Matthew Schwartz
Statistical Mechanics, Spring 2025

Lecture 12: Bose-Einstein Condensation

1 Introduction

Bose-Einstein condensation is a quantum phenomenon in Bose gases in which a large number
of bosons simultaneously occupy the ground state of a system. Bose-Einstein condensates were
predicted in 1925 by Bose and discovered experimentally 70 years later by Weimann, Cornell and
Ketterle who shared the Nobel prize for their discovery in 2001. More precisely, these scientists
constructed an experiment where the phase transition to Bose-Einstein condensation could be
clearly seen and measured. Many quantum phenomena such as superconductivity, superfluids or
lasers can also be understood as Bose-Einstein condensation.

Your first thought might be, of course a lot of bosons are in the ground state! After all, there
is no quantum effect preventing them from being in the ground state (no Pauli exclusion), and
naturally particles want to be in the state of lowest energy. This is a good thought; let’s follow
through. How many bosons do you expect in the ground state? Well, say they obey Maxwell-
Boltzmann statistics, so that n; ~e~5/*8T_ This function is pretty flat for e; < kgT’, so we would
expect that if there are say 100 states below kg7 then each one should have roughly the same
number of particles in it — nothing too special about the ground state. Thus, if you want a sizable
fraction, say 1/2 the particles, to be in the ground state, you would have to get kgT down below
the energy of the first excited state €1. This argument is correct for Maxwell-Boltzmann statistics,
and we’ll flesh it out more in a moment. The amazing thing is that with Bose-Einstein statistics
the argument completely fails — you can find more than half of the particles in the ground state
even for temperatures with kgT > ¢;.

Bose-Einstein condensation is tricky to explain, so we’ll approach it different ways. First, we’ll
try to understand what it is about Bose-Einstein statistics that allows condensation to happen
through a simple system that we can solve in the canonical ensemble. Then we’ll do the general
case using the grand-canonical ensemble, first numerically, and then through analytic expansions.

In this lecture, it will be helpful to set the ground state energy to zero: eg = 0. By setting it
to zero, we mean that we list all energies as relative to the ground state. Shifting all the energies
as well as the chemical potential in this way will have no effect on the physics and can be done
without loss of generality.

2 Two-state system: canonical ensemble

Consider a system with N particles but only two possible energy states: ¢g=0 and 1 =¢. Because
there are only two states, we can study this system in the canonical ensemble for both Maxwell-
Boltzmann statistics and Bose-Einstein statistics. We’ll see that even in this two-state system
the ground state occupancy can be much larger than % even when kgT > ¢ with Bose-Einstein
statistics. With the large number of states present in any realistic system, the canonical ensemble
will not be tractable and we will have to resort to the more abstract grand canonical ensemble.
Let’s start with the simplest case of our 2-state system, N = 1. If there is only one particle,

then for any statistics, the partition function is
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The probability of finding the particle in the ground state is Pground = Zile*ﬁ80 = ZLI and so the
expected fraction of particles in the ground state is
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Again, this holds for any statistics, since there is only one particle.

Now say there are N particles. With Maxwell-Boltzmann statistics, the probability of finding
any particle in the ground state is independent of the probability of finding any other particle
anywhere. This implies that the N particle partition function is related to the 1 particle one by
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Of the 2V microstates, there is only one microstate with all the particles in the ground state, so
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Note that we include the % in the probabilty for the same reason we do in ZMB, to account for
identifal particles. To confirm that this is correct, let us verify that the probabilities sum to one.
There are N states with 1 particle in the excited state, ( 12\7 ) states with 2 particles in the excited
state and so on. So the sum of probabilties is
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where Egs. (1) and (3) were used in the last step. To compute the expected number in the ground
state, we multiply each term in this sum by the ground state occupancy:
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You can check this sum in Mathematica. Note that at large T’ (3 — 0), (NNS,.4) goes to %: half
the particles are in the ground state, half in the excited state.

With Bose-Einstein statistics there is only one state with m particles in the ground state and
N — m particles in the excited state. So there are only N + 1 possible states all together and
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Then the expected number in the ground state is
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Let us look at Egs. (7) and (10) numerically for N = 100:
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Figure 1. The fractional population of the ground state in a two state system with N = 100.
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This plot demonstrates Bose-Einstein condensation. With Maxwell-Boltzmann statistics, the
temperature has to be very low to get the lowest state to have an appreciable filling fraction. At
temperature kg1 2 ¢ both the ground state and the first excited state are around equally populated
80 (Nground) :%. In contrast, with Bose-Einstein statistics, a significant fraction of the the particles
are in the ground state even well above the temperature kgT =¢. For example, with at kgT =10¢e
we find 90% of the atoms are in the ground state for Bose-Einstein statistics, but only 52% for
Maxwell-Boltzmann statistics. This demonstrates Bose-Einstein condensation.

Bose-Einstein condensation is a phase transition whereby the ground state become highly
occupied. What is the critical temperature for this to occur? There is only two dimensionless
numbers we can work with 227 and N. We want N to be large, N > 1. Then we can expand in
two limits —>> N (i.e. ﬁsN <1) and 2L « N (i.e. BeN>1). Expanding Eq. (10) in the first
limit gives

<Nground> 1 Ne k‘BT
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This is the true high-temperature limit, where the classical behavior {Ngrouna) _, <Ngr§““d> z% is

approached as T'— oo. In the second limit N > —— kBT

large, and the expansion gives a different result

(Ngtound) _y _ ksT (N > kBT) (12)

> 1, the temperature is large, but not too

N Ne

BE
This limit shows the growth of w toward 1 as T'— 0. The comparison of these approximations
to Eq. (10) looks like
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Figure 2. The approximations to the Bose-Einstein curve in Egs. (11) and (12).

The crossover point is roughly where the approximations used for our expansions break down.
The first term is the same order as the second term in Eq. (11) when kBT:%. For Eq. (12) the

Ne
6kp
indicating the onset of Bose-Einstein condensation. (The crossover point in this 2-state example
is not at a precise temperature, as you can see from the plot. T will become precise when we

consider a realistic system with a large number of states in the next section.)

crossover is at kgT = Ne. Thus we find a critical temperature T, ~ N% for this two state model

To emphasize how strange Bose-Einstein condensation is, remember that at kgT > ¢ we should
be able to use e ¢~ 1 independent of N. That is, the ground state and first excited state should
have pretty similar thermodynamic properties and occupancy at high temperature. This is not
what we are finding. Instead, for N = 10 million, with a temperature 1 million times the excited
state energy, 90% of the atoms are in the ground state and only 10% are in the excited state.

Now, this 2-state model is not a realistic approximation to any physical system. It turns out to
be very difficult to calculate <Ngmund) in the canonical ensemble for a realistic system that has an
infinite number of states. The difficulty is that we have to count the number of ways of allocating
N particles to the states, and then to perform the sum over occupancies of the ground state times
Boltzmann factors. It turns out to be much easier to compute the general case using the grand-
canonical ensemble with p instead of N, as we will now see.
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3 Grand canonical ensemble

With Bose-Einstein statistics, we determined that using the grand canonical ensemble the expected
number of particles in a state i is
1

(Ni) = Blei—m

(13)

with &; the energy of the state i. So the expected number of particles in the ground state (¢;=0) is
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Recall that for Bose gases, p will always be lower then all the energies (i.e. u <0 when g5 =0).
We can see this explicitly from the plot since there is a singularity at 4 =0. This singularity, that
Neground — 00 as p— 0 is not physical. Recall that in the grand canonical ensemble we do not fix
N, so the same distribution has to allow for arbitrarily large N. If we know N then we have to
trade p for N by imposing the constraint ). (N;) = N. This is not so easy, but we can do it.

To replace p by N, we first invert Eq. (14) to solve for p in terms of (Nground):

1

e Pr—__ -
<Nground>

+1 (15)

Our strategy will then be to find the ground state occupancy by using the constraint the the total
number of particles is V. That is, we will compute

Beip—B )
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Once we work out the ; we can do the sum numerically or analytically and therefore find <Ng—1§“d>

Before beginning the calculation, let us quickly ask about the non-ground state occupancies.
Since

1 1

PR SN
B <Nground>
w is always negative and gets closest to zero when (Nground) is largest. Conversely, (Nground) is
largest when p is closest to zero as can be seen in Eq. (14).
Can excited states have a large number of particles in them? The explosion of particles in the
ground state arose because if g — 0 then e #* — 1 and { Nground) = —g — For the first
excited state,
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Since <N—1d>+ 1>1 and e > 1, this can never get too large. Indeed, as p <0 there is always a
groun

gap between p and any energy other than the ground state, so e?¢1=#) > ¢fe1> 1. Since p cannot
get arbitrarily close to &; condensation cannot happen in any excited state. The ground state is
special.!

1. Technically speaking, this is true only in equilibrium. In a laser, photons condense into an excited state. But
lasers must be pumped — they are not in equilibrium.
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3.1 Exact numerical solution

Ngroun . . L
M. Bose-Einstein condensation is relevant at low temper-

Now let us calculate IV, and hence
ature, where particles are non-relativistic. So consider a non-relativistic gas of monatomic bosonic
atoms in a 3D box of size L. The allowed wavevectors of the system are Ky = —n just like for photons

or phonons, and the momenta are p,, = hk,, as always. In a non relativistic systern the energies are

=2 2.2
Pn em o

(19)
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We have set the ground state to eg=0 (rather than eg=mc?), since the absolute energy scale will
be irrelevant. Another useful number is the gap to the first excited state

h2 2 h2ﬂ'2

1=z (10,0 =50 (20)
So that
en=e1n> (21)
Then, from Eq. (16) we get
S 1
N= 22
o P ) @)
A (Nground)

This formula lets us compute N given (Nground) and fei. For example, if (Ngrouna) = 80 and
T = 10;—; then doing the sum numerically gives N = 167.5. This means with 167.5 particles at

T= 10i then 80 will be in the ground state.

What we really want is to specify NV and T and find (Nground). Do get this function, we need
to do the sum in Eq. (22) and then solve for (Ngouna) in terms of g1 and N. Unfortunately, we
cannot do the sum exactly, but at least we can do it numerically. For N =100 we find the numerical

<Nground>
N

solution for has the form (see the Mathematica notebook on canvas)
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Figure 3. Exact numerical result for the ground state occupancy in a Bose system with N =100.

I added to the plot the prediction using Maxwell-Boltzmann statistics. For MB statistics, we drop
all the factors of £1. So, {Nground) = e”* and so Eq. (22) becomes

1 —Bey(n2+n2+n2
N = Z - = (Ngrouna) Z e Be1(nztny+ni) (23)

Be1(nZ+ni+n2)
€ NNy, Nz
{Nground) v

Ny My, Nz

These sums can be done numerically with the result is plotted alongside the BE result in Fig. 3.

)3/2 which looks a lot like the exact result

481
kT

: : (Ngiound)
If we turn the sum into integrals, then —*5==~ (
that is plotted.
For different N the curve shifts, but looks qualitatively the same. After a little fiddling (inspired

by the analytic result below), we see that if we plot the ground state occupancy as a function of
kpT

ST the result is essentially independent of N for the Bose-Einstein case:
€1
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Figure 4. Ground state occupancy in a Bose system for different N as a function of T (left) and of —— ~ /3 (right).

Pulling out a factor of N 2/3 makes the ground state occupancy essentially independent of N.

2/3
The kink in the graph, at around 7. ~ O.SNk—B‘El indicates the phase transition. Above this

temperature, the ground state is basically empty, having only its fair share of particles. Below this
temperature, (Nground) starts growing linearly with T'. The rescaling of our numerical result from
the left to the right plot indicates that the critical temperature T, scales like N2/3, a result that
we will next confirm analytically.

3.2 Approximate analytical solution

Having determined the exact solution numerically, let us proceed to use an analytical approach to
determine some scaling relations and the transition temperature.
As with the phonon or photon gas, we first transform the sum to an integral via

Zﬂl / 4mn2dn (24)
— 8/

where the = comes from 7 being a vector of whole numbers, as in the phonon or photon case. We
want to Convert n to &, which we can do using using Eq. (21), e =&1n? so

de =2e1ndn (25)

Zﬂg/ nndnf—/ \/:1251 3/2 \/Eds (26)

Z H/g(s)ds (27)

™

g(e) :??/2\/5 (28)

So

As before we write this as
where

is the density of states.
At this point, we would like to integrate over ¢ to find N

e T e 1
Nﬁ/o 9(@@5)@/{) dfﬁm (29)

This is a little too quick, however. The problem is that converting a sum to an integral can only
be justified if we do not care at all about the discreteness. For Bose-Einstein condensation we do
care about the discreteness: the ground state, as we have seen, is qualitatively different from the
other states.
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Although discreteness is important for the ground sates, for the excited states, even the first
excited state, there is no issue — the chemical potential 1 can never approach any of their energies
and so their occupancy numbers will never be unusually large. So let us proceed by taking the
continuum limit for all but the ground state. Moreover, since e ~#* a1 when (Ngrouna) = 1 which is
the region of interest, we can simply set ©=0 for the excited state calculation and Eq. (29) becomes

€1
1 + O( m) + ot
where (3/0= C(%) ~2.61 with ((z) the Riemann Zeta function. The first term on the right comes

from integrating from 0 to co. The second term on the right, scaling like , /% relative to the first,

comes from the region 0 < e <¢e;. Typically kg7 > ¢; and these corrections are small.

(30)

T © 1 rkgT \3/2
Nexci ed) X ——%75 d =
< t d> 451;)/2/51 E\/Eeﬁs_l ( 451 ) C3/2

When does the approximation that p =0 break down? That is p~0 is a good approximation
the BEC regime (low T'), where the ground state is anomalously filled. It breaks down at higher
T when (Nground) gets small, as you can see from Eq. (14): as (Ngrouna) — 0 then p— —oco. We
can also check this numerically, for example, by looking at the exact numerical solution for (N),

using Eq. (18) and comparing to the p =0 approximation, where (Ny) = SEmo T
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Figure 5. Comparing (N1) computed numerically (solid) to (Nj) in the u=0 approximation (dashed).

So the p =0 approximation breaks down when (Nground) = 0 and so (Nexcited) = IN. Another
way to see that the approximation is breaking down is that if we continue to apply p=0 at higher
temperatures then Eq. (30) would imply (Nexcitea) > V. Indeed, setting Eq. (30) equal to N we
find that our approximation breaks down when

knT 3/2
<Nexcited>:C3/2<ﬂ-4z ) >N (31)

This transition is where (Nground) — 0. In other words, it occurs at the critical temperature
where (Nground), the order parameter for BEC goes from 0 to finite value. Setting (Nexcited) = N
therefore gives us a formula for the BEC critical temperature:

B ’/TkBjZ 3/27 kan 3/2
N<3/2< 451) —2612( 2 )V (32)

where with £; from Eq. (20) was used. Solving for T, gives

273 2 273
TCZE NN g (N (33)
wkp Cg/g kpm\ V

This lets us write Eq. (30) a

Nexcited_ T 3/2
N _<TC) ) T<T, (34)
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Thus, the fraction in the ground state is

<Nground> N — <Nexcited> ( T 04 A\
- - ()T (35)
N N I 0.2¢ \\
I\\
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Comparing to our exact numerical results from Section 3.1 we find good agreement:
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Figure 6. Comparison of the analytic result 1 — (TE) / with the exact numerical results for N = 102,103,
10%, ‘

4 Experimental evidence

Even though the transition temperature to the BEC is well above the first excited state energy, one
still needs to get a system of bosons very very cold to produce a BEC. It took 70 years from when
BEC’s were first conjectured theoretically (by Satyendra Nath Bose in 1924) to when technology
to cool atoms was sufficiently advanced that the BEC could be produced and detected (Cornell,
Weimann and Ketterle in 1995). The tricky part is that normally when you cool a gas of atoms,
they solidify. A solid is not a BEC. So you need to cool the gas while keeping the density low.
However, since T, = 3.31]ﬁ2—2m(‘—1\;)2/3 if you keep the density low you need very very low (ultracold)
temperatures.

2/3
Since T.= 3'3115;_;(%{) / depends inversely on the mass of the atoms lighter atoms allows the

critical temperature to be higher. You might therefore think hydrogen is the easiest element to cool
to see a BEC form. Unfortunately, in the mid 1990s, lasers weren’t available that could operate at
frequencies conducive to cooling hydrogen. Cornell and Weimann, and Ketterle, used Rubidium
atoms, 8'Rb to form the BEC. Rubidium has a convenient set of energy levels that were will suited
to the available laser cooling technologies at the time. They were able to cool around 2000 atoms
using magneto-optical traps (MOTs) along with laser and evaporative cooling techniques to the
nanokelvin temperature scales required for the BEC. They found that below 7; ~ 170nK Bose-
Einstein condensation can be seen. This critical temperature is in excellent agreement with the
general formula T, = 3.31&—;(%)2/3 when you plug in the density they were able to achieve.

In order to see the BEC, one needs to be able to distinguish atoms in the ground state from
atoms in the excited states. The basic feature that makes this possible is that the ground state
atoms all have smaller wavenumbers and hence slower velocities than the other states. So if you
remove the magnetic trap, the atoms will start to spread, with the ground state atoms spreading
more slowly. Thus the atoms’ positions after a short time indicate their initial velocities. The
scientists photographed (i.e. illuminated the system with a resonant laser pulse) the system after
t=100ms and found a high density of atoms that had not moved very far:
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Figure 7. Observation of a Bose-Einstein condensate

In this figure, from Weimann and Cornell’s group at the JILA laboratory in Boulder, we
see the distribution of atoms in the BEC at different temperatures. The critical temperature is
T. ~ 170nK. Above this temperature (left), the distribution is pretty smooth, consistent with a
Maxwell-Boltzmann velocity distribution. Below the critical temperature you can clearly see the
higher density corresponding at an anomalously large occupancy of the ground state, consistent
with expectations from a BEC. The right image shows the BEC at even lower temperature, where
the occupancy is even higher. Direct observation of thermodynamic properties of the system, such
as the energy density and heat capacity (particularly by Ketterle’s group at ), further confirmed
that this system was a BEC.

Since their discovery BECs have continued to exhibit some amazing and unusual properties.
Because of their coherence (all the atoms are in the same state), they can manifest quantum
phenomena at larger scales than electrons and are in many ways more controllable than electrons.
A number of groups at Harvard and MIT study BECs.

For example, Prof. Greiner (Harvard) uses lasers to localize rubidium atoms in an optical lattice.
By controlling the spacing and lattice properties, he can fine tune the system, essentially choosing
whatever Hamiltonian he wants. Once the rubidium atoms form a BEC, they exhibit strongly
correlated behavior that can be connected to the properties of the Hamiltonian. Such an approach
may lead the way to building quantum computers with longer coherence times, or to understanding
what material properties might be most likely to produce room-temperature superconductors.

Another example is from Prof. Hau’s lab (also at Harvard). In 1999 Prof. Hau constructed a
BEC of sodium atoms. Normally, a laser tuned to a hyperfine splitting of the sodium levels would
be absorbed and so sodium appears opaque to this frequency. However, Hau was able to entangle
the ground and excited states of sodium using photons of a different laser in such a way that she
could adjust the transparency of sodium to the first laser. The result is that she could manipulate
the dispersion relation of light propagating through the sodium BEC and achieve arbitrarily small
group velocities. In her first paper on the subject, she slowed light down to 17% with this technique.
Subsequently, she was able to get light to stop completely.

The BECs produced in laboratories have carefully controlled properties, and very restricted
interactions. A BEC of rubidium or sodium is unstable to condense in solid form and be held apart
with some careful tricks using magnetic fields and optical traps. Helium is a noble gas that naturally
has very weak interactions and will only solidify at very high pressure. At low temperature and
pressure, it forms a Bose-Einstein condensate called a superfluid. Liquid *He is a BEC of helium
atoms. Although *He is fermionic, pairs of He atoms are bosonic, so liquid *He can be thought of as
forming due to the pairing of helium atoms. Superfluids have zero viscosity. This is closely related
to the bosons all being in the same state, but in this case, the state is not the zero-momentum
state but one of non-zero momentum since there is a density current flowing through the fluid.
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Bose Einstein condensation is also related to superconductors. In a superconductors, like
solid mercury at T' < 4.2K, there is no resistivity. In the BCS theory, the superconductivity is
explained through the condensation of pairs of electrons called cooper pairs. These pairs act
like bosons and form a condensate at low temperature. Because electrons are charged, so are the
cooper pairs. The condensation of charged pairs screens the magnetic field in the superconductors,
allowing the charged current to flow with zero resistance. Thus superconductors are much like
superfluids with charged bosons instead of neutral ones.

5 Summary

Bose-Einstein condensation is a phenomenon whereby systems of bosons tend towards configu-
rations where most of the bosons are in the identical state. Typically, you might think that at a
temperature T, all the states with energy ¢ < kT would be occupied. Instead, what happens is
that a single state, which can have energy €9 < kgT gets an order-one fraction of the particles,
while other states, even ones with € < kgT as well, are hardly occupied at all.

There are various ways to understand Bose-Einstein condensation. We looked at a toy model
using the canonical ensemble where we saw the condensation happen. A more powerful tool is the

grand canonical ensemble. In the grand canonical ensemble, the chemical potential u is key. The
condensation happens for the state with g~ p for which the expected occupation (n;) :m
blows up.

We found that there is a phase transition. Above a critical temperature 7. :%( C:/[2 )2/3, all

states with ¢ < kgT are evenly occupied. However, below T¢, the occupation number of the ground
(Ngrouna) _ 1 _ (T)3/2
T —_— - .

state grows like

T,
Bose-Einstein condensates include superfluids, superconductors and lasers. They were predicted
in 1924 but not seen in the lab until 1995.
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