Matthew Schwartz

Lecture 5:
Fourier series

1 Fourier series

When N oscillators are strung together in a series, the amplitude of that string can be described
by a function A(z,t) which satisfies the wave equation:
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We saw that electromagnetic fields satisfy this same equation with v =c the speed of light.
We found normal mode solutions of the form

Az, t) = Aocos( (:c:l:vt)Jr(,b) 2)

for any w which are traveling waves. Solutions of the form
A(z,t) = Agcos(kz)cos(wt) (3)

with w? = v?k? are called standing waves. Whether traveling waves or standing waves are rele-
vant depends on the boundary condition.
More generally, we found traveling wave solutions could come from any function f(x+ vt):
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[% 1;288:6 ]f(:c+vt)0 (4)

Similarly f(x — vt) is a solution. Functions f(z —vt) are right-moving traveling waves and func-
tions f(x 4 vt) are left-moving traveling waves.

Now, since any vector can be written as a sum of eigenvectors, any solution can be written
as a sum of normal modes. This is true both in the discrete case and in the continuum case.
Thus we must be able to write

flz+ot)= Z arcos( kx )cos(wt) + bysin(kax)cos(wt) 4 cxcos(kx )sin(wt) + disin(kx)sin(wt)  (5)
k

where the sum is over wavenumbers k. In particular, at ¢t =0 any function can be written as

(x)= Z arcos(kax) + bysin(kx) (6)
k

We have just proved Fourier’s theorem!

(Ok, we haven’t really proven it, we just assumed the result from linear algebra about a
finite system applies also in the continuum limit. The actual proof requires certain properties
about the smoothness of f(x) to hold. But we are physicists not mathematicians, so let’s just
say we proved it.)

2 Fourier’s theorem

Fourier’s theorem states that any square-integrable function' f(z) which is periodic on the
interval 0 <z < L (meaning f(z + L) = f(z)) can be written as

fla )fa0+z ancos(—x) Z bnsm(—:c) (7)

n=1

1. A function is square-integrable if fOL dz f(x)? exists.
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with .
aoz%/o dx f(z) (8)
an%/OL dz f(x) cos(ﬁTn:c> 9)
b,,:%/OL da f(x) sm<2”T”x> (10)

This decomposition is known as a Fourier series. Fourier series are useful for periodic func-
tions or functions on a fixed interval L (like a string). One can do a similar analysis for non-
periodic functions or functions on an infinite interval (L — oo) in which case the decomposition
is known as a Fourier transform. We will study Fourier series first.

It is easy to verify these formulas for a, and b,. For ag, we just integrate f(x). Since
cos(Qinx) goes through n cycles of the complete cosine curve as z goes from 0 to L, we have

L
L
/ dmcos<27TTnac):0, n>0 (11)
Similarly, 0
L
/ dxsin(%—nx)zo, n>0 (12)
0 L
Thus,
L L o0 L o0 L
2mn . [ 2mn
/0 dmf(ac):ao/o dm—l—z an/o dwcos(Tx)—i—Z bn/o dwsm( 7 ac) (13)
n=1 n=1
:aoL (14)

in agreement with Eq. (8).
For a,, we can use the cosine sum formula to write

L L

/0 dx cos( 27;mx>cos(2ﬂTnx) = /0 dm{%eos( n —Em27mc) + %Cos( n LmQﬂ'x)] (15)
Now again we have that these integrals all vanish over an integer number of periods of the
cosine curve. The only way this wouldn’t vanish is if n —m =0. So we have for n >0

L L
/0 dzcos(%;mz)cos(%Tnz)%émn | dzz%émn (16)
where §,,, is the Kronecker d-function
_ 0, m#n
mn={G 2 a7

Similarly,

L
/0 dxcos(lex)sin(Qan):O (18)

Thus, for n >0

/OL dx aoeril amcos< x> +n§1 bmsm< z)] OS<—SC> (21)
:gi b (22)
- L, (23)
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as in Eq. (9). In the same way you can check the formula for b,,.

We use
e Fourier cosine series for functions which are even on the interval (f(z)= f(L —z))
e Fourier sine series for functions which are odd on the interval (f(z) =—f(L —x))

e For functions that are neither even nor odd on the interval, we need both sines
and cosines

3 Example

Find the Fourier series for the sawtooth function:
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Figure 1. Sawtooth function

This function is clearly periodic. It is equal to f(x) = 2 on the interval 0 < x < 1. Thus we
can compute the Fourier series with L =1. We get

WZ%ALﬂmzAlmmzé (24)

Next,
L 1
anzz/ dxf(z)cos<%—nx>2/ dzz cos(2mnw) (25)
L Jo L 0
This can be done by integration by parts
x L !
_ . 7 : _ 9
an =2 5 sm(27rnz)‘0 2/0 dzsin(2rnz)=0 (26)
Finally,
1
bn:2/ dxxsin(2rn) (27)
0
— 2" cos(2 )‘L+2 " cos(2mna) (28)
=25 _cos(2mnz)| ; zcos(2mnx
1
= 29
— (29)
Thus we have
1 — 1 . 2mnx
f@)=5+ > E—— (30)

Let’s look at how well the series approximates the function when including various terms.
Taking 0, 1 and 2 terms in the sum gives
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Figure 2. Approximations to the sawtooth function

Already at 3 modes, it’s looking reasonable. For 5, 10 and 100 modes we find
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Figure 3. More approximations to the sawtooth function

For 10 modes we find excellent agreement.

4 Plucking a string

Let’s apply the Fourier decomposition we worked out to plucking a string. Suppose we pluck a
string by pulling up one end:
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What happens to the string? To find out, let us do a Fourier decomposition of the z-dependence
of the pluck. We start by writing
Az, t)= i an,COS 2n_7rx cos(wpt) + bpsin 2n_7rx cos(wnpt) Wy = 2”—7Tv (31)
’ — L L ’ L

2”777, we know that

wp, = kpv to satisfy the wave equation. We could also have included components with sin(w,t);
however since the string starts off at rest (so that 0A(x, t) = 0), then the coefficients of the
sin(wyt) functions must all vanish.

At time t =0, the amplitude is

A(z,0) = i {ancos<2”7”:c> + bnsin<2nT7Tz)] (32)

n=0

Here v is the speed of sound in the string. For a given wavenumber, k,, =

This is just the Fourier decomposition of the function described by our pluck shape. If we
approximate the pluck as the sawtooth function from the previous section, then we already
know that

an=0, by=—— (33)
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So that, setting L=1

— 1
Az . t) = ——sin(2 2wt
(z,t) Zl 7Tnsm( 7 )cos(2mut)
This gives the motion of the string for all time.
The relative amplitudes of each mode are
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Figure 4. Amplitudes of the relative harmonics of a string plucked with a sawtooth plucking.

The n = 1 mode is the largest. This the fundamental frequency of the string. Thus the

sound that comes out of the string will be mostly this frequency: w; = 2%1). The modes with n >
1 are the harmonics. Harmonics have frequencies which are integer multiples of the funda-

mental.

5 Exponentials

Fourier series decompositions are even easier with complex numbers. There we can replace the

sines and cosines by exponentials. The series is

o 27
fle)=>" e T (35)
where n=_=
1 L —inz2t
cn:—/ dx f(z)e L (36)
L Jo
To check this, we substitute in
L . op °° L ) 2r . o2n e L i ( ) w2x
If n#+m then,
L
i(m—n)z=" L 1 z(m—n)%m L
/0 dx 2rm—n 0 (38)
_ L 1 2w (m—mn) _
pp — 1]=0 (39)
If m =mn, then the integral is just
L
/ dx=1L (40)
Thus, 0
L . 27
/ doe' "I = Loy, (41)
0
and so
L . 27
/ dzf(z)e """ T =Lec, (42)
0
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If f(z) is real, then

oo

f@)= 3 Re(eat c_n)cos< 272”” ) +Im(e_n + cn)sin< 272”” > (43)

n=—oo

So a, = Re(cp, + c—y) and b, =Im(c_,, + ¢,). Thus, the exponential series contains all the infor-
mation in both the sine and cosine series in an efficient form.

6 Orthogonal functions (optional)

In verifying Fourier’s theorem, we found the relevant integral equations

%/OL doe mmmE _5 (44)
l/L dmcos(Qﬂ-mx)sin<2ﬂ-—nx) =0 (45)
L/ L L
l/L dx Cos<2ﬂmx)cos<2ﬂ—n$) :lénm (46)
T/ L L 2

1 [ . [ 2mm . 2mn 1
f/o dzsm( T z)sm(T:c>§5nm (47)

These are examples of orthogonal functions. The integral is a type of inner product. The dot-
product among vectors is another example of an inner product. We can write the inner product
in various ways

(v |’LU>E’U"LTJ:Z VW, (48)

The integral inner product is a generalization of this from vectors of numbers to functions.
We can define the inner product of two functions as

1 27
(Floy=5- [ dopia)at) (49)
TJo
where f*(z) is the complex conjugate of f(z). For example,
<eimm|einz> — 6mn (50)
This is the analog of
(i |z5) = bij (51)

where |z;) = (0, -+, 0,1,0,0) with the 1 in the i'"® component. That is the |z;) are the unit vec-
tors. When a set of functions satisfy

(fil f3)=06i; (52)
we say that they are orthonormal. The ortho part means they are orthogonal: (f;|f;) =0
for i j. The normal part means they are normalized, (f;|f;)=1 for i=j.

If any function can be written as a linear combination of functions f; we say that the set
{fi} is complete. Then
fl@)=Y" aifi(z) (53)

K2

(F@)f) =" ag (£l = abij=a (54)

J J

We can extract a; via
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This is exactly what we did with the Fourier decomposition above. It is also what we do with
vectors

Then c¢; = (v|z;) which is just the i** component of 7.

We will see various sets of orthonormal function bases with different inner products come up
in physics. Other examples are:

Bessel functions: J,(z). These functions are the solutions to the differential equation

2?2 f"(x) +x f'(x) + (2 = n?) f(z) =0 (56)

They satisfy the orthonormality condition
1
(TalTn) = [ daa 7o) Tone) = (57)
0

Bessel functions come up in 2 dimensional problems. You will start to see them all over the
place in physics.
Legendre polynomials P,,. These satisfy Py(z)=1, Pi(x)=x and

(n+1)Pot1(x)=C2n+1DaPy(z) —nPr_1(zx) (58)
Their inner product is
1
2

Legendre polynomials come up in problems with spherical symmetry. You will study them to
death in quantum mechanics.
Hermite polynomials

Hy(e) = (~1)re T —pe (60)

dx?
So Ho(x) =1, Hi(z) =, Ha(z) =2? — 1 and so on. These satisfy

2

(Hy|Hyp) = /0 dze” 7 Hy(2)Hm(z) = 6pm (61)

Hermite polynomials play a critical role in the quantum harmonic oscillator.
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