangian? 
•  Yes. 
•  Does condensed matter physics = QED? 
•  Effective field theories isolate the relevant physics 

 
•  Will 100 TeV tell us something new about the SM? 

•  Logically unanswerable. 
•  Almost certainly yes. Every other experiment since 1974 has. 

•  Can SM physics motivate 100 TeV 
•  Yes. 
•  SM physicists are not good at marketing.  

April 24, 2014 Matthew Schwartz 

•  factorization properties 
•  hidden symmetries 
•  finite temperature 
•  vacuum stability 

•  non-perturbative effects 
•  scattering amplitudes 
•  infrared structure  

PHYSICS 

HEP 

BSM 
QFT 



Quantum chromodyanmics 

Bound states 
Hadron spectroscopy 

Proton 

Intricate Phase diagram 

Jets at 
high 

energy 
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Emergent phenomena 

•  We have learned a tremendous amount about QFT from QCD 
•  How much could we have figured out by thinking alone (without data)? 



Progress in fundamental physics 
April 24, 2014 Matthew Schwartz 

data data data data 

Wrong theory 3 



Example 
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Hadron 
spectroscopy 

Regge theory 

String 
theory 

AdS/CFT 

Heavy ion 
physics 

Large N  
approximation 

High temperature 
superconductors 

AdS/CMT ?? 



100 TeV for Effective Field Theories 
April 24, 2014 Matthew Schwartz 

•  Non-perturbative effects smaller 
•  QCD becomes truly weakly coupled 

Tevatron LHC 100 TeV 

What are the right effective degrees of freedom for perturbative QCD? 

Quarks 
and gluons Jets Something else? 

Scattering amplitudes SCET 

much beauty in the perturbative S-matrix  

maybe 100 TeV will force us to  
     rewrite QFT to describe the data … 

infinite (IR divegent)  

zero (Sudakov suppressed) My personal view: 



Final thoughts I 
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Light scalar 
Higgs boson 

Lyth bound 

ATLAS 
and CMS 

Transplanckian  
inflation 

BICEP 2 

Cosmological 
constant 
problem 

Is this a crisis for effective field theory? 
•  Wilsonian EFT picture may be in trouble 

Fine-tuning problem  
problem?? 

Cosmic  
acceleration 

1998 2012 2014 

Hierarchy problem 

10120 tuning 

1030 tuning 
102 tuning 

Psst...  
something 
is wrong 

Will 100 TeV really convince us? 

Take the hint!! 

Supernovae 

Panel discussion today… 



Final thoughts II 
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Maybe we’ve just been lucky with Pythia/Herwig 

What if Pythia 
regularly fails 
at 100 TeV?? 

Standard Model physics 
becomes much more interesting 

100 TeV would be super exciting! 

•  High energy physics becomes more like condensed matter physics or astrophysics. 

•  Maybe you don’t find CM physics exciting, but it has no shortage of funding. 

•  What is different about high energy physics and the rest of physics? 
•  Can BSM be a bonus, not the main goal? 



Conclusions 
April 24, 2014 Matthew Schwartz 

•  Effective field theories are important at the LHC 
•  Resummation 
•  Determining relevant scales 
•  Factorization properties 
•  Hidden symmetries 
•  … 

•  Insights will continue 
•  Necessity of EFTs   

 more acute at 100 TeV 

Standard Model physics is fun! 

Already fun at the LHC 
•  New measurements, new insights 
•  Theory and experiment teach each other 

100 TeV is a mystery 
•  What is the right effective description? 
•  Crisis in effective field theory? 

“There are more things in Heaven and in Earth than are dreamt of 
in our philosophy” -- Ernest Rutherford, 1914, quoting Hamlet 

1.  It’s hard to solve problems just by thinking. Data is absolutely critical. 

2.  Standard Model physics at 100 TeV is a no-lose proposition. BSM is a gamble. 

3.  Can we incorporate SM physics into the marketing strategy for 100 TeV? 
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From M. Peskin’s talk 
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Physics:

We now have much experience with physics at 7-8 TeV.

Is physics at 100 TeV a simple extension of this, or do 
essential new phenomena come into play ?

3 possible examples:

      top quark becomes a parton

      electroweak Sudakov and radiative effects are 
              order 1

      W, Z, top, Higgs are typically highly boosted

Already being 
studied 
with EFT 

Fleming et al.  
(arXiv:0711.2079,  …) 

Chiu et al.  
(arXiv:0806.1240,  …) 



What do I mean by EFT? 
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Relevant physical scales 

Single scale m 
 of interest 

Collapse similar scales 
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ln
m

µ

Quantum corrections depend  
      only on 


