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Statistical Mechanics, Spring 2025

Lecture 6: Entropy

1 Introduction

In this lecture, we discuss many ways to think about entropy. The most important and most famous
property of entropy is that it never decreases

�Stot> 0 (1)

Here,�Stot means the change in entropy of a system plus the change in entropy of the surroundings.
This is the second law of thermodynamics that we met in the previous lecture.

There's a great quote from Sir Arthur Eddington from 1927 summarizing the importance of
the second law:

If someone points out to you that your pet theory of the universe is in disagreement
with Maxwell's equations�then so much the worse for Maxwell's equations. If it
is found to be contradicted by observation�well these experimentalists do bungle
things sometimes. But if your theory is found to be against the second law of ther-
modynamics I can give you no hope; there is nothing for it but to collapse in deepest
humiliation.

Another possibly relevant quote, from the introduction to the statistical mechanics book by David
Goodstein refers to a curious fact about some physicists who struggled with entropy:

Ludwig Boltzmann who spent much of his life studying statistical mechanics, died in
1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933.
Now it is our turn to study statistical mechanics.

There are many ways to define entropy. All of them are equivalent, although it can be hard
to see. In this lecture we will compare and contrast different definitions, building up intuition for
how to think about entropy in different contexts.

The original definition of entropy, due to Clausius, was thermodynamic. As we saw in the last
lecture, Clausius noted that entropy is a function of state, we can calculate the entropy difference
between two states by connecting them however we like. If we find a reversible path to connect
them, then the entropy change is determined simply by the heat absorbed:

�Ssystem=
Z
rev:

dQin

T
(Clausius entropy) (2)

This definition of entropy (change) called Clausius entropy. It is a thermodynamic, rather than
statistical-mechanic, definition. It says that entropy is generated (or removed) from heating (or
cooling) a system. Clausius entropy is important in that it directly connects to physics. As we
saw in the last lecture, if the total Clausius entropy change were negative, it would be possible to
create a system whose sole function is to turn heat into work.

In statistical mechanics, we can define the entropy as

S= kBln
 (Boltzmann entropy) (3)
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where 
 is the number of microstates compatible with some macroscopic parameters (E; V ; N).
This form is usually attributed to Boltzmann, although it was Planck who wrote it down in
this form for the first time. We'll call this the Boltzmann entropy since it's on Boltzmann's
gravestone. Note that there is no arbitrariness in deciding which states to count in 
 or how to
weight them � we count all states compatible with the macroscopic parameters equally, with even
weight. That is part of the definition of S. From S, we extract the temperature as 1

T
= @S

@E
and

then integrating over dE=dQ we recover Eq. (2). Thus the Boltzmann entropy definition implies
Clausius formula for how to compute entropy change.

Defining S in terms of microstates is useful in that it lets us compute S from a microscopic
description of a system. For example, we saw that for a monatomic ideal gas, the Boltzmann
entropy is given by

S=NkB

�
lnV + 3

2
ln
�
mE

N

�
+ c
�

(4)

for some constant c. This is an example showing that entropy is a state variable: it depends only on
the current state of a system, not how it got there (heat and work are not state variables). Clausius
formula assumed entropy was a state variable. With the Boltzmann formula, we can check.

Another way to compute entropy came from considering the number of ways N particles could
be split into m groups of sizes ni. This number is 
= N !

n1!���nm!
. Expanding for large ni gives

S=¡kBN
X
i=1

m

filn fi (5)

where fi=
ni
N
. Since �ni=N then

P
fi= 1 and so fi has the interpretation of a probability: fi

are the probabilities of finding a particle picked at random in the group labeled i.

The entropy written in terms of probabilities, but without the factor of N , is called the Gibbs
entropy:

S=¡kB
X
i=1

m

PilnPi (Gibbs entropy) (6)

If all we do is maximize S at fixed N , the prefactor doesn't matter. However, sometimes we care
about how S depends on N , in which case we need to get the prefactor right. We'll return to this
in Section 3. Taking Pi =
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= const: the Gibbs entropy reduces to the Boltzmann entropy. So

the Gibbs entropy formula is a generalization of the Botlzmann entropy formula: it applies when
probabilities are all equal and also when they are not.

All of these ways of thinking about entropy are useful. They are all ways of understanding
entropy as disorder: the more microstates there are, the less organized are the particles. A
solid has lower entropy than a gas because the molecules are more ordered: the constraints on the
positions of the atoms in the solid and limitations on their velocities drastically reduce the number
of possible configurations. Entropy as disorder is certainly intuitive, and conforms with common
usage: a child playing with blocks will most certainly leave them more disordered than how she
found them, so we say she has increased the entropy. There are fewer ways for something to be
ordered than disordered.

In the second half of the 20th century, it was realized that a more general and useful way of
thinking about entropy than entropy as disorder is entropy as uncertainty. That is, we associate
entropy with our ignorance of the system, or our lack of information about what microstate it's
in. Entropy as uncertainty makes a lot of unintuitive aspects of the second law of thermodynamics
easier to understand. We have already come across this the connection between entropy and
information when discussing the principle of molecular chaos � the velocities of particles become
correlated when they scatter, but over time the information of their correlations disperses over
phase space and is lost. A solid has lower entropy than a gas because we have more information
about the location of the atoms.
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Thus, a single definition of entropy that unifies all the other is

� Entropy measures the amount of information you would need to completely specify a
microstate for given macroscopic properties.

In this lecture, we'll see how thinking of entropy as information can resolve a number of classical
paradoxes, such as Gibbs paradox and Maxwell's demon, and how entropy connects to quantum
mechanical measurement as well.

2 Free expansion

An example that helps elucidate the different definitions of entropy is the free expansion of a gas
from a volume V1 to a volume V2.

First, consider the Boltzmann entropy, defined as S = kBln
 with 
 the number of accessible
microstates. Using Eq. (4) which follows from the Boltzmann entropy definition, in going from a
volume V1 to a volume V2, the gas gains an amount of entropy equal to �S =NkBln

V2
V1
. That the

Boltzmann entropy increases makes sense because there are more accessible microstates in the
larger volume, 
2>
1.

What about the Gibbs entropy? If Pi is the probability of finding the system in microstate i,
then Pi=

1


1
when the gas is at a volume V1. When it expands to V2, each microstate of the gas in

V1 corresponds to exactly one microstate of the gas in V2, so we should have Pi=
1


1
also at volume

V2, and therefore the Gibbs entropy appears to be unchanged! Although there are more possible
microstates in V2, we know that, since the gas came from V1, that only a small fraction of these
could possibly be populated. That is, the state after expansion is in a subset Msub�M2 of the
full setM2 of microstates in V2. The microstates inMsub are exactly those for which if we reverse
time, they would go back to V1. The size 
1 of the setM1 of microstates in V1 is the same as the
size 
sub of Msub.

So in the free expansion of a gas, Boltzmann entropy increases but Gibbs entropy does not
appear to. How do we reconcile these two concepts?

The origin to this inconsistency is that Boltzmann entropy is defined in terms of the number
of states 
 consistent with some macroscopic parameters, V , E, N , etc.. In contrast �the set of
states that when time reversed to back to V1� used for Gibbs entropy depends on more than just
these parameters. So we are computing the different entropies using different criteria. If we define
the probabilities Pi for the Gibbs entropy the same way as we define 
 for the Boltzmann entropy,
that is, as the probability for finding a state with given values of V ;E;N , the two definitions will

agree. Indeed, the number of new states is 
2

1

= exp
�
�S

kB

�
=
�
V2
V1

�
N
. Including these new states

makes the Gibbs entropy go up by �S=NkBln
V2
V1
; removing them makes the Boltzmann entropy

go down by the same amount. So if we are consistent with our criterion for computing entropy,
the different definitions agree.

Now, you may be wondering why we choose to define entropy using V ;E;N and not using the
information about where the particles originated from. As an extreme example, we could even say
that the gas starts in exactly one phase space point, (q~i; p~ i). So 
=1 and the probability being in
this state is P = 1 with P = 0 for other states. We can then evolve the gas forward in time using
Newton's laws, which are deterministic and reversible, so that in the future there is still only one
state P =1 or P =0. If we do so, S=0 for all time. While we could choose to define entropy this
way, it would clearly not be a useful concept. Entropy, and statistical mechanics, more broadly, is
useful only if we coarse grain. Entropy is defined in terms of the number of states or probabilities
compatible with macroscopic parameters. Coarse graining is part of the definition. Remember,
in statistical mechanics, we are not in the business of predicting what will happen, but what is
overwhelmingly likely to happen. Defining entropy in terms of coarse grained probabilities is the
trick to making statistical mechanics a powerful tool for physics.
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To justify why we must coarse grain from another perspective, recall the arguments from
Lecture 3. Say we have a minimum experimental or theoretical phase space volume �q�p that
can be distinguished. Due to molecular chaos, the trajectory of a �q�p phase space region quickly
fragments into multiple disconnected regions in phase space that are smaller than �q�p (since
phase space volume is preserved under time evolution by Louiville's theorem). Then we coarse
grain to increase the phase space volume of each disconnected region to a size �q�p. In this way,
the phase-space volume of Msub grows with time. By ergodicity, every point inM2 will eventually
get within �q�p of a point in Msub, so if we wait long enough, Msub, through coarse graining,
will agree with M2.

It may be helpful to see that if we use Gibbs entropy definition that entropy does in fact
increase during diffusion. For simplicity consider a diffusing gas in 1 dimension, with number
density n(x; t). By the postulate of equal-a-priori probabilities, the probability of finding a gas
molecule at x; t is proportional to the number density P (x; t)/n(x; t). Then the Gibbs entropy is
S(t) =¡c

R
dxn(x; t) ln n(x; t) for some normalization constant c. Now, the diffusing gas satisfies

the diffusion equation @n

@t
=D@2n

@x2
. Using this we find

dS
dt

=¡c
Z
dx

@
@t
[n lnn] =¡c

Z
dx [1+ lnn]dn

dt
=¡cD

Z
dx [1+ lnn] @

@x
@
@x
n (7)

=¡cD(1+ lnn) @
@x
n

�
¡1

1
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+ cD
Z
dx

1
n

�
@n
@x

�
2

> 0 (8)

where we integrated by parts in the last step. The boundary terms vanish, since the density should
go to zero at spacial infinity as we are at finite volume. We conclude that during diffusion the
entropy strictly grows with time. It stops growing when @n

@x
=0, i.e. when the density is constant,

which is the state of maximum entropy.

This calculation illustrates that the problem from the beginning of this section was not that the
Gibbs entropy wouldn't increase, but rather that imposing constraints on the probabilities based
on inaccessible information about past configurations is inconsistent with the postulate of equal a
priori probabilities.

3 Entropy of mixing

Although entropy is a theoretical construction � it cannot be directly measured � it is nevertheless
extremely useful. In fact, entropy can be used to do work. One way to do so is though the entropy
of mixing.

Say we have a volume V of helium with N molecules and another volume V of xenon also with
N molecules (both monatomic gases) at the same temperature. If we let the gases mix, then each
expands from V to 2V . The energy of each is constant so the entropy change of each is (from
integrating the discussion of free expansion before or directly from Eq. (4)):

�S=NkBln
2V
V
=NkBln 2 (9)

So we get a total entropy change of

�S=2NkBln2 (10)

This increase is called the entropy of mixing.
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The entropy of mixing is a real thing, and can be used to do work. For example, say we had a
vessel with xenon on one side and helium on the other, separated by a semi-permeable membrane
that lets helium pass through and not xenon. Say the sides start at the same temperature and
pressure. As the helium inevitably diffuses through the membrane, it dilutes the helium side
lowering its pressure and adds to the pressure on the xenon side. The net effect is that there is
pressure on the membrane. This pressure can be used to do work.

The pressure when there is a mixed solution (e.g. salt water) in which the solute (e.g. salt)
cannot penetrate a semi-permeable barrier (e.g. skin) is is called osmotic pressure. For example,
when you eat a lot of salt, your veins increase salt concentration and pull more water in from your
body to compensate, giving you high blood pressure.

In chemistry and biology, concentration gradients are very important. A concentration
gradient means the concentration of some ion, like Na+ or K+ is not constant in space. When there
is a concentration gradient, the system is not completely homogeneous, so entropy can be increased
by entropy of mixing. Only when the concentrations are constant is there no way to increase the
entropy more. Concentration gradients are critical for life. Neurons fire when the concentration
of certain chemicals or ions passes a threshold. If systems always work to eliminate concentration
gradients, by maximizing entropy, how do the concentration gradients develop? The answer is
work! Cells use energy to produce concentration gradients. There are proteins in the cell wall that
work to pump sodium and potassium (or other ions) from areas of low concentration to areas of
high concentration.

Figure 1. A cellular pump, present in practically every cell of every living thing. It uses energy in the form
of ATP to establish concentration gradients

Another familiar effect due the entropy of mixing is how salt is able to melt ice. The salt draws
water out of the ice (i.e. melts it) because saltwater has higher entropy than salt and ice separately.

In order to study these physical processes in quantitative detail, we need first to understand
entropy better (this lecture), as well as free energy, chemical potentials, and phase transitions,
which are topics for the next few lectures. We'll quantify osmotic pressure and temperature changes
due to mixing (like in saltwater) in Lectures 8 and 9.

3.1 Gibbs paradox

So entropy of mixing is a real thing, and is very important in physics, chemistry and biology. But
it is still a little puzzling. Say instead of two different ideal gases, we just have helium. Again we
start with two volumes V , N and E each, and remove a partition between them to let them mix.
The calculation is identical to the calculation for helium and xenon and we still find�S=2NkBln2.

What happens if we put the partition back in. We start with helium gas with volume 2V number
2N and energy 2E. Its initial entropy, by Eq. (4) is

Sinit=2NkB

�
ln 2V + 3

2
ln
�
mE
N

�
+ c
�

(11)
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Now put a partition right down the middle of the gas, splitting it into two equal halves, each with
V ;N and E. Then the entropy is the sum of the entropies of the two halves:

Sfinal=2
�
NkB

�
ln V + 3

2
ln
�
mE
N

�
+ c
��

=Sinit¡ 2NkBln 2 (12)

Thus the entropy has gone down, by exactly the entropy of mixing. If we mix the gases entropy
goes, up, if we split them entropy goes down. That entropy could go down by simply sticking a
partition in a gas seems very strange, and apparently violates the second law of thermodynamics.
This is called the Gibbs paradox.

There are two parts to resolving the Gibbs paradox. First, we have to discuss indistinguisha-
bility. So far we assumed a microstate with helium molecules at positions A and B was different
from one where the molecules swapped places. Is that correct? But let's say it is correct as if
each molecule had a little label on it. Then the counting that we have been using, which is indeed
counting something , would have entropy apparently go down. We'll address the first issue first and
return to the second in Section 6.

3.2 Distinguishable microstates

To resolve the Gibbs paradox, let's think about why the entropy is changing from the viewpoint
of Boltzmann entropy and ergodicity. Again, we start with xenon on the left and helium on the
right each in a volume V . At a time t0 we let them mix. The number of microstates for each gas
increases by �S = NkBln

2V

V
, so the net entropy of mixing is �S = 2NkBln2 (as we have seen).

The entropy increases because there are now new microstates with xenon on the right or helium
on the left that weren't there before. By ergodicity, we coarse grain and add these the microstates
to 
. The new microstates we include are not the ones actually populated by the expanding gas,
but rather ones exponentially close to those microstates that we can't tell apart (recall Fig. 4 from
Lecture 3). The new states don't trace back to being separated at t= t0 but the original ones do.

Now let's do the same thing for two volumes of helium that are allowed to mix starting at
time t0. As they mix, the entropy change is �S =NkBln2 just as for the xenon/helium mixture.
This entropy increase comes because we are adding to the original microstates new microstates
that, when traced back to t0 have the molecules from the two original volumes still distributed
throughout the whole system. But for the helium/helium mixing, these states do correspond to
states we started with: half helium and the other half helium. So we already had these states and
we are including them again and overcounting.

Figure 2. When xenon and helium mix, the new microstates we add don't look like the old ones. When
helium mixes with helium, the new microstates are indistinguishable from the old ones.
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In our original counting of states, we said that in a length L, with some minimal size �q for
discretizing the box, the number of states was L

�q
. Each particle could be anywhere, and for�q�L

the chance of finding two particles in the same place is negligible. This leads to 
=
�

L

�q

�
N
.

Let's take L to be very small, twice the minimal size (L=2�q). Then there are only two possible
states. If there are N helium molecules, then there are 
=2N configurations and S=NkBln2. Now
say we partition the system into two halves, with N

2
particles in each half. For each half, there is

only one possible place for each particle, so the system is fixed, 
=1 and S=0. Thus entropy has

decreased! What went wrong? The catch is that there were 
split=
�

N
N /2

�
= N !

N

2
!
N

2
!
� 2N different

ways to split the molecules, and we only considered one of them. If each molecule were different, say
we had N different colored balls, then we could tell which of the states we ended up with. In that
case, entropy of the system would go down �Ssys<0, however it would take a lot of work to count
all the balls and entropy of the surroundings would increase from doing all this counting. It's easier
just to say we do not know which colored ball went where and include the 
split combinatoric factor.
For helium, maybe we can tell them apart, or maybe not, but if we're not planning to try, then we
need to account for the Wsplit possibilities. We can do this by saying that all the 
split partitionings
of the particles are the same microstate. See section 3.3 for a detailed calculation of these cases.

It's actually easier to account for the combinatoric factor in a large volume than with L=2�q.
In a large volume, there are many more positions than there are particles so we can assume no two
particles are in the same state. In fact we have to make this assumption in the classical limit, since
if there is a reasonable chance that two particles are in the same state we need to know if they
are fermions or bosons and must use the appropriate quantum statistics (Lecture 10). In a large
volume with every particle in a different position, we can simply divide by the N ! for permuting
those positions. This leads to


(q; p)= 2e
3
2
N 1
N !

�
V

(�q�p)3

�
N
�
4�mE
3N

�3N
2

(13)

This is the same as our old formula but has an extra 1

N !
in front. The extra factor of N ! was

introduced by Gibbs. After using Stirling's approximation the entropy S= kBln
 is

S=NkB

�
ln
V
N
+ 3
2
ln
�
4�mE
3Nh2

�
+ 5
2

�
(14)

We have used �q�p = h (as will be explained in Lecture 10). This is the Sackur-Tetrode
equation.

Does the extra N ! solve Gibbs paradox? For the gas with 2V ; 2N and 2E , Eq. (11) becomes

Sinit=2NkB

�
ln
V
N
+ 3
2
ln
�
mE
N

�
+ c
�

(15)

After splitting into two halves, Eq. (12) becomes

Sfinal=2
�
NkB

�
ln
V
N
+ 3
2
ln
�
mE
N

�
+ c
��

=Sinit (16)

So the entropy is unchanged by adding, or removing the partition.
What about the xenon/helium mixture? The gases are independent and do not interact, so each

one separately acts just like helium alone. Thus inserting a partition in a helium/xenon mixture
has a net effect of �S=0 on each separately and therefore �S=0 total as well.

What about the entropy of mixing? Let's start with two separate gases. Using our new formula,
the initial entropy is the sum of the two gases' entropies. Each one has volume V , energy E and
N . So,

Sinit=2
�
NkB

�
ln
V
N
+ 3
2
ln
�
mE
N

�
+ c
��

(17)
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After letting the gasses mix, each gas goes from V ! 2V but N and E are the same, so we have

Sfinal=2
�
NkB

�
ln
2V
N

+ 3
2
ln
�
mE
N

�
+ c
��

=Sinit+2NkBln2 (18)

So now, with the N ! factor added, we get a result that makes sense: there is only entropy of mixing
if the two gases are different. Inserting a partition never changes the entropy.

3.3 Mixing example details
Since distinguishability is an important and confusing topic, let's do an example of mixing and
unmixing in full detail, with three different assumptions

1. N colored balls + N more colored balls, all distinguishable

2. N molecules helium + N more molecules helium, all indistinguishable

3. N molecules helium + N molecules xenon, each separately indistinguishable

In all cases, we start with a volume V of each, then let them mix, then put a partition in to separate
them.

Note that we are using distinguishable here to mean classical indistinguishability, not quantum.
That is, it's just about whether we use identifying information about individual molecules in the
definition of the microstates. Due to quantum statistics, it's impossible to actually give color labels
to separate helium molecules since they are fundamentally indistinguishable. But here we just care
about what information we have about the system, not where that information came from. Just
to be safe, we talk about colored balls instead of molecules to avoid any possible conflicts with
quantum mechanics. But quantum mechanics is not required to resolve the Gibbs paradox.

For the first case we have something like this

So it looks like the entropy goes up by �S = 2N ln2 when the two are mixed and then down
by �S = ¡2N ln 2 when they are split. However, note that there are 
split =

�
2N
N

�
� 22N

ways to split them. So in enumerating the final states, we should include this factor, writing

00 = 
1
2
split = V NV N22N so that �S = 0 upon the split. If we actually look in the box and
enumerate which balls are where, we lose 
split, but the entropy of the surroundings must go up
to compensate, as we explain in Section 5.

We can contrast this to the pure helium (indistinguisable) case when

Here, we add the 1

N !
factors for identical particles. When the two sets are merged, then the number

of states is


0= 1
(2N)!

(2V )2N =
1
2
N !N !
(2N)!

22N�
1
2
NNNN

(2N)2N
22N =
1
2 (19)

So �S=0 upon merging. Similarly, 
00=
1
2=
0, so �S=0 upon splitting.1

1. You might be bothered the fact that we had to take the thermodynamic limit N!1, which lets us use that
the most probable configuration is the only configuration, i.e. that there are always N particles in each side after
the splitting. At finite N then indeed 
0>
1
2, so entropy goes up on merging. After splitting, we must allow for
m particles on one side and N ¡m on the other. Then 
00=

P
m=0
2N 1

(2N ¡m)!V
(2N¡m) 1

m!
V m=

(2V )2N

2N!
=
0 exactly,

so entropy still does not go down upon splitting.
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When we mix helium and xenon we have

In this case, after mixing, each set of N molecules occupy the volume 2V , so the entropy of
mixing is �S = 2Nln 2, just as in the colored balls case. When we split them, since the particles
are identical, there is no way to tell apart one splitting from the other. Each half has N

2
of each

species in a volume V . So the total number of states in this case is


00=

24 1�
N

2

�
!
V N/2

354=
1
2
N !N !�
N

2
!
�
4 �
1
2

NNNN�
N

2

�
2N

=
1
222N =
0 (20)

And therefore �S=0 for the splitting case.

So we see that in the distinguishable case (colored balls) or the helium/xenon mixture case,
there is a 2N ln 2 entropy of mixing � each of the 2N molecules now has an extra binary choice of
where to be, so we get 2N ln 2. In no situation does entropy go down when we split the volume
back into two halves.

3.4 Entropy is extensive

Note that with the extra factor N ! in Eq. (13) entropy has become an extensive quantity.
Extensive quantities are defined as those that double when you have twice as much of the same
thing. For example, energy E is extensive, as are N and V . The ratio of two extensive, quantities
is an intensive property: one that characterizes the stuff itself, independent of how much you
have. Temperature and pressure and the heat capacity CV are intensive.

To see that entropy is extensive, note from the Sackur-Tetrode formula that doubling V ; N
and E makes S double. This makes sense from the original definition � if you have two isolated
systems with 
1 microstates in one (entropy S1=kBln
1) and 
2 microstates in the other (entropy
S2= kBln
2) then the total number of microstates is 
=
1
2. So

S12=S1+S2 (21)

This is true if the systems are truly isolated, whether or not we have the extra factor of N in the
formula. If the systems are not isolated, Eq. (21) only works if we specify whether the particles
are distinguishable � so that we know if we need to add new states (by coarse graining) � or if they
are indistinguishable � so that coarse graining would not add anything new. Getting entropy to
be extensive both for distinguishable and indistinguishable particles was what motivated Gibbs to
add the N ! to 
. The N ! is associated with indistinguishable particles.

We can also see the extensive property from the definition of Gibbs entropy in terms of prob-
abilities, in Eq. (6). Say we have two systems A and B with probabilities PiA and PjB. Then the
Gibbs entropy of the combined system is

SAB=¡kB
X
i;j

Pi
APj

Bln(PiAPjB) (22)

=¡kB
�X

i

Pi
A
�X

j

Pj
Bln(PjB)¡

 X
j

Pj
B

!X
i

Pi
Aln(PiA) (23)

= SA+SB (24)
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So Gibbs entropy is an extensive quantity. If we had used the formula with the extra factor of N ,
Eq. (5), we would have found SAB=/ SA+SB.

The extensivity often simplifies properties of entropy. For example, say we have m possible
states a single particle can be in, and the probability of being in state i is Pi. Then the entropy
for a single particle is the Gibbs entropy S =¡kB

P
Piln Pi. Now if we have N indistinguishable

particles, we get simply N times this

S=¡kBN
X
i=1

m

PilnPi (25)

This is identical to the Boltzmann entropy formula in Eq. (5). Indeed, the Boltzmann formula was
based on a state counting 
= N !

n1!:::nm!
. The factors of ni! in the denominator precisely compensate

for the fact that we do not attempt to distinguish the ni! particles in state i. That is, the factor of N
difference between Eq. (5) and Eq. (6) is due to Boltzmann's formula applying for indistinguishable
particles, and Gibbs' formula for distinguishable ones.

To be clear, indistinguishability just means we are not interested in trying to tell them apart.
There is a quantum definition of indistinguishability for identical particles. We're not talking about
that. We're just talking about whether we want to use a device that can distinguish all of the
N � 1024 helium molecules from each other. If we're not planning to exploit their differences, we
should treat the particles as indistinguishbale. Recall that to do work using the entropy of mixing,
we need something like a semipermeable membrane that lets one type of thing through and not
the other. Perhaps we could tell a He4 isotope from a He3 isotope. An entropy definition that
can tell them apart would differ from one that says they are distinguishable by 2!, which hardly
matters. You are never going to be able to pick out each of the 1024 individual He atoms in a gas,
so the N ! should be included. In a metal, on the other hand, you can tell where each atom is, so
the atoms in a solid should be treated as distinguishable, even if they are identical elements (like
in solid gold). We'll talk about metals in Lecture 13.

It's worth adding that extensivity is a convenient property for entropy to have, but it is not
guaranteed by any of the definitions of entropy. Indeed, in some systems, such as stars, entropy
is not extensive due to long-range forces (gravity). With long-range interactions when you double
the amount of stuff, the system can be qualitatively different (a star not much smaller than the
sun would not be hot enough to burn hydrogen, see Lecture 15). With that caveat in mind, for
the vast majority of systems we consider, where interactions are local (nearest neighbor or contact
interactions), entropy will be extensive and we can exploit that property to simplify many formulae
and calculations.

4 Information entropy

Next, we introduce the concept of information entropy, as proposed by Claude Shannon in 1948.
We'll start by discussing information entropy in the context of computation, as it was originally
introduced, and then connect it back to physics once we understand what it is.

Consider the problem of data compression: we have a certain type of data and want to compress
it into as small a file as possible. How good is a compression algorithm? Of course if we have two
algorithms, say .jpg and .gif, and some data, say a picture of a cat, then we can just compress the
data with the algorithms and see which is smaller. But it may turn out that for one picture of
a cat the jpeg comes out smaller, and for another, the gif is smaller. Then which is better? Is it
possible to make an algorithm better than either? What is the absolute best an algorithm can do?

If you want lossless compression, so that the data can always be restored exactly from the
compressed file, then it is impossible for any algorithm to compress all data. This follows from the
�pigeonhole principle�: you cannot put m pigeons in n holes if n < m without some hole having
more than one pigeon.
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So non algorithm can losslessly compress every possible file. But that's ok. Most data files
have some structure. For example, images often have similar colors next to each other. This leads
to the idea of run-length-encoding: instead of giving all the colors as separate bytes, encode the
information in pairs of bytes: the first byte in the pair gives the color and the second byte gives the
number of pixels of that color. Run-length-encoding was used in early versions of .gif compression.
It will compress almost all pictures. But if you give it white noise, where neighboring pixels are
uncorrelated, then the compressed file will be bigger than the original.

Another feature in image data is that it often has smooth features separated by relatively sharp
edges. Thus taking a discrete Fourier transform becomes efficient, since high frequency modes are
often absent in images. jpeg compression is based on discrete Fourier transforms. Again, white noise
images will not compress because their Fourier transforms are not simpler than the original images.

4.1 Text
For data that is text, the information is a sequence of letters. Different letters appear in a typical
text with different frequencies. The standard way to write uncompressed text as numbers is with
the ASCII code (American Standard Code for Information Interchange). A bit (short for binary
digit) is the smallest unit of information. It can take the value 0 or 1. In ASCII every letter is
assigned a number from 0 to 127 which takes up 7 bits. For example, the ASCII code for �e� is 101
and the ASCII code for �&� is 38. There is an extended ASCII code as well, with 8 bits, allowing
for letters such as �ä� which is 228. Since �e� is much more common than �&� it should be possible
to efficiently compress text, allowing for random sequences of symbols not to compress well.

Here is a table of the probability of getting a given letter in some English text:

Figure 3. Probabilities of finding different letters in English text.

For example, if you open a book and pick a letter at random, 12.7% of the time the letter you pick
will be �e� and only 0.1% of the time it will be �q�. Exploiting these frequencies, a good compression
algorithm would find a way to use fewer bits for �e� and more bits for �q�.

What is the minimal number of bits you need to encode a given type of data? Shannon's answer
was

H =minimial#bits=¡
X
i

Pilog2Pi (26)

This quantity H is called the Shannon entropy or information entropy. (You may recognize
this H as the same as Boltzmann's H with loge replaced by log2.) Shannon proved that you
can't ever encode data with fewer than H bits, on average. This is known as the source coding
theorem.

For example, if you have a single coin, with Phead=
1

2
and Ptails=

1

2
. Then

H =¡
�
1
2
log2

1
2
+ 1
2
log2

1
2

�
=1 (27)

So a coin has 1 bit. Note we are taking logarithms base 2 here. So one bit has H =1 not H= ln 2
With the letter sequences above we find

H =¡[0.127 log2 0.127+ 0.091 log20.091+ ���+ 0.001 log20.001] = 4.17 (28)

This means the best we can possibly do is to represent each letter with 4.17 bits, on average.
Having a non-integer number of bits it is not a problem; it just means that you could encode 100
characters with 417 bits and so on (see coin example below).
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Note that 4.17 is better than the 7 bits in ASCII. Of course, we don't need 7 bits to represent
26 letters, but a naive encoding would use 5 bits (so 25= 32 characters), so since H = 4.17<5 this
says you can do than better than 5 bits. Since we are considering non-integer bits, you might say
we should use log226= 4.7 bits. Indeed, the 4.7 bits is exactly what Shannon entropy would say is
the best encoding if the probabilities of finding each letter were equal: Pi=

1

26 . That is

Hequal=¡
X
i=1

26
1
26

log2
1
26

= log226= 4.7 (29)

That reason that we can use only 4.17 bits on average instead of 4.7 is because the probabilities
are not equal. A better algorithm uses this extra information.

Shannon also noted that in text, letters aren't randomly distributed with probabilities but form
words. Using words rather than letters, in his 1948 paper Shannon estimated that H�2.62/ letter
for the entropy of English text. That is, it only takes 2.62 bits/letter to encode words. If a letter
is given one byte (8 bits) in extended ASCII, this says that the maximal compression you could
get is a compression factor of 8

2.62 = 3.05.
The prize is a 50,000¿ competition to compress a 100MB snapshot of Wikipedia. The current

record is 16 MB. For each 1% improvement you get 1,000¿. Note that already the compression
factor is 100

16 =6.25 so that each character is represented by 8bits
6.25 =1.28 bits. This is already much

better than Shannon's original estimate. The improvement implies that Shannon's estimate of H
is off, probably because he did not use all the information about the regularity of English text (for
example, sentence structure); perhaps also Wikipedia articles are not typical text.

4.2 Algorithms
The source coding theorem doesn't tell you how to maximally compress the data, just what the
maximal compression rate is. Let's think a little about what an optimal compression algorithm
might look like. This should give us a better feel for Shannon entropy.

First, we'll take some limits. If all the probabilities are equal with Pi=
1

N
then

H =¡
X
i

1
N
log2

1
N
= log2N (30)

This is just the number of bits to encode N letters. I.e. if N =32, it takes 5 bits, if N =64 it takes
6 bits and so on.

If one of the probabilities is zero, then the effect on H is limP!0P lnP =0. So adding something
else to the data that never occurs does not affect the entropy. Conversely, if the data is completely
uniform, so P = 1 for some character, then H = ¡1 log21 = 0. So it takes zero bits to encode a
completely determined sequence.

Say we have a fair coin with 50% heads and 50% tails probabilities. Then

H =¡
�
1
2
log2

1
2
+ 1
2
log2

1
2

�
=1 (31)

So it takes one bit to encode each flip. This is the best we can do. If the coin has 2 heads and no
tails, then H =0: we know it will always be heads.

Now let's look at a more complicated example. Say the coin is weighted so it is 90% likely to
get heads and 10% likely to get tails. Then we find that

H =¡(0.9log20.9+ 0.1log20.1)= 0.468 (32)

So it is inefficient to encode each coin flip with just 0 or 1. What we really want is a code that
uses less than a bit for heads and more than a bit for tails. How could we do this? One way is to
say 0 means two heads in a row, 10 means heads and 11 means tails:

HH H T
0 10 11

(33)
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This lets us represent a sequence of two flips with one bit if it's , and with 4 bits otherwise.
Thus for example, the sequence HHHHHHHHTHHH, with 12 digits, becomes 000011100, with 9
digits. For all possible 2 flip sequences, we find:

Sequence HH HT TH TT
Probability 81% 9% 9% 1%
Code 0 1011 1110 1111
#bits 1 4 4 4

(34)

The expected number of bits needed to encode a 2 flip sequence is the number of bits in the code
(1 or 4) times the probabilities, namely #bits=1� 0.81+4� 0.09+4� 0.09+4� 0.01= 1.57. So
instead of 2 bits, we are using 1.57 on average, corresponding to an entropy per flip of 1.57

2
=0.785.

This is not as good as 0.468, but it is better than 1. In other words, our algorithm compresses the
data, but not optimally.

Check your understanding. What is the entropy per flip in the following encoding?

HH HT TH TT
0 10 110 111

(35)

Can you think of a better compression algorithm?

4.3 Uniqueness
You might like to know that Shannon's formula for information entropy is not as arbitrary as it
might seem. This formula is the unique function of the probabilities satisfying three criteria

1. It does not change if something with Pi=0 is added.

2. It is maximized when Pi are all the same.

3. It is additive on uncorrelated probabilities.

You can find the proof of the uniqueness of Shannon's formula in various textbooks on information
theory, but I'm not going present it here since it's not particularly illuminating.

This last criteria needs a little explanation. First, let's check it. Say we have two sets of
probabilities Pi and Qj for different things. For example, Pi could be the probability of having a
certain color hair and Qj the probability for wearing a certain size shoe. If these are uncorrelated,
then the probability of measuring i and j is PiQj. So the total entropy is

HPQ=¡
X
i;j

PiQjlog2(PiQj)=¡
X
i

X
j

QjPilog2(Pi)¡
X
j

X
i

PiQjlog2(Qj) (36)

Doing the sum over j in the first term or i in the second term gives 1 since Qj and Pi are normalized
probabilities. Thus

HPQ=¡
X
i

Pilog2(Pi)¡
X
j

Qjlog2(Qj)=HP +HQ (37)

In other words, entropy is extensive. This is the same criterion Gibbs insisted on. So Gibbs entropy
is also unique according to these criteria.

By the way, there are other measures of information entropy other than Shannon entropy, such
as the Renyi entropy

HRenyi
� = 1

1¡� log2
¡X

Pi
�
�

(38)

The Shannon entropy is the limit as �! 1 of the Renyi entropy (check it!). Other limits give the
Hartley entropy or the collision entropy. These other entropies do not satisfy the conditions 1-3
above. Instead, they satisfy some other conditions and consequently they have different applications
and interpretations. For example, the second order Renyi entropy (� = 2) is HRenyi

� = ¡lnTr�2
with � the density matrix, is related to the purity of a quantum system. See Section 7 for a longer
discussion of quantum information. In this course, when we discuss information entropy, we will
mean Shannon entropy unless otherwise stated.
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5 Information entropy to thermodynamic entropy

One way to connect information entropy to thermodynamics is to say that entropy measures
uncertainty. For example, suppose you have gas in a box. In reality, all of the molecules have some
velocities and positions (classically). If you knew all of these, there would be only one microstate
compatible with it and the entropy would be zero. But the entropy of the gas is not zero. It is
nonzero because we don't know the positions and velocities of the molecules, even though we could
in principle. So entropy is not a property of the gas itself but of our knowledge of the gas.

In information theory, if we flip some biased coins that always come out heads, then the
Shannon entropy is 0; because we know exactly what will come next � a head � so our uncertainty
is zero. If the coin is fair and half the time gives heads and half the time tails, then H = 1: we
are maximally ignorant. We know nothing about what happens next. If the coin is unfair, 90%
chance of heads, then we have a pretty good sense of what will happen next, but are still a little
uncertain. If we know the data ahead of time (or the sequence of flips), we can write a simple code
to compress it: 1 = the data. So there is no ignorance in that case, as with knowing the position
of the gas molecules.

With the uncertainty idea in mind, we can make more direct connections between information
theory and thermodynamics.

5.1 Gibbs = Shannon entropy
The easiest way to connect information entropy to thermodynamic entropy is simply by inter-
preting microstates, and their associated probabilities, as the data. In general, suppose that the
probability of finding a system in a given microstate is Pi. Then we can compute a thermodynamic
entropy by multiplying the information entropy by a constant (recalling the relation lnx

ln 2 = log2x)

kB(ln2)H =¡kBln2
X
i

Pilog2Pi=¡kB
X
i

PilnPi=S (39)

This is the Gibbs entropy from Eq. (6). Note that from the information theory point of view, the
bits are necessarily indistinguishable (if a bit had a label, it would take more than one bit!), so it
makes sense that the information entropy leads to Gibbs entropy.

What values of Pi will maximize S? Given no other information of constraints on Pi, the
postulate of equal a priori probabilities (or the principle of maximum entropy) gives that the
probability of a microstate i is Pi =

1



with 
 the total number of microstates. In terms of

information theory, if the Pi are equal, it means that the data is totally random: there is equal
probability of finding any symbol. Thus there should be no way to compress the data at all. The
data can be compressed only if there is some more information in the probabilities. So the minimal
information leads to the maximum entropy. With Pi=

1



the entropy is

S=¡
X
j=1




kB

�
1


ln
1



�
= kBln
 (40)

which is of course the original Boltzmann entropy formula in Eq. (3).
For another connection, consider the free expansion of a gas from a volume V to a volume

2V . The change in entropy is �S= kBN ln 2 or equivalently, �H = 1

kBln2
�S=N . So the number

of bits we need to specify the system has gone up by N . But that's exactly what we should have
expected: each bit says which of the 2V volumes each particle is in, so we need N more bits to
specify the system.

5.2 Irreversibility of information storage
We made an abstract connection between Gibbs entropy and information entropy. Actually, the
connection is not just formal, they are actually the same thing. To see this, we need a little bit of
the physics of computation.
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A key observation was made by Rolf Landauer in 1961. Landauer was interested in making
powerful computers that used as little energy as possible. How little energy could they use? He
considered a model of a bit with a (classical) double well. A ball on the left was 0 and a ball on
the right was 1.

Figure 4. A model of information storage where a ball on the left is 0 and a ball on the right is 1.

The first question is whether we can change the bit from 0 to 1 without using any energy.
It seems that the answer is yes. For example, we could hook a line to the ball and tie it to a
counterweight with some pulleys on a frictionless rod:

Figure 5. Hooking a pulley to the bit, we can move it from 1 to 0 without doing any work.

We just have to give the ball an infinitesimal nudge and it will roll across, then another infinitesimal
nudge will stop it. So no energy is needed to flip this bit. This action is adiabatic and reversible,
and can be also used to set 0 to 1 by running in reverse. Even if we need a little energy to actually
do it, we get the energy back, so can flip 1000 bits with the same net energy cost as for one bit.

So if the bit is 0 it takes no energy to set it to 1 and if the bit is 1 it takes no energy to set it
to 0. But what if we don't know what state the bit is in? Here's where it gets interesting. Suppose
you had some automated mechanism for �SetToZero� to take the bit from 1 or 0 to 0. This is the
kind of operation computers need to do all the time. Can we use our pulley gizmo to do it? The
answer is no. In fact, the answer is no for any gizmo and any way of representing a bit. The reason
as that we are just using Newton's laws, which are time-reversible. So if whatever action we do
must be some some kind of 1-to-1 invertible function F acting on the position and momenta of
the stuff in the bit. If phase space point (q~i0; p~ i0) represents 0 and point (q~i1; p~ i1) represents 1, then
we want F (q~i0; p~ i0)= (q~i0; p~ i0) and F (q~i1; p~ i1)= (q~i0; p~ i0). But this is impossible if F is invertible. This
argument is very rigorous and holds even in quantum mechanics, since the Schrödinger equation
can also be run backwards in time.

Now, computers are very good at SetToZero. How do they do it? If we are allowed to dissipate
energy, it's easy. For example, if there is friction in our double well system, then SetToZero could
be �swing a mallet on the 1 side with enough energy to knock a ball over the hill.� If there is no
ball on the 1 side, the this does nothing 0! 0. If there is a ball on the 1 side, it will go over to
0 and then settle down to the minimum due to friction, 1 ! 0. Note that without friction this
wouldn't work, since the ball would come back to 1. So heat must be generated. If we don't know
the initial states then to flip 1000 bits would take, at minimum, 1000 times the minimum energy
needed to flip 1 bit. In a real computer, the information might be stored in the spin of a magnet
on a magnetic tape. Applying a field to flip the bit would release energy if it flips which would
then dissipate as heat. No matter how you cut it, we find
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� Landauer's principle: erasing information requires energy be dissipated as heat.

Erasing information is an essential step in computation. Every time we store information, we erase
the information that was previously there. But it not the storing of information but the erasing,
the throwing out of information, that dissipates heat. That was Landauer's critical insight.

The key element to showing that SetToZero on an unknown bit is impossible without dissipation
was the reversibility of the laws of physics. Erasing information cannot be done with a reversible
process. Thus thermodynamic entropy increases when information is thrown out.

To be absolutely clear, strictly speaking the information is not really lost. The laws of physics
are still reversible, even with friction, so the final state could be run backwards to get the initial
state. The final state however requires not just knowing the bit we are interested in, but all the
positions and momenta of all the particles carrying off the heat. If we only record the bit, we
are averaging over all possible states of the other stuff. It is in that averaging, that purposeful
forgetting, where the information is actually lost. Dissipation into thermal energy implies this
purposeful forgetting. Coarse graining erases information.

5.3 Energy from information
The connection between information entropy and thermodynamics was pushed further by Charles
Bennett in the 1980s. Bennett was very interested in how much energy computers require, in
principle. That is, what are the fundamental limits on computing determined by thermodynamics?

The first relevant observation is that information itself can be used to do work. The setup
Bennett considered was a digital tape where the information is stored in the position of gas
molecules. We say the tape is made up of little cells with gas molecules either in the bottom of
the cell, which we call 0, or in the top of the cell which we call 1. Imagine there is a thin dividing
membrane between the top and bottom keeping the molecule from moving from top to bottom.

Figure 6. Information is stored in the position of gas molecules.

Let us keep this molecular tape in thermal contact with a heat bath so that the molecules are always
at constant temperature. By fixing the temperature, we fix the molecule's momentum. Conversely,
if we had allowed the temperature to vary, then the momentum would be variable too, and there
would be more degrees of freedom that just the single bit represented by position.

Now, for an individual cell, if we know whether it's 0 or 1, we can use that information to do
work. Bennett proposed putting pistons on both the top and bottom of each cell. Say the molecule
is on the bottom. If so, we lower the top piston to isolate the molecule on the bottom half. This
doesn't cost any energy. Then we remove the dividing membrane and let the thermal motion of
the molecule slowly push the piston up, drawing heat from the heat bath and doing useful work:

Figure 7. Extracting work from information.
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If the molecule were in the top, we would move the bottom piston to the middle, remove the
membrane, and let the system do work pushing it back down. Either way, the final state of the
system has the gas molecule bouncing around the whole cell so we have lost the information � we
don't know if it is 0 or 1 � but we have done work. This way of getting work out of information is
known as Szilard's engine.

Once the piston is open and the molecule is free to bounce around the whole container, we
have lost the information. We can then set the bit to 0 (or 1) by pushing down (up) on the gas
with the piston. The work we do during this compression goes off into the thermal bath as heat.
This is the SetToZero operation again that we discussed in Section 5.2. Just like there, acting on
an unknown bit SetToZero dissipates energy. Once the bit is set, we can then use it to do work.
But the work we get out is the same as the work we put in to set the bit. So we cannot do useful
work if we do not know the state.

Let's make this a little more precise. Suppose the molecule is an ideal gas, so PV = kBT . Let's
also put the engine in a heat bath and extract the work isothermally. Then the work done is

W =
Z
PdV = kBT

Z
dV
V

= kBT ln
V2
V1
= kBT ln 2 (41)

The heat absorbed from the bath is then Qin=kBT ln2. This is the maximum amount of work you
can get from a bit of information. If we run the system in reverse when we don't know the state
of the system, we need to use this amount of work (on average) to set the bit, so the amount of
heat dissipated into the bath is Q=kBT ln 2. This is therefore minimal amount of heat dissipation
from SetToZero. In summary

� Setting a bit erases information and dissipates at least Q= kBT ln 2 in heat

� The minimum amount of work it takes to set a bit is W = kBT ln2

The entropy cost of losing the information, and of not being able to do work, is the entropy
increase in doubling the volume available to the molecule

�Ssys= kBln
V2
V1
= kBln2 (42)

or equivalently

�H =1 (43)

The information entropy goes up by one bit because we have lost one bit of information � the
position of the molecule. In this isothermal quasistatic expansion, the entropy change of the bath
is �Sbath¡ Qin

T
=¡kBln2, so overall �Stot=0 since we have extracted the information reversibly.

To be clear, when we say information can be used to do work, we don't mean the first law of
thermodynamics is violated. Really, it is the thermal motion in heat that is actually doing the
work. Szilard's engine can convert heat directly into work without violating the second law because
entropy decrease of the gas is compensated for by an entropy increase from erasing information of
the initial state of the system.

6 Maxwell's demon

We're now ready to tackle the most famous paradox about entropy, invented by Maxwell in 1867.
Suppose we have a gas of helium and xenon, all mixed together in a box. Now say a little demon
is sitting by a little shutter between the two sides of the box. When he sees a helium molecule
come in from the right, he opens a little door and lets it go left. But when it's a xenon molecule
coming in from the right, he doesn't open the door.
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Figure 8. Fig 2: Maxwell's demon lets helium through, but not xenon

After a while, enough helium will be on the left that it will increase the pressure and this can be
used to do work. The demon has made the system more ordered and the entropy has gone down.

Your first thought might be that the resolution to this puzzle has to do with identical particles.
But this is not true. The paradox holds for pure helium. If the demon lets helium molecules go left
and not right, the entropy would go down. Moving the door up and down doesn't take any work (it
can be moved with an arbitrarily small push, and moreover the work can be completely recovered by
stopping it), yet when the helium gets concentrated on one side it will exert a pressure on the barrier
that can be used to do work. So this little demon is converting heat directly into work at constant
temperature. In Maxwell's original formulation, the demon would only let the fastest molecules
through one way and the slow ones the other way, so that the temperature difference of the two sides
would increase. These are all different ways of saying the second law of thermodynamics is violated.

The demon doesn't have to be alive either. A robot could do his job, governed by the laws of
physics. You just have to program him to tell xenon from helium or fast from slow. So conscious-
ness doesn't have anything to do with it (although people sometimes like to say it does). For a
mechanical example, say you had a little door with a very weak spring on it that only opens one
way. If a molecule hits it from the left it will open and let the molecule through, but will not open
when hit form the right (do you think this would really work?).

Maxwell's demon has exasperated generations of physicists, for over 100 years. In the 1920s
the great physicists Szilard and Brillouin argued that it must take the robot some energy to find
out which way the gas is going. The robot must shine light at least one photon of light on the
molecule or something equivalent. The energy of this photon will then dissipate as heat increasing
the entropy, so the total entropy of the demon/gas system would not go down. While it is true
that doing the measurement with light does use energy and increase the entropy, it is possible to
make a measurement using an arbitrarily small amount of energy, for example with an arbitrarily
low frequency photon.

The correct resolution to Maxwell's demon is that somewhere in the process of letting the
molecules pass through from left to right, the robot has to ask: is the molecule on the left? He
must store the answer to this question in some variable in his program, somewhere. So he must
set a bit, using the �SetToZero� operation. This operation takes work, at least as much work as
we get out from moving the molecule to the right side. In terms of information, we gain one bit of
information by identifying the particle as left/right, xenon/helium or fast/slow. But we also erase
one bit of information by using SetToZero, sending heat into the surrounds. So the net effect is
�S=0. Entropy does not go down and there is no contradiction with the second law.

You might instead suppose that we knew the bit on our tape was 0 to begin with. Then recording
the position of the molecule with 0! 0 or 0! 1 does not require heat dissipation. In this case,
it seems that Maxwell's demon does violate the second law. Note, however, that as we write the
(random) locations of the molecules to our tape, our tape randomizes. So we are just moving the
disorder from our gas into the disorder of the tape. In other words, �Sgas=¡�Stape so the net
entropy increase is still zero.

In this way Maxwell's demon was resolved by Bennett in 1982. after 115 years of confusion. As
Feynman says in his Lectures on Computation (p. 150)
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This realization that it is the erasure of information, and not measurement, that is the
source of entropy generation in the computational process, was a major breakthrough
in the study of reversible computation.

Maxwell's demon clarifies why information entropy really is entropy. If we had a tape of 0's,
then the demon could indeed make a finite amount of heat flow from a hot bath to cold bath. As
Bennett puts it, a tape of 0's has �fuel value� that can be used to do work. So we must include the
specification of this tape as part of the definition of the system. Once we do so, then the entropy
never decreases, it just moves from the disorder of the molecules in the box to the disorder of the
information on the tape. Thus the entropy for which �S > 0 is strictly true should include both
thermodynamic and information-theoretic entropy.

Finally, it is worth returning briefly to Gibbs paradox, from the information entropy point of
view. Recall that Gibbs paradox was that when you separate a box of distinguishable particles in
half, the entropy seems to go down. The resolution, as discussed in depth in Section 3.3, was that
there are 
split=

�
2N
N

�
ways of separating the distinguishable particles. If we include 
split in the

counting of microstates, then entropy does not go down. Now suppose we look at the balls, so we
know which balls go where. Then there is no more 
split. Has entropy gone down? No! To find out
which ball went where, we had to look at the color of each ball. Equivalently, we have to measure
for each ball which side it's on. Each such measurement must SetToZero some bit in whatever we're
using to do the measurement. The entropy consumed by this measurement is exactly the entropy
lost by the system. The unifying viewpoint that resolves both Gibbs paradox and Maxwell's demon
is that you must always include all forms information in the assessment of entropy changes.

6.1 Proof of the second law of thermodynamics

The information theory definition of entropy allows us to finally prove the second law of ther-
modynamics. We start with some system, specified with a given set of information (P ; V ; E or
which colored balls are where or the initial condition for our tape etc). The initial entropy is
S = kBln 2H. In order for entropy to go down, we need to acquire more information about the
system, so that fewer states are consistent with what we know. So we have to make some sort of
measurement on the system. Since the laws of physics are deterministic, for each possible state
of the system, the measurement will have a different outcome. Thus the unknown elements of the
system translate directly into unknown elements of our measuring device. You might think that
after the measurement we know the result, so the state of our measuring device is known. However,
the state that we measured is only stored on our measuring device. Thus the device becomes just as
unknown as the original system and we've just transported uncertainty from one place to another.

7 Quantum mechanical entropy (optional)

This section requires some advanced appreciation of quantum mechanics. It's not a required part
of the course, but some students might find this discussion interesting.

In quantum mechanics, distinguishability takes a more fundamental role, as does measurement.
Thus, naturally, there are additional ways to quantify entropy in quantum mechanics. These all
involve the density matrix �. Recall that in quantum mechanics, the states of the system are linear
combinations of elements j i of a Hilbert space. You may know exactly what state a system is in,
in which case we say that the system is in a pure state j i. Alternatively, you may only know the
probabilities Pi that the system is in the state j ii. In such situations, we say that the system is
in a mixed ensemble of states. The density matrix is defined as

�=
X

Pj j jih j j (44)
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The von Neumann entropy is defined as

S=¡kBTr[� ln�] (45)

Because S is defined from a trace, it is basis independent. Of course, we can always work in the
basis for which � is diagonal, �=

P
Pij iih ij, then � ln� is diagonal too and

S=¡kB
X
j

h j j�ln�j ji=¡kB
X
j

PjlnPj (46)

In agreement with the Gibbs entropy. Thus, in a pure state, where Pj=1 for some j and Pj=0 for
everything else, S=0. That is, in a pure state we have no ignorance. The von Neumann entropy
therefore gives a basis-independent way of determining how pure a state is.

For example, say we start with a pure state j i= j!i= 1

2
p (j"i+ j#i). This has P1=1 and so

S=0. Now say we measure the spin along the z axis, but don't record the result. Then the system
is either in the state j i= j"i with probability P1=

1

2
or the state j i= j#i with P2= 1

2
. The density

matrix is therefore

�=

0@ 1

2
0

0 1

2

1A (47)

and the entropy is S = kBln 2. The entropy has gone up since the measurement has collapsed the
wavefunction from a pure state to a mixed state. We no longer know what the state is exactly, so
our ignorance has gone up.

The von Neumann entropy also gives a useful way to quantify correlations. In quantum
mechanics correlations among different particles are encoded through entanglement. For example,
if there are two electrons, possible states have their spins aligned j i = j""i, anti-aligned j i =
j"#i, or entangled, j i = j"#i + j#"i. To quantify entanglement in general, let us suppose our
Hilbert space has two subspaces A and B, so HAB =HA
HB. Then we can compute a reduced
density matrix for a subspace A by tracing over B, and for B by tracing over A

�A=TrB[�]; �B=TrA[�] (48)

The von Neumann entropies of the reduced density matrices

SA=¡kBTr[�Aln�A]; SB=¡kBTr[�Bln�B] (49)

are called the entanglement entropies of the subspaces.
For example, consider the system in pure state

j i= 1
2
(j"iA+ j#iA)
 (j"iB+ j#iB)=

1
2

h
j""i+ j"#i+ j#"i+ j##i

i
(50)

Because the state is pure, the density matrix � = j ih j has zero von Neumann entropy. The
density matrix for A is

�A=TrB(�)= h"jB �j"iB+ h#jB �j#iB (51)

=1
2
(j"iA+ j#iA)(h"jA+ h#jA) (52)

=1
2
(j"ih"j+ j"ih#j+ j#ih"j+ j#ih#j) (53)

This is the density matrix for a pure state, j i = 1

2
p (j"iA + j#iA), so SA = 0. Similarly, SB = 0.

There is no entanglement entropy.
Now consider the system in an entangled pure state

 = 1
2

p
h
j"iA
j#iB+ j#iA
 j"iB

i
= 1

2
p
h
j"#i+ j#"i

i
(54)
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Then, S=0 since �= j ih j is still based on a pure state. Now the reduced density matrix is

�A=TrB(�)=
1
2

h
j"iAh"jA+ j#iAh#jA

i
=

0@ 1

2
0

0 1

2

1A (55)

This is is now a mixed state P1 =
1

2
and P2 =

1

2
. Thus SA = kBln 2. So when we start with an

entangled state, there is entanglement entropy. Tracing over B amounts to throwing out any chance
of measuring B. By doing so, we cannot exploit the entanglement anymore, so the information is
lost and entropy goes up.

We can think of the whole universe as being described by a single wavefunction evolving in time.
It's a pure state with entropy zero. Everything is entangled with everything else. As it becomes
practically impossible to exploit that entanglement, exactly like it was impossible to exploit the
correlations among scattered molecules classically, we coarse grain. Coarse graining in quantum
mechanics means tracing over unmeasurable components. This increases the entropy and moreover
turns a pure state into a mixed state. In this way, classical probabilities emerge from a completely
deterministic quantum system.

Another aspect of quantum mechanics that entropy sheds light on is the no-cloning theorem.
This theorem states that no unitary operator can evolve the state j�ij i! j�ij�i for all possible
states j�i and j i. The theorem follows imply from the fact that unitary operators are invertible,
so they cannot map multiple different states to the same state. In other words, the evolution
j�ij i!j�ij�i is not reversible: cloning a state necessarily involves erasing the information stored
in j i, so entropy must increase. This entropy increase provides a fundamental limit on how
efficient error-correcting quantum computers can become.

In summary, von Neumann entropy lets us understand both the information loss by measure-
ment and by losing entanglement. Entanglement is the quantum analog of correlations in a classical
system. Discarding this information is the reason quantum systems become non-deterministic and
entropy increases. We don't have to discard the information though. In fact, figuring out how to
exploit the information stored in entanglement is critical to the function of quantum computers.

8 Black hole entropy (optional)

This section requires some advanced appreciation of general relativity. It's not a required part of
the course, but some students might find this discussion interesting.

Using general relativity, you can prove some interesting results about black holes. General
relativity is described by Einstein's equations, which are like a non-linear version of Maxwell's
equations. Instead of @�F��= J� we have

R�� ¡
1
2
Rg��=T�� (56)

The right-hand side of this equation, T�� is the energy-momentum tensor, which is the source for
gravitational radiation like the current J� is the source for electromagnetic radiation. The object
R�� is called the Ricci curvature, it is constructed by taking 2 derivatives on the metric g�� in
various combinations: R�� = @�@�g�� + @�g��@�g�
 + ���. So g�� plays the role that the vector
potential A� plays in Maxwell's equations where F��= @�A� ¡ @�A�.

If we set J�= 0, there is a spherically-symmetric static solution to Maxwell's equations, A0=
e

4��0r
and A~ = 0. This is the Coulomb potential. It has one free parameter e. The Coulomb

potential is singular at r = 0 indicating that there is some charge localized there. In fact, this
solution corresponds to a current which is zero everywhere but the origin: J~=0 and J0= e�(x~ ). In
Newtonian gravity, the spherically-symmetric static solution is the Newtonian potential �=¡GM

r
.

with G Newton's constant.
In general relativity, the spherically-symmetric static solution to Einstein's equations is

g00=
�
1¡ rs

r

�
c2; grr=

1
1¡ rs

r

; g��= r2; g��= r2sin2� (57)
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and gij=0 for i=/ j. This solution, called the Schwarzschild solution, describes a black hole. This
solution is unique up to a single parameter rs called the Schwarzschild radius. Its uniqueness
implies black holes have no �hair�, meaning that every black hole is identical to an external observer
(up to possible conserved charges like electric charge which can be seen through electric field lines
ending at the black hole). Note that the solution is singular not only at r=0 but also at r= rs.

In the non-relativistic limit, general relativity reduces to Newtonian gravity. The precise cor-
respondence is that g00=1+2�. Matching on to �=¡GM

r
lets us relate the parameter rs in the

solution to the black hole mass M :

rs=2
MG
c2

(58)

The spherical surface at r = rs is called the event horizon. It turns out that nothing inside the
event horizon can ever escape. The size (surface area) of the event horizon is

A=4�rs2= 16�
M2G2

c4
(59)

Classically, things only fall in to a black hole, so their energy only goes up, and therefore the area
of the event horizon only increases.

Because the potential is singular on the event horizon, unusual things can happen. One such
thing is that due to quantum field theory the infinite potential energy can be turned into photons
produced that radiate outwards. Stephen Hawking showed that the spectrum of these photons is
identical to a hot gas (a blackbody, to be covered in Lecture 12) at temperature

T = ~c3
8�GMkB

(60)

This Hawking temperature is inversely proportional to the mass: very small black holes are very
hot, and very large black holes are cold. This unusual behavior is associated with a negative heat
capacity. Indeed, the specific heat of a black hole is

cS=
1
M
@M
@T

=¡1
T
=¡8�GkB~c3 M < 0 (61)

As things fall into a black hole, its mass goes up and its temperature goes down. A solar mass
black hole has a temperature T = 10¡8K. A supermassive black hole, like Sagittarius A? in the
center of our galaxy is about 1 million solar masses and has T = 10¡14K.

If nothing falls into a black hole, the black hole will completely evaporate due to Hawking
radiation in finite time

tevap= 5120�
G2M3

~c4 (62)

As a black hole evaporates, its mass goes down and its temperature goes up. The bigger the black
hole, the longer it takes to evaporate. A solar-mass black hole would take 1074 years to evaporate.
An atomic mass black hole would evaporate in 10¡98 seconds.

You probably know that the universe is filled with cosmic microwave background (CMB) radi-
ation at a temperature of 3K. A black hole radiating at this temperature has mass M3K=1022kg,
around the mass of the moon. Black holes less massive than M3K will be hotter than the CMB
and therefore radiate more energy than they absorb, eventually evaporating. Black holes more
massive than M3K will be colder than the CMB; these will absorb CMB radiation, and their mass
will increase over time, and their temperature will decrease. Thus these black holes will only grow
and never evaporate. If a black hole has mass exactly equal to M3K, it can be in equilibrium with
the CMB. However this equilibrium is unstable: a small fluctuation will send it's temperature
increasing or decreasing. This lack of a stable equilibrium is a typical behavior of systems with
negative heat capacity (including all gravitational systems, like stars or galaxies).

Black holes also have entropy. Since @S

@E
= 1

T
, taking the energy of a black hole as its rest mass,

E=Mc2 the entropy is

S=
Z
dE
T
= 8�G
~c

Z
MdM = 4�G

~c M
2= c3

4~GA (63)
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Note that black holes have entropy proportional to their surface area. String theory even provides
a way of counting microstates for certain supersymmetric black holes that agrees with this formula.

So black holes have entropy, but no hair, and they evaporate in finite time into pure uncorrelated
heat. This means that if some data falls into a black hole, it is lost forever. In this way, black
holes destroy information and radiate it out as heat, much like Landauer or Bennett's SetToZero
operation. There is one important difference though. When we �SetToZero� a bit, the information
is not destroyed, just lost by being embedded irretrievably in correlations in the heat. We know
this because the law of physics are reversible. When a black hole destroys information it really
destroys it � it cannot be stored in correlations of the outgoing radiation because nothing can get
out of a black hole, including information. This is the black hole information paradox.

To see this another way, information can fall into a black hole well before the radiation is
emitted. Since black holes have no hair, that information cannot be accessed in any way by an
external observer. For example, suppose we just throw some books into a black hole, at such a
rate that the energy input exactly equals the thermal radiation rate. Then the black hole's horizon
stays constant so the information must be going out in the radiation. However, this is impossible
since once something passes the black hole horizon, it can never affect anything outside the horizon.
Thus the information really seems to be lost as it falls into the black hole.

The basic conflict is that the laws of gravity and quantum mechanics are deterministic and
reversible � if we know the exact starting state, we should be able to predict the exact final state.
The precise statement is that in quantum mechanics and gravity, as well as in string theory, time
evolution is unitary. Information cannot be lost in a closed, reversible, unitary theory.

The conflict between unitarity and black hole evaporation can be understood clearly with von
Neumann entropy. Say the initial state is a wavefunction describing two electrons moving towards
each other at super high energy. This is a pure state. They then collide to form a black hole. The
black hole then evaporates and the information leaves as heat. The entropy goes up, so the outgoing
state is mixed. Thus black holes mediate the evolution from a pure state into a mixed state. This
is in conflict with Schrödinger's equation, or more generally, any theory with unitary evolution
(such as string theory). If unitarity can be violated by black holes, then it would contribute through
virtual effects in quantum field theory to unitarity violation in every other process, in conflict with
observation.

9 Summary

We have seen a lot of different ways of thinking about entropy this lecture. The Gibbs entropy is

S=¡kB
X

PilnPi (64)

Here Pi is the probability of finding the system in a microstate i and the sum is over all possible
microstates i consistent with some macroscopic parameters (volume pressure etc.). In equilibrium,
this definition is equivalent to S = kBln
 with 
 the number of microstates, but Eq. (64) can
be used in any situation where the probabilities are well-defined, including time-dependent non-
equilibrium systems.

This Gibbs entropy is proportional to the (Shannon) information entropy:

H =¡
X

Pilog2Pi (65)

In this equation, Pi is the probability of certain data showing up. H has the interpretation as the
minimal number of bits needed to encode the data, on average. Information entropy quantifies our
ignorance of the system. The more entropy, the less information we have.

An important result from information theory is Landauer's principle: erasing information dis-
sipates heat. This connects information to thermodynamics. When 1 bit of information is erased,
the information entropy goes up by 1 bit. Doing so is necessarily accompanied by the release of
heat which increases the thermodynamic entropy by the same amount. While the information is
technically somewhere encoded in the heated-up molecules, we accept that we will never recover
this information and forget about it. Thus we increase our ignorance of the state of the whole
system and the entropy goes up.
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The broader lesson from this lecture is the modern view of entropy is not as a measure of
disorder but as a measure of ignorance. Indeed, the information-theoretic point of view unifies
all the different forms of entropy and is the cleanest way to resolve the various entropy-related
paradoxes (Gibbs paradox, Maxwell's demon, etc.). It's not that there are two kinds of entropy
that we must add: counting microstates and information, but rather that all entropy measures the
lack of information. When we count the number of microstates 
 these are the states that give
the same macroscopic parameters. Thus, given only the information E;V ;N etc, 
 measures the
things we don't know, namely which microstate we have, consistent with our information. The
Gibbs and Shannon entropy formulas are equivalent and therefore both measure ignorance as well.
Thus, if you get one thing out of this lecture it should be that entropy = ignorance.
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