Matthew Schwartz
Statistical Mechanics, Spring 2025

Lecture 2: Diffusion

1 Introduction

If you we put a drop of red dye in water, it will slowly diffuse throughout the water. Why does
this happen? How fast does it happen? What is going on microscopically?

The microscopic mechanism of diffusion is very simple: the dye molecules start densely concen-
trated near one point. Then they get bumped by neighboring molecules until they are spread out
all over. To model this process, we can suppose that the dye molecule moves a distance ¢ between
collisions and after each collision its direction is completely randomized. This approximation is
called a random walk. Although the distance ¢ between collisions has some variation and the
direction of scattering is somewhat correlated with the initial direction, because molecules collide
billions of times per second, the law of large numbers applies to their net displacement and random
walks provide an excellent approximation to real diffusion.

Random walks are actually quite common. They can be used to model any stochastic process.
For another example, say you're playing blackjack with a friend. You are both expert players and
evenly matched. Sometimes you win, sometimes she wins. Each time you play, you bet 1 dollar.
This is a 1-D random walk. Say you play N games. Although we can’t say who will be winning
after N games, we can predict how by much they would be winning.

The 2-dimensional random walk is sometimes called the drunkard’s walk. The idea is that
a drunkard leaves a party late at night, takes a step in one direction, then gets totally disoriented
and takes a step in another direction. How far will she get after N steps?

2 1D random walk

Let’s work out the blackjack problem. We’ll make it a little more interesting. Say you have a
probability a of winning and your opponent has a probability b=1 — a of winning. If you play N
times, the chance of you winning m of them is
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This is known as the binomial distribution. The factor “/N choose m”

<”]Z)NC :m'(NLim)' 2)

is known as the binomial coefficient. It is the number of ways of picking m of the games for you
to have won out of the N total games.!
Binomial coefficients come up in the expansion of powers of sums. Namely
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So the binomial distribution is simply coefficient of the m™ term in this sum. In fact, this rela-
tionship makes it easy to see that the probabilities in the blackjack game sum to 1:
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1. To see this, first note that if we want to sort N objects, N of them can go first, then N — 1 second, and so
on, so there are N! permutations. If we are instead splitting into a set of size m and a set of size N —m, we don’t
1

care about the order within each set. So we have to divide by the permutations of each set, giving N — )
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since b=1—a.
How much can you expect to be winning after NV games? This is determined by the number of
games you win, namely the expected value of m:
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Although b =1 — a we can compute the sum on the right most easily if we allow a and b to be
unrelated. Then, we note that this sum is the same as the sum in Eq. (4) if we mulitiply by the
power of a. We can pull down this power if we differentiate with respect to a, then multiply by a.
So we have
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Now that we can compute the sum for any a and b we can take the case of interest where b=1—a
and get

{(m)=Na (7)

Similarly, the standard deviation is (check this, using the same trick!)
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As N — oo the binomial distribution approaches a Gaussian, by the central limit theorem. Thus
knowing the mean and standard deviation, we know the whole answer at large IV:
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We can derive this by studying the falloff of In By(m) at large N, but using the central limit
theorem is easier. Try checking the agreement of Eqgs. (1) and (9) for some numerical values.

For the blackjack game, (m) = Na is the expected number of times you win. The expected
number of times you lose is (m) = Nb. If you gain $§1 when you win, or lose $1 when you lose, then

(winnings) = N(a — b) x $1 (10)
and the standard deviation is (check this!):
O'Winnings:2\/ Nab x $1 (11)

For a fair match a=b :% and so the expected winnings are (winnings) =0 with standard deviation

o=V (12)
That o grows as v/N is exactly what we expect for the sum of random values by the central limit
theorem. The a= b:% case is sometimes called an unbiased 1D random walk.

For example, if you play 100 games for $1 each and are evenly matched, then (winnings) =0
and Owinnings = v/100 x $1=$10. This means that after 100 games, we don’t know who’s winning
but there is a 32% chance someone is up by at least $10.

For an unbiased 1D random walk, the mean displacement is 0. In this case, the typical scale
for displacement is better described by the root-mean-square (RMS) fluctuation, which reduces
to the standard deviation when the mean is zero. That is, the RMS fluctuation is yms =0 =/N.
Typically, RMS fluctuations are used for quantities that average to zero (as in a unbiased random
walk), but there is no hard and fast rule about when to use the mean displacement and when to
use the RMS fluctuation. Just like there are many measures of uncertainty (o, fraction within
50% of mean, width at half maximum, etc), there are many measures of discplacement (Z, Zyms,
etc.). Typically these are all similar (when nonzer) and determined by dimensional analysis, so you
can just substitute one for another, often depending on which leads to the simplest looking final
expression.
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Let us compare the binomial distribution to the Poisson distribution. The binomial distribution
By (m) is defined for discrete N and m, in contrast to the Poisson distribution P,,(t) :%e’/\t
which has discrete m but continuous ¢. For a binomial distribution, the smallest interval is one
discrete step, with probability of occurrence a. For Poisson, we can take an arbitrarily small
timestep At with probability d P =AAt. If we identify the interval for the binomial distribution with

that of the Poisson distribution by setting a = AAt = )\LN, and then take the limit N — oo we find
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which formally recovers the Poisson distribution from the binomial distribution. Note that this
requires taking N — oo holding At = Na fixed, and therefore a — 0 and b — 1. In other words, a
Poisson process is like a random walk that always goes in one direction but you don’t know when
the step will be taken.

Although they can be related, as we have seen, you should really think of binomial and Poisson
distributions as being relevant in different contexts: binomial is used when the steps are discrete
and incoherent (random directions) and Poisson is used when time is continuous but the steps are
coherent (counts always increase). If we are flipping coins, then a :% is fixed, and so the Poisson
distribution is not relevant since it needs a = 0. For a decay process, a decay can happen at any
time ¢ and so the binomial distribution is not appropriate. After a given time ¢, a Poisson process
can have potentially an infinite number of events. With a binomial process the time is the number
of steps N, so the number of possible events is always bounded.

2.1 Random walks in 2D and 3D

For the 2D case, a popular picture of the random walk is a drunkard stumbling around. In each
time step she moves a distance L in some random direction. In 3D you can imagine a dye molecule
diffusing in water and in each time step it bumps into something, and then gets buffeted into a
different direction. For simplicity, we’ll assume in the 2D and 3D cases that the distance is the same
each step and the angle totally random. Where will the drunkard or molecule be after N steps?

Let us say that in the j* step she moves by a displacement Zj. The vectors Zj all have length
{. The dot product of two vectors is

C;- £, = (%cosbjy, (14)

where 0;, is the angle between the two steps. Since we are assuming the angle is random, then the
expectation value of this dot product is zero:

-0 621/ d6 cosf =0 (15)

Now let Sy be the total displacement from the origin after N timesteps.
N
Sv=> 4 (16)
j=1

(8R) = (-1 + ) = (8 -1) + 28— - Iv) + () (17)

Then

Now, the angle between the last step ZN and the sum Sy _1 of the ones before is totally random,
s0 (Sy_1-0x)=0. Also (F3/)=/2. So we find

(3%) = (Bh—1) + £ (18)
Since this is true for any N we can compute that
() =(R-1) + =G _2) +22=-.=N* (19)

and the RMS distance moved is v/ N/, just like in the 1D case.
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3 Diffusion from random walks

Diffusion refers to the net spreading of the distribution of molecules due to random molecular
motion. Think about an individual molecule in a gas, say some CO molecule coming out of a
car’s exhaust. It leaves the exhaust and moves in a straight line until it hits another molecule, in
which case it is buffeted essentially randomly in a different direction. As all the CO molecules are
doing the same thing, on average, the net effect is a diffusion of the CO gas. We want to compute
the probability distribution Pi(x) for where a CO molecule is after a time ¢ and then use this to
determine the equation of motion of the density of the gas.

3.1 Collisions in a gas

It’s helpful to discuss random walks for gases in terms of a set of convenient physical quantities.
An important one is

e 7 = the collision time is the average time a molecule goes before colliding with another
molecule

The number of collisions in a time ¢ is then

N= % (20)
A related quantity is
e (¢ = the mean free path is the average distance a molecule goes between collisions

The mean free path is related to the collision time by
l=oT (21)
where
e © = the average molecular speed, o= (|9]).

Sometimes a more useful quantity is the root-mean-square velocity vyms = v/(7%). We can also
use the speed of sound ¢; in a gas, which is of course limited by the speed by which the molecules
move. All three of these, U, v,ms and c¢s are related by coefficients of order one, as we will see once
we understand gases in more detail in future lectures. For example, in air at room temperature,
= 467%, Vrms = 507% and ¢g = 346%.

The mean free path is related to the density and size of the molecules. Treating molecules as
spheres of radius R, two molecules will hit if their centers are within 2R of each other. Thus you can
think of a moving molecule as having an effective cross sectional area of o =7(2R)2. This effective
cross sectional area is also called the collisional cross section. After N collisions a molecule will
have swept out a volume V = Nlo. The number of molecules it hits during this sweeping is N =Vn
with

e 1n = the number density = number of molecules per unit volume
We will use number density a lot in statistical mechanics. It is interchangeable with the
e p = the mass density.

as p=mn where m is the mass of a molecule (or the average mass of a molecule if the gas is mixed).

Thus,
1
{=— 22
— (22)
Bigger molecules have bigger cross sectional areas so they will have smaller mean free paths. Since
liquids are more dense than gases, generally they will have smaller mean free paths.
For example, the radius of a typical atom is around the Bohr radius 1 ap=0.05nm. So an air

molecule, such as No or Os, has a radius of around R~ 2ag~ 0.1nm. Thus o ~7(2R)?=0.14nm? in

air. Air has a density of p= 1.3::—;‘3 and an average mass of m=4.81 x 10726molkejgcule’ so its number
density is n = % =2.6 x 1025#. Note that n~'/3=3.3nm so air molecules are around 3nm apart

on average. The mean free path is E:%: 0.26um. The collision time is then 7 :%: 0.57ns.
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These are useful numbers to have in your head: in air at room temperature, molecules have

m miles

velocities around v ~ 500 R 1100

tom» are around R~ 0.1nm big and n~/3~1nm apart. They
collide around once every nanosecond (one billion times per second) after having moved around

¢~100nm (one thousand molecule lengths).

3.2 Diffusion from random walks

Let’s now consider the probability distribution Pi(x) for where a CO molecule is after a time .
We'll start in one dimension. Treating molecular interactions as a random walk, we take a =b :%
since the molecule should be equally likely to be knocked left as right. Such a random walk is
unbiased. For an unbiased random walk, the mean displacement is £ = 0 and therefore does not
tell us much about how fast the molecules are diffusing. Instead, the RMS displacement is more
useful. The RMS displacement after a time ¢ is, from Eq. (12)

Trms = VNI = \/ée =/lot (23)

This x ~ /T behavior is the key characteristic of a random walk. Note that this is going to be a
much smaller distance than an unhindered molecule would move on average, Ax ~ vt.

Knowing the mean (z =0) and the standard deviation (o = +/¢ut) we can immediately write
down the full probability distribution for large times (¢ >> 7) using the central limit theorem:

Pila) = /=L —exp| -2 (24)
A=\ oot P T 2t0w

Note that probability distribution satisfies the differential equation

OPt(x) _ 82Pt($)
ot =D ox? (25)

where D = %&7. This is the 1D diffusion equation. You can easily check by plugging Eq. (24)
into Eq. (25).

We defined Py(z) as a probability distribution for one particular CO molecule in a gas. But
the same probability distribution holds for any molecule. Since there are usually an enormous
number N ~ 10?4 of gas molecules, if each one has a probability P;(x) of being at the the point z
then number density will be simply

n(x,t) = NPy(zx) (26)

To be precise, the number density is not exactly the same as the probability distribution since,
classically, a particle is either at a particular position or not. So we should think of n(x,t) = NP(z)
as referring to the number density averaged over time. (We'll return to this averaging in the next
lecture, in the context of ergodicity.)
Thus we find
on(xz,t) 0n(z,t)

ot P oz (27)

In 2 or 3 dimensions, the resulting equation is the rotationally symmetric version of this:

(@, 1)

— DV2n(Z 28
5 DV*n(Z,t) (28)

This is known as the diffusion equation. It describes how substances move due to random motion.
The coefficient is

D :%&7:—— (29)

2
This coefficient D is called the diffusion constant and the relation D = %ZT is known as the
Einstein-Smoluchowski equation.
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For example, in air £~0.26um and 72 0.57ns so D =5.9 x 10~5m? / s. This means that it takes
1 day for an individual gas molecule to diffuse 1 meter. Then it takes 100 days for it to diffuse 10
meters. These numbers are characteristic of diffusion processes: diffusion in air over macroscopic
distances is generally very slow, and almost always dominated by convection (see Section 4.1) and
other forms of energy transport. On the other hand, on smaller length scales where convention is
irrelevant like a cell, diffusion can be dominant. For example, the diffusion constant for proteins
in water is around D& 107"~ This is tiny compared to D for gases, but the typical distances
proteins diffuse are also tiny, and time scales like distance squared. To diffuse across a cell of size
10~*m it takes 15 minutes. To diffuse across a cell nucleus of size 6 um it takes only 3.6 seconds.

Just because the diffusion equation looks simple does not mean it has trivial consequences! For
example, it is mathematically identical to the Schrédinger equation, which accounts for a great
variety of interesting physics. It also also mathematically identical to the heat equation: heat
conduction is a diffusive process.

The diffusion equation is linear, so that if ni(Z, t) and nq(Z, t) are solutions, then so is their
sum. In particular if we start with a bunch of particles at some positions z;, then they will diffuse
independently of each other. This gives us a way to solve the diffusion equation in general. For one
particle, starting at =0, the solution is given by Eq. (24). Note that at ¢ =0, this solution really
does represent a localized source. In fact, the limit as t — 0 of this solution is one of the possible
definitions of a J-function:

1 3/2 52 3
T B _ 53z
£20 <4th) eXp[ 4Dt} @) (30)
where §%(Z) = §(x)d(y)d(z). Thus Eq. (24) is a solution to the diffusion equation with boundary
condition n(#,t) = §3(¥) at time ¢ = 0: it describes the diffusion away from a point source. Since
any function can be described as a set of points, we can construct any solution to the diffusion

equation by combining the solutions as in Eq. (24). More precisely, if no(Z,0) is the number density
at time 0, then the solution for all times is

)= [ ( )3/2exp[@T£>1no@, 0) (31)

To check this, we note that the right-hand side satisfies the diffusion equation and Eq. (30) verifies
the boundary condition at ¢ =0. Solving differential equations in this way is known as the Green’s
function method.? It converts solving a difficult differential equation to doing an integral.

Eq. (31) has a simple physical interpretation: the number of molecules at a point Z are those
that have walked there randomly from any other point ¥ over the time .

4 Fick’s laws of diffusion

The approach to diffusion we discussed was based on a microscopic picture of random walks of
individual molecules. We can also approach diffusion from the continuum perspective. Let us
continue to denote the number density by n(Z,¢) and let us also denote the local velocity as the
vector field ¥(Z, t). It can be helpful to think of n(Z, ¢) as the density of a fluid, like water in a
stream, and 9(z,t) as its velocity at the point Z at time ¢. For simplicity, lets assume that n and
¥ are constant in the y and z directions, so they only depend on x, n=n(z,t), 9= (v.(z,t),0,0).
Now, the total number of molecules between z; and x5 can only change if particles flow in or out
of that region. So

o [™

B dzn(x,t)= n(xy, t)vg(x, t) - n(xa, t)ve(zo,t) (32)
z1 ——— N

number coming in past x1 per unit time number going out past z2 per unit time

:—/Izdacax[n(x, vy (z,1)] (33)

1

2. In general, a Green’s function satisfies OG(x, t) = §(x)d(¢t) for some differential operator O. In our case, the
2

Green’s function is G(Z,t) = P(Z,t)0(t) = ﬁexp[f ]G(t) which satisfies [0; — DV2]G(&, t) = 63(2)5(¢).

81

4Dt
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Pulling the % on the left into the integral, and using that x; and x5 are arbitrary, we get

0 0]
En(iﬂ,t) - 7$JI(xﬂt) (34)
where
Jo(z,t) =n(z,t)vs(z, 1) (35)
The 3D version of this equation is called the continuity equation
o = =
o +V-J=0 (36)

and J(Z,t) is called the flux. The flux is the number density times velocity J(z,t) =n(z,t) x #(z,
t). It gives the number of particles passing by a given point per unit area per unit time. Note
that the velocity field and the density are in-principle independent, like position and velocity are
independent in classical mechanics.

How does the flux related to the density during diffusion? Well, if the density is constant in
position, then the net diffusion should be zero and the flux should vanish. Conversely, if the density
has some spatial gradient, then there should be net flux from high density to low density. Thus,
the leading order thing we could imagine is that J is proportional to the concentration gradient:

J=-DVn (37)

with D a proportionality constant. We put in the minus sign so that D would be a positive number
(if 9yn >0, so the gradient increases to the right, then particles flow to the left). This is known as
Fick’s first law. It’s a law because we didn’t derive it (neither did Fick), it just seems reasonable.
Note that Fick’s first law is not some general property of fluxes — you can certainly have a nonzero
flux at constant density, like current in a river, if there’s some potential driving the flow. Ficks first
law it is a statement about fluxes in diffusive systems, where there is no other source of motion
other than random motion.
Once we have Eq. (37) we can plug into the continuity equation, Eq. (36) to get

on(Z,t)
ot
This is also known as Fick’s second law. It is none other than the diffusion equation. Since
Fick’s second law follows from Fick’s first law, in fact, we have justified Fick’s first law through
our analysis of random walks. Moreover, through our analysis of random walks, we have related
D to properties of the gas, D :%617 as in Eq. (29).

= DV?2n(Z, t) (38)

For example, say we have some lemmings that come out of a hole, walk left or right randomly,
and maybe fall off a cliff a distance a away. Let their density be n(z), with z = 0 the hole
and z = a the cliff. At a given z, over a short time d¢, the number of lemmings that leave
to the right is proportional to n(z) and those that come in from the right is propotional to
n(z + dz). Similarly, the number that leave to the left is n(z) and those coming in from the left

proportional to n(z — §z). So the net change in the number at z is going to be proportional to
on 9%n

n(t+6t) —n(t) < [n(z +02) —n(z)] +[-n(z) + n(z — 6z)]. That is, 5~ < 5.

to see why diffusion only occurs if the second derivative is nonzero. In a steady state situation,
% =0, the solution to the diffusion equation is n(z) = ng + =(n1 — ng). Then J, = —% (n1 — ng).

This is a constant flux of lemmings coming out of the hole and falling of the cliff. Note that since
J, is constant, d,J, =0 and the continuity equation is satisfied.

To get a feel for how fast diffusion is, the diffusion constant in water for nitrogen molecules is
D=2x 10_9%2. Recalling from Eq. (22) that ¢ = L soD= %n—ug, bigger molecules should have

no’

smaller diffusion rates. Indeed, benzene molecules CgHg in water have D =1 x 10*9%2. For large

This is a physical way

molecules like proteins in water the diffusion constant is even smaller D ~ 10*11%2. In gases,
densities n are smaller so ¢ is larger and the diffusion constants are generally larger. For example,
CO molecules in air at room temperature and pressure have D =2 x 10’5%2.
To use the diffusion contant, we can either plug in the exponential solution, Eq. (24), or more
simply use Eq. (23):
Tyms = \/Q_Dt (39)
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’"L2

For example, taking a dye molecule in water with D ~ 10_9T, to move Az = 1m would take
(ggz = 31 years. So clearly diffusion is not the main mechanism by which dyes move around in
water.

By the way, thermal conduction is very much like diffusion. Instead of the diffusion equation,

temperature satisfies the heat equation:

I (z,y,2,1)
ot

where « is called the coefficient of thermal diffusivity. This equation describes diffusion of temper-
ature, rather than diffusion of particle number. The derivation of the heat equation is identical to
the derivation of Fick’s second law, with conservation of energy replacing conservation of particle
number. The analog of Fick’s first law for thermal conduction is called Fourier’s law. Fourier’s law
is an empirical observation that the rate of heat flow is proportional to the temperature difference.
We'll return to thermal conduction when we talk about temperature and heat in future lectures.

— oV T (2, y, 2,t) (40)

4.1 Convection (optional)

Diffusion refers to the motion of a molecule through random collisions. Think of a liquid in equilib-
rium and just try to follow one molecule. Convection occurs when the system is not in equilibrium
to begin with. In such situations, there can be coherent convective currents, like a hot or cold wind,
that move the dye much faster than through a random walk. Or if you dropped the dye into the
water with a dropper it hits with some force and has some inertia; then it takes a while for the
system to equilibrate and the dye molecules are for a while moving much faster than they would
if there were only diffusion.
If there is some external effect causing the medium to flow with velocity Uconv(Z,t), then there
will be flux even if there is no concentration gradient. We can introdude the convective flux
Jconv(fa t) == 6conv n(f; t) (41)
to describe this situation. Adding this convective flux to the diffusive flux, we get a new term:

on(Z,t)

o= DV2n(Z 1) + Teony V(7 ) (42)

This is called the generalized diffusion equation and describes situations where diffusion and
convection are both important. Unfortunately, it is usually impossible to determine jconv(f, t),
since when there is convection usually molecules are all moving around in different directions and
it is a horribly non-linear process. Think about this next time you pour milk into your coffee — all
those little eddy currents and funny shapes are convective. Good luck describing them analytically!
Convection is almost always studied with numerical simulations.

So for diffusion to actually be visible, a system has to be very calm — no chemical, temperature,
or density gradients. A place where diffusion is more important than convection is in biology. In
biological systems, temperature is often very constant, convection is small, and molecules do not
have to move very far. Diffusion of heat (thermal conduction) is the dominant mechanism of heat
transfer in solids, for example as you heat up a pan on the stove. However, when you heat a room,
convection dominates and the heat equation, Eq. (40) is not relevant.

5 Brownian motion

An important application of the diffusion equation is to study Brownian motion. In 1827, a botanist
named Robert Brown collected some pollen one Spring afternoon and put it in some water in a
Petri dish in his lab, then went to bed. When he woke up, he found that the pollen grain had
moved a significant distance. “It’s alive!” he concluded. In fact, the pollen moved not because it is
alive, but rather because it underwent a random walk due to the water molecules surrounding it
constantly giving it little kicks. This movement is called Brownian motion, after Robert Brown.
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Brownian motion refers to the random walk of a large particle due to stochastic collisions
with smaller particles. Although each hit from a small particle does very little, the hits add
up to a macroscopically observable displacement. You can see Brownian motion easily with a
microscope, where a dust particle or a bacterium will move a finite distance in a reasonable time.
What is fascinating about this migration is that you cannot resolve the small molecules, like water
molecules, in the microscope, so it looks like the big particle is moving by magic. Of course, it is
not magic, and indeed we can deduce the existence of “invisible” molecules from Brownian motion
of something visible. Einstein used this insight to measure Avogadro’s number, as we will now see.

The molecular collisions have another effect too — they slow down a moving particle, through

a drag force. Indeed, drag, that you experience running your hand through the air or in water is

a collective effect of many small molecules impeding the motion. Drag forces are macroscopic and

can be measured without ever talking about molecules. A drag force, by definition, slows down a

particle, so if =0 it should vanish. Thus, the leading effect in an expansion around #=0 of drag
is that it is linear in the velocity is that the equations of motion F'=ma get modified to

22 7 —
m%“”ﬂ%: ext (43)

where m is the mass of a particle Fly is some external force. 1 is the drag coefficient (also called
mobility). To measure p we could, for example, could rub the particle to make it electrically
charged, then pull it with the electric force and measure the resistance. Or we could tie a tether
to it, add a weight, and pull it with gravity.

Once p is measured and ﬁext is turned off we can look at the distance the dust particle moves
due to Brownian motion alone. Of course, the expected value is (Z) =0, by symmetry, so we want
to look at the RMS displacement z,m,s=+/(Z2). Why should the particle move at all? With Fo=0
there is a solution Z(¢) = 0 to the equations of mition. The key piece of additional information
is that the mass m is not going to stay at rest since it gets buffeted by the molecules. A key
result that we derive soon is that everything in equilibrium has the same average kinetic energy
determined by temperature. More preciely (%m172> = % for anything in equilibrium: the mass,
the gas, anything. It is the random buffeting of the particles into each other due to random walks
than causes equilibrium. The bottom line is that Z =0 cannot be correct since then (#2) =0 which
is wrong. What Einstein did was found a way to express (Z?) in terms of (#2).

To begin, we note

dooo (d N o, L (d\N_~ . . (d.
E(I )—(E.Z‘) v+ 7 <%U>—U v+ 7 <dtv> (44)

and that Eq. (43) with Fiy turned off imples implies

<y

d_,  p.
EU— m'U (45)
So then we have
d RN o\ [,
D5y =) - Lizv) (46)

The general solution of this equation starting at =0 is

(#-5) :%@%(1 —e ) (47)

For late times ¢ > %, the exponential is very small and we see that (Z - ¥) :%@'2) is constant in

time. Next we use that
d o o, AT, L
P =2 I =25 =) (48)

This says that the displacement-squared grows linearly with time, characteristic of a random walk.
that is

(%) =?<172>t (49)
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The RMS displacement is therefore

Zoms = v/ (E2) = Vrms 277” NG (50)

Comparing to Eq. (39) we have

fl m172
D—M< ) (51)

This is known as the Einstein relation.
As mentioned, to proceed, we need to borrow a result here from Lecture 4, that the average

kinetic energy per particle is (%m %) :%T with R the ideal gas constant and 7" the temperature.

(It should not be obvious to you that the average kinetic energy is determined by the temperature,
but it’s true as we’ll show in Lecture 4.) Then Eq. (51) implies

_3RT

Ny =220
A WD

(52)
So by measuring the temperature (with a thermometer), the drag coefficient (with an external
force) and the rate of diffusion (from Brownian motion), the number of water molecules N4 can
be determined. This is how Albert Einstein proposed to measure Avogadro’s number Ny using
Brownian motion in 1905.

5.1 Viscosity

Consider a ball falling through a fluid. It is accelerated from a downward force due to gravity
and encounters resistance, or drag, from the fluid. There are two sources of drag. The first, called
inertial drag, is due to the ball bonking molecules in front of it and speeding them up. In a
time At the ball will sweep out a volume AV =7 R?|7|At, thereby accelerating a mass Am = pAV

of fluid to velocity roughly 9. The average acceleration is then d = Ait, so that the force is
ﬁinertial =Ama=nR?p|v|v. This goes like the square of the velocity. This inertial drag is relevant
at large velocities, but for slow objects it is always going to be subdominant to a drag force that
is linear in v. For slow objects (slow compared to typical molecular speeds), the dominant drag
force is due to viscosity, called viscous drag. It is viscous drag that is important for Brownian
motion, and related to random walks.

Viscosity is another physical effect whose microscopic origin is in the stochastic collision of
molecules. The more precise name for viscosity is dynamic shear viscosity. It measures how a
fluid responds to shear forces: you push the top layer and ask how much the bottom layer moves.
Intuitively, viscosity is a measure of how well a fluid flows.

A shear force is applied to an area. Think of floating a block of wood on water and applying
a external force F‘ext to move it parallel to the surface. The bigger the area of the block, the more
force it puts on the water. The water then responds by picking up some velocity 9, in the same
direction as the force. The deeper you go into the water, the slower it will go. So we might expect

—

EL Fext
nz_ A

(53)

with z the depth. This isn’t quite right, because we don’t know that the z dependence is exactly %
The right way to think about this shear force is that we apply it only to the top of the water.

When the top of the water moves, it pulls along the layer below that (by layer we mean layer of

molecules, or just some abstract infinitesimal thickness of the fluid), and so on. So we write

817_ ﬁext
9z A (54)

The parameter 7 is this equation is called the dynamic shear viscosity.

Now lets return to the sphere falling through the fluid. It has a downward force due to gravity.
As it moves down, it displaces the molecules, but also imparts velocity to the fluid in the direction
transverse to its motion
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Figure 1. A ball falling through a viscous fluid has a downward force due to gravity and a drag force due
to viscosity.

The definition of viscosity tells us that the sphere induces a velocity of the fluid

ov  Fy

"5 = kR (55)
where 47R? is the surface area of the sphere. At the surface of the sphere, the fluid velocity is the
same as the sphere velocity. Thus we can solve this equation to see how the fluid velocity changes
with distance. The faster the sphere is falling, the faster the fluid will go. Eventually, all the energy
used by gravity to accelerate the sphere will be taken up by the work done to move the water, and
the sphere will stop accelerating. Thus, there will be some effective drag force. Working out all
the factors (an annoyingly tedious calculation), the result is

ﬁdmg:&mRU (56)

This is known as the Stokes drag force. This equation relates a property of the fluid (the
viscosity), to the resistance experienced by an external object as it is being forced through the fluid
(the viscous drag force). It is linear in the velocity of the object, compared to the inertial force
which was quadratic in velocity, so at small velocities, the viscous drag force dominates. Keep in
mind that viscosity is a property of the fluid itself, while drag depends on what is being dragged
through the fluid. The Stokes force applies when that thing is a sphere of radius R. For a different
object, like a cube, the precise form of the force would be different, but the scaling with n and ¥
and some measure of size R is universal. Indeed, it is fixed by dimensional analysis.
Recall that we defined mobility as the drag coefficient in Eq. (43). So

w=06mnR (57)
This is known as the Stokes relation. Plugging it into the Einstein relation in Eq. (51) gives
__ 1 =2
= 67r77R<mv ) (58)

This is known as the Einstein-Stokes relation. It relates the diffusion constant D and the
viscosity, telling us that viscosity also has its origin in the microscopic random walks of the
molecules in the fluid.

6 Summary

In this lecture we have studied diffusion. The main concepts to understand are

e Random walks: A particle/system has a fixed probability of moving in each direction. We
are interested in the net motion after N steps.

e If we move left with probability a and right with probability b=1 — a, the chance of taking
m steps right is given by the binomial distribution: By(m) = ambN*m< nj\i) where

(m )= =
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e The average distance moved in a random walk after IV steps scales as 0 ~ /N where ¢ is
the step size. This is true in any number of dimensions.

e A bunch of molecules random-walking is called diffusion. Then the number of steps IV is
proportional to the time ¢ so the distance moved is Az~ +/tf. This scaling of distance o
square-root of time is the characteristic feature of diffusion.

e In the continuum limit, molecules are described by a number-density n(Z,t).

e The number density satisfies the diffusion equation B"g’t) = D@Qn(f ,t) when diffusion

is dominant.

e The exact solution to the diffusion equation with boundary conditions n(Z, t) = §%(%) is
n(Z,t) =4/ 47rDtexp[ } This confirms the scaling Az~ +/T.

e The diffusion equation comes from a modeling of the microscopic system as undergoing
random walks. An alternative classical-field approach (no particles) uses Fick’s laws These
assume the conservation of the amount of stuff (the continuity equation 6—+ V-J= 0, where
J=nxis the flux) and that flux is proportional to the concentration gradlent J=—DVn,
leads to the same diffusion equation.

e The conduction of heat is described by the heat equation: % = a@QT(f, t). This
equation has identical form as the diffusion equation, and so also has Az ~ /7.

e In liquids and gases, diffusion is rarely dominant unless the system is very calm. Convec-
tion, coming from non-equilibrium initial conditions, is usually is more important. In solids,
diffusion and the heat equation work well.

e A large molecule in a reasonably calm liquid or gas can often be modeled well by a random
walk /diffusion. When this applies, we say it undergoes Brownian motlon For such mole-

cules, the diffusion consent is given by the Einstein relation: D= m (mv )} with u the drag
3RT

coefficient. Measuring D and p is one way to measure Avogadro’s number: NA:#—D.

e The drag coefficient is also related to viscosity n by u=6wnR. Then D= m@?). This
is called the Einstein-Stokes relation,

R<

The main lesson from the last section is simply that the drag force, mobility, diffusion, viscosity
and random walks are all related. I don’t expect you to remember all these formulas, and I
certainly don’t want you to memorize them. Just try to have the basic ideas straight. Viscosity
is a macroscopically measurable property of a material. When a large particle moves in a viscous
material, it undergoes Brownian motion. The bigger the particle, the smaller the diffusion constant,
and the slower it moves. The higher the viscosity, the larger the drag force, and the slower the
particle moves.

Small molecules moving in a fluid also undergo random walks. For small molecules, of around
the same size as the molecules in the fluid, the diffusion constant is D :%&7 with ¢ the mean free
path. In this case, it is not useful to think in terms of drag forces and viscosity since the diffusing
particle has essentially no inertia.

A tricky point from this lecture is that diffusion is an equilibrium phenomena. Equilibrium
does not mean there is no time-dependence at all, but that the macroscopic properties of the system

are static. We’ll discuss equilibrium more next lecture. You should think of 8"(8"L D) — DV (T, t)
as describing the change in the number density of a small subset of the molecules in a bath, for
example, dye in water, or of a macromolecule undergoing Brownian motion in a bath. The water
in the bath doesn’t change, even though individual water molecules might move. When the whole
system is out of equilibrium, for example when the boundary conditions are open (gas released
into a vacuum) or if you violently drop the dye in, then the diffusion equation doesn’t apply.
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